数字通信第6章
通信原理第7版第6章PPT课件(樊昌信版)
西安电子科技大学 通信工程学院
课件制作:曹丽娜
§6.1.2 基带信号的频谱特性 ---PSD
思路:
分解 交变波 稳态波
s(t) u(t) v(t)
Ps ( f ) Pu ( f ) Pv ( f )
西安电子科技大学 通信工程学院
课件制作:曹丽娜
推导:设二进制的随机脉冲序列:
1 4
fS
G( f ) 2
1 4
f
2 S
G(mf S ) 2 ( f
m
mf S )
PS ( f )
1 4
f
STS2
sin
fTS
fTS
1 4
(
f
)
TS 4
Sa 2
(fTS
)
1 4
(
f
)
例
解
参见教材P137~139
自行推导
示意图:
西安电子科技大学 通信工程学院
P[g1(t nTs ) g2 (t nTs )], 以概率(1 P)
或写成
un (t) an[g1 (t nTs ) g2 (t nTs )]
其中
1 P, 以概率P an P, 以概率(1 P)
显然, u(t)是一个随机脉冲序列 。
1 v(t)的功率谱密度---Pv( f )
g1(t+2TB) g2(t+TB)
g1(t )
g1(t-2TB)
g2(t-TB)
g2(t-2TB)
-TB
s(t) sn (t) n
数据通信原理第6章
码型的频域特性 抗噪声能力 提取位定时信息 简单二元码 1B2B码 AMI码 HDB3码 2B1Q码
2. 二元码
每个码元上传送一位二进制信息
3. 三元码
4. 多元码
每个码元上传送一位多进制信息
28
2.简单二元码的功率谱
花瓣形状:主瓣,旁瓣 主瓣带宽:信号的近似带宽-----谱零点带宽
数字信息--------------->码型---------->数字信息
5
数字基带信号的码型设计原则
⑴ 码型应不含有直流,且低频成分小,尽量减少高频分量以节约 频率资源减少串音;
(2)码型中应含有定时信息,便于提取定时信息;
(3)码型变换设备要简单; (4)编码应具有一定的检错能力; (5)编码方案应对信息类型没有任何限制; (6)低误码率繁殖;
H ( ) GT ( )C( )GR ( )
假定输入基带信号的基本脉冲为单位冲击δ(t),这样发送 滤波器的输入信号可以表示为
d (t )
k
a (t kT )
k b
图 6 – 6 基带传输系统简化图
38
其中ak 是第k个码元,对于二进制数字信号,ak 的取值为0、 1(单极性信号)或-1、+1(双极性信号)。
(7) 高的编码效率;
6
7
8
1.单极性非归零(NRZ)码 单极性:1---高电平;0---0电平,码元持续期间电平不变 非归零:NRZ (nor-return to zero) 有直流且有固定0电平,多用于终端设备或近距离传输 (线路板内或线路板间);
特点:发送能量大,有利于提高收端信噪比;信道上占 用频带窄;有直流分量,导致信号失真;不能直接提取 位同步信息;判决门限不能稳定在最佳电平上,抗噪声 性能差;需一端接地。
第6章数字光纤通信系统
•6.1 两种传输体制
•6.1.1 复用原理介绍
•2、复用示意图
Multiplexor (MUX) Demultiplexor (DEMUX,or DMX)
Sometimes just called a MUX
第6章数字光纤通信系统
•6.1 两种传输体制
•6.1.1 复用原理介绍
第6章数字光纤通信系统
•6.1 两种传输体制
•6.1.2 准同步数字系列PDH
•4、PDH体制电接口和光接口的主要参
数 •对基群2.048Mb/s
•编码传号反转码
•Coded Mark Inversion
•E1
•E2
•E3
•E4
•CMI编码
•输入码字 编码结果
•0
01
•1
00/11交替
第6章数字光纤通信系统
•发送顺序
•采用指针技术是SDH的创新,结合虚容器(VC:Virtual Container)的概念, 解决了低速信号复接成高速信号时,由 于小的频率误差所造成的载荷相对位置漂移的问题。
第6章数字光纤通信系统
•6.1 两种传输体制
•6.1.3 同步数字系列SDH
•3、SDH复用结构
•SDH高速率等级有: • STM-4, STM-16, STM-64, STM-256 •相应速率为STM-1的4,16,64,256倍。
•时隙=8bit=前7bit(信息)+末位1bit(信令)
•一次群(基群)速率T1=193bit/125 µs=1.544Mb/s 第6章数字光纤通信系统
•6.1 两种传输体制
•6.1.2 准同步数字系列PDH
•PDH-E基群帧结构
数字通信基本与应用(第二版)课后答案解析6章答案解析
习题6.1 设计能检测分组中所有1、3、5、7位错误图样的(n ,k )奇偶校验码。
求出n 和k 的值。
如果信道码元错误概率是10-2,试求不能检测分组错误的概率。
解:()()7,8,=k n()()()826446288168148128p p p p p p p P nd ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛= ()()()()()()()38242624242622210*6.210101102810110701011028--------=+-+-+-=nd p6.2 计算将12位数据序列编码为(24,12)线性分组码后的错误概率。
假定码本能够纠正所有的1位、2位错误图样,而不能纠正所有2位以上的错误图样。
同时,假定信道码元错误概率为10-3。
解:()()()∑=----=-⎪⎪⎭⎫ ⎝⎛≅-⎪⎪⎭⎫ ⎝⎛=2436213332410*98.110110324124k k k M p p k P6.3 考虑一个能纠正3个错误的(127,92)线性分组码。
a )如果信道码元错误概率为10-3,对于未编码的92位信息,其消息错误概率是多少?b )如果信道码元错误概率为10-3,对于使用(127,92)分组编码的信息,其消息错误概率是多少。
解:(a )()292310*8.81011--=--=v m P(b) ()()()∑=----=-⎪⎪⎭⎫ ⎝⎛≅-⎪⎪⎭⎫ ⎝⎛=1274612334312710*14.91011041271127k kk cmp p k P6.4 假定采用相关BPSK 解调,接收E b /N 0=10dB ,计算使用(24,12)纠双错线性分组码,编码前后消息差错概率性能的改善。
解:()()610210*05.4247.412147.410*222---==≅==⎪⎪⎭⎫ ⎝⎛=e e x Q Q NE Q P x o bM ππ ()512610*86.410*05.411--=--=vm P对于(24,12)编码,码率是21,由于ocN E 比obN E 小3dB ,所以数据速率是非编码速率的两倍01.57==dB N E oc()()16.301.5*22Q Q NE Q P o c c ==⎪⎪⎭⎫⎝⎛= 查表 B.1 得 0008.0=c P()()()213242430008.010008.0324124-⎪⎪⎭⎫ ⎝⎛≅-⎪⎪⎭⎫ ⎝⎛=-=∑k k k c mp p k P 610*02.1-≅c m P6.4710*02.110*86.465==--TIMPROVEMEN ERFORMANCEP6.5 考虑一个(24,12)线性分组码,它能纠正双错。
通信原理(第六章 数字基带传输系统)图片公式
七、什么是眼图?眼图模型、说明什么问题?
八、时域均衡:基本原理、解决什么问题?如何衡量均 衡效果?
一、数字基带系统和频带系统结构
一、数字基带信号(电波形)及其频谱特性(1)
二元码:幅度取值只有两种“1”、“0”或“1”、 “-1”
单极性非归零码:用高低电平分别表示“1”和“0”, 如图6-1(a) 。一般用于近距离之间的信号传输 双极性非归零码:用正负电平分别表示“1”和“0”, 如图6-1(b)。应用广泛,适应于在有线和电缆信道中 传输。 单极性归零码:有电脉冲宽度比码元宽度窄,每个脉 冲都回到零电位。如图6-1(c)。利于减小码元间波形 的干扰和同步时钟提取。但码元能量小,匹配接收时 输出信噪比低些
二、基带传输码的常用码型(4)
HDB3特点:保持AMI码的优点,三元码,无直流分量,主 要功率集中在码速率fb的1/2出附近(如图)。 位定时频率分量为零,通过极性交替规律得到检错能力。 增加了使连0串减少到 至多3个的优点,而不管 信息源的统计特性如何。
对于定时信号的恢复 是十分有利的。广泛应 用于基带传输与接口码。
Pv (w) = 2p å
¥ m =-
Cn d (w - mws )
2
Pv ( f ) = å
2
Cn d ( f - mf s )
2
故稳态波的双边功率谱密度
Pv ( f ) = å
¥ m =-
f s [ PG1 (mf s ) + (1 - P)G2 (mf s )] ? d ( f
mf s )..(6.1 - 14)
代入(6.1-26)得单极性非归零波形的双边功率谱密度
Ps (w) = Ts 2 1 Sa (p fTs ) + d ( f )..(6.1 - 30) 4 4
移动通信(第六版)(章坚武)课件章 (6)
第6章 CDMA数字蜂窝移动通信系统
8 . 保密性强, 通话不会被窃听 CDMA信号的扰频方式提供了高度的保密性,要窃听通
第6章 CDMA数字蜂窝移动通信系统
第6章 CDMA数字蜂窝移动通信系统
6.1 引言 6.2 CDMA空中接口协议层 6.3 CDMA前向信道 6.4 CDMA反向信道 6.5 功率控制 6.6 Rake接收机 6.7 CDMA 系统的容量 6.8 CDMA登记 6.9 CDMA切换过程
第6章 CDMA数字蜂窝移动通信系统
第6章 CDMA数字蜂窝移动通信系统 图6-5和图6-6分别给出了速率1和速率2的前向/反向
业务信道帧结构。
图6-5 速率1的前向/反向业务信道帧结构
第6章 CDMA数字蜂窝移动通信系统 图6-6 速率2的前向/反向业务信道帧结构
第6章 CDMA数字蜂窝移动通信系统
从声码器得到的信息为每帧20ms。速率1声码器的全速 (9600b/s)输出速率为8.6kb/s, 每20ms编码为172bit。帧质量 指示F(循环冗余码校验,CRC)与编码尾比特 T(8bit)加在 声码 器输出的信息比特之后。帧质量指示的作用有两个:一是允许 接收机在所有172bit上计 算了CRC后,确定是否有帧发生错误; 二是帮助确定接收帧的数据速率。9600b/s帧是每20 ms有 192bit(即172+12+8bit)被传输而产生的。其中,12bit为帧质 量指示,8bit为编 码尾比特。同样的过程产生在4800b/s帧上。 2400b/s和1200b/s帧没有帧质量指示的比 特字段,这是因为这 些帧的相对抗误码性能较强,且发送的大多数信息是背景噪声。
通信原理讲义-第六章 数字信号的载波传输1二进制调制
数字信号的调制可以看成特殊调制信号 的模拟调制,类似模拟调制的情况,数 字调制也是用调制信号调制载波的三个 参数:振幅、频率、相位。 相应地称为:幅度键控、频率键控、相 位键控。
6.1 二进制数字调制
二进制数字调制是指调制信号为二进制 基带信号,这种调制信号仅有两种电平, 表示为“1”和“0”: 二进制数字调制又分为: 二进制幅度键控 二进制频率键控 二进制相位键控
数字基 带信号 二进制幅度键控s2ASK(t)
载波Acoswct
二进制幅度键控解调(非相干)
带通 滤波器
1 0.5 0 -0.5 -1 0 1 0.5 0 -0.5 -1 0 1 0.5 0 -0.5 -1 0 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
1 A1 0 0 0 1 ……
由调频理论,调制后信号的瞬时频率 w(t)=w0+KFMf(t) 而对单极性二元基带信号只有两种电平: f(t)=0或1, 故:w1= w0+KFM w2= w0。
二进制频率键控调制后的时域波形
1
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1
二进制差分相位键控的调制方法
二元单 极性码 输入 相对码 差分编码 二进制差分相位 键控DPSK输出
Acos(wct)
载波发生器
差分编码原理:
后一位与新生成的前一位码做模2和得到新生成的码
绝对码:1 0 0 1 0 1 1 0 相对码:1 1 1 0 0 1 0 0
二进制差分相位键控的解调(相干)
通信原理与技术第6 章模拟信号的数字化
第6 章模拟信号的数字化本章教学要求:1、掌握低通型抽样定理、PCM 基本工作原理。
掌握均匀量化原理、非均匀量化原理(A 律13折线)和编码理论。
2、理解时分复用和多路数字电话系统原理。
3、了解PCM 抗噪声性能、DM 和DPCM 系统原理。
§6.1 引言一、什么是模拟信号数字化?就是把模拟信号变换为数字信号的过程,即模数转化。
这是本章欲解决的中心问题。
二、为什么要进行模数转换?由于数字通信的诸多优点,数字通信系统日臻完善。
致使许多模拟信源的信号也想搭乘数字通信的快车;先将模拟信号转化为数字信号,借数字通信方式(基带或频带传输系统)得到高效可靠的传输,然后再变回模拟信号。
三、怎样进行数字化?就目前通信中使用最多的模数转换方法—脉冲编码调制(PCM)为典型,它包含三大步骤:1.抽样(§2 和§3);2.量化(§4);3.编码(§5)1.抽样:每隔一个相等的时间间隙,采集连续信号的一个样值。
2.量化:将量值连续分布的样值,归并到有限个取值范围内。
3.编码:用二进制数字代码,表达这有限个值域(量化区)。
2、解调3、抽样定理从频谱图清楚地看到,能用低通滤波器完整地分割出一个F(ω)的关键条件是ωs≥2ωm,或f s≥2f m。
这里2f m 是基带信号最大频率,2f m 叫做奈奎斯特抽样频率。
抽样定理告诉我们,只要抽样频率不小于2f m,从理想抽样序列就可无失真地恢复原信号。
二、带通抽样带通信号的带宽B=f H-f L,且B<<f H,抽样频率f s 应满足f s=2B(1+K/N)=2f H/N 式中,K=f H/B-N,N 为不超过f H/B 的最大整数。
由于0≤K<1,所以f s在2B~4B 之间。
当f H >> B 即N >>1 时f S =2B。
当f S > 2B(1+R/N) 时可能出现频谱混叠现象(这一点是与基带信号不同的)例:f H= 5MHz,f L = 4MHz,f S =2MHz 或3MHz 时,求M S(f)§6.3 脉冲幅度调制(PAM)理想抽样采用的单位冲击序列,实际中是不存在的,实际抽样时采用的是具有一定脉宽和有限高度的窄脉冲序列来近似。
通信原理第6章 模拟信号的数字传输
可见:量化电平增加一倍,即编码位数每增加一位, 量化信噪比提高6分贝。
2020/1/25
第6章 模拟信号的数字传输
11
6.1.2 量化
对于正弦信号,大信号出现概率大,故量化信噪比近
似为
Sq Nq
dB
6k
2
(dB)
对于语音信号,小信号出现概率大,故量化信噪比近 似为
取样定理描述:一个频带限制在 0 ~ f H内的连续信
号
m(t ) ,如果取样速率
fs
2
f
,则可以由离散样值
H
序列ms (t)无失真地重建原模拟信号 m(t) 。
取样定理证明:
ms (t) m(t) Ts (t)
M s ( f ) M ( f ) Ts ( f )
Ts ( f )
第6章 模拟信号的数字传输
1、数字通信有许多优点:
抗干扰能力强,远距离传输时可消除噪声积累 差错可控,利用信道编码可使误码率降低。 易于和各种数字终端接口中; 易于集成化,使通信设备小型化和微型化 易于加密处理等。
2、实际中有待传输的许多信号是模拟信号
语音信号; 图像信号; 温度、压力等传感器的输出信号。
于前一个时刻的值上升一个台阶;每收到一个代码 “0”就下降一个台阶。 编码和译码器
2020/1/25
第6章 模拟信号的数字传输
25
6.2.2 △M系统中的噪声
采用△M实现模拟信号数字传输的系统称为△M系统
△M系统中引起输出与输入不同的主要原因是:量化 误差和数字通信系统误码引起的误码噪声。
2020/1/25
第6章 模拟信号的数字传输
通信原理第六章题库总合
填空题1. PSK是用码元载波的(相位)来传输信息,DSP是用前后码元载波的(相位差)来传输信息,它可克服PSK的相位模糊缺点。
2.采用相干解调方式时,相同误码率条件下,2ASK,2FSK,2PSK系统所需信噪比数量关系为(2ASK>2FSK>2PSK)3.MSK信号时包络恒定,(相位连接),(带宽最小)并且严格正交的2FSK信号。
4二进制调制中,载波的幅度,频率或相位有(2)种变化,,相应的调制方式有(2ASK,2FSK,2PSK/2DPSK)5对正弦载波的振幅,频率或相位进行键控,便可获得(振幅键控)(频移键控)(相位键控)三种基本的数字调制方式。
6在误码率Pe相同的条件下,对信噪比r的要求:2ASK比2FSK高(3)dB,2FSK 比2PSK高(3)dB,2ASK比2PSK高(6)dB。
7 如果理想MPSK数字调制传输系统的带宽为12KHz,则该系统无码间串扰最大信息传输速率为(12㏒2Mkb/s)8模拟调频法产生的2FSK信号在相邻码元之间的相位是(连续变化的),而键控法产生的2FSK信号的相位在相邻码元之间(不一定连续)9. 2ASK信号中的调制信号s(t)是(单极性)非归零数字基带信号,而在2PSK 中的调制信号s(t)是(双极性)非归零数字基带信号。
10数字带通传输系统的最高频带利用率是(1)Baud/Hz,8PSK的系统的信息传输速率为1500b/s,其无码间干扰传输的最小带宽为(500)Hz.11 二进制数字调戏系统,当码元速率相同时,(2FSK)系统带宽最宽,抗噪声性能方面,(OOK)最差。
12对于2DSK、2ASK、2FSK通信系统,按可靠性好坏,排列次序为(2DPSK、2ASK、2FSK),按有效性好坏,排列次序为(2DPSK(2ASK)、2FSK)13在2ASK、2FSK、2PSK、2DPSK通信系统中,可靠性最好的是(2PSK),有效性最好的是(2ASK、2PSK)14设信息速率为2.048Mbit/s,则2DPSK信号带宽为(4.096Mbit/s,),QPSK信号的带宽为(2.048Mbit/s,)。
通信原理 第六章 数字基带传输系统
来源: 来源: 计算机输出的二进制数据 模拟信号→ A/D →PCM码组 上述信号所占据的频谱是从直流或低频开始的,故称数 数 字基带信号。 字基带信号
2008.8 copyright 信息科学与技术学院通信原理教研组 3
基本概念
2、数字信号的传输
1)基带传输 基带传输——数字基带信号不加调制在某些 基带传输 具有低通特性的有线信道中传输,特别是传输距离 不太远的情况下; 2)频带传输 频带传输——数字基带信号对载波进行调制 频带传输 后再进入带通型信道中传输。
2008.8 copyright 信息科学与技术学院通信原理教研组 19
传输码结构设计的要求
码型变换或成形是数字信息转换为数字信号的过程, 码型变换或成形是数字信息转换为数字信号的过程,不 数字信息转换为数字信号的过程 同的码型将有不同的频谱结构,对信道有着不同的要求。 同的码型将有不同的频谱结构,对信道有着不同的要求。
1 2 3 4 5
引言 数字基带信号码波形 基带传输的常用码型 基带脉冲传输和码间干扰 无码间干扰的基带传输特性
2008.8
copyright 信息科学与技术学院通信原理教研组
18
6.3基带传输的常用码型 3
在实际的基带传输系统中, 在实际的基带传输系统中,并不是所有类 型的基带电波形都能在信道中传输。 型的基带电波形都能在信道中传输。 对传输用的基带信号有两个方面的要求: 对传输用的基带信号有两个方面的要求: ( 1 ) 对代码的要求 , 原始消息代码必须编 对代码的要求, 成适合于传输用的码型; 传输码型的选择) 成适合于传输用的码型;(传输码型的选择) 对所选码型的电波形要求, (2) 对所选码型的电波形要求,电波形应 适合于基带系统的传输。(基带脉冲的选择) 。(基带脉冲的选择 适合于基带系统的传输。(基带脉冲的选择)
精品课件-数字通信原理PPT课件
(1)、ITU(International Telecommunication Union) (国际电信联盟) I系列--------ISDN(综合业务数字网)有关 V系列-------主要提供电话网(PSTN)上数据传输的标准 其中 PSTN(Public switching telephone networks)(公共交换电话网) X系列-------主要提供公用数据网上数据传输的标准 还有 Q,G系列等 (2)、国际标准化组织(ISO)和国际电工委员会(IEC)标准
微波中继通信的主要发展方向是数字微波,同时要不断增加 系统容量,增加容量的途径是向多电平调制技术发展。目前采用 的调制方式有16QAM和64QAM,并已出现256QAM、1024QAM 等超多电平调制的方式。采用多电平调制,在40 MHz的标准频道 间隔内,可传送1920至7680路PCM数字电话
C B
我国近几年来光纤通信已得到了快速发展,目前光缆长度累计近几 十万km。我国已不再敷设同轴电缆,新的工程将全部采用光纤通信新 技术。
1.2.3发展状况
数字通信 计算机技术 集成制造及发展 1、网络化 各类网络互换互通 2、高速化 信息处理,传输,交换,存储高速化 3、业务多元化 目前仍以语言通信为主,数据业务大大增加 4、标准化 制定国际通用标准的组织主要有
通信原理教程第6章 数字基带调制
6.1.2 数字通信中的一些基本概念
1.信息量
常用的信息量单位为比特(bit)。 对二进制离散信源,若输出的二进制序列 中,符号“0”和“1”等概出现,且各符号之 间统计独立,则此信源输出的每个符号所包 含的信息量为1bit。 在“0”和“1”不等概出现,或各符号之间 相关时,每符号携带的平均信息量小于 1bit 。
2.信息传输速率与码元速率
3.误比特率与误符号率
在实际通信环境中,由于噪声以及信道 特性不理想,数字信号经信道传输后会存在 错误。 误比特率定义为传输过程中出现错误的 比特数与传输的总比特数之比值;误符号率 定义为传输过程中出现错误的符号数与传输 的总符号数之比值。 对二进制传输系统,二者相等。
图6-3 差分编码
在电报通信中,常把1称为传号,把0称 为空号。 若用电平跳变表示1,称为传号差分码。 若用电平跳变表示0,则称为空号差分码。 传号差分码和空号差分码分别记作NRZ(M) 和NRZ(S)。
例6.1
绝对码: 1 0 1 0 0 1 1 相对码:1 0 0 1 1 1 0 1 差分码并未解决简单二元码所存在的问 题,但是这种码型与信息1和0之间不是绝对 的对应关系,而只具有相对的关系,因此它 可以用来解决相移键控信号解调时的相位模 糊的问题。 由于差分码中电平只具有相对意义,所 以又称为相对码。
(2)双极性非归零码
用正电平和负电平分别表示1和0,在整 个码元期间电平保持不变。 双极性码无直流成分,可以在电缆等无 接地的传输线上传输,因此得到了较多的应 用。
(3)单极性归零码
此码常记作RZ码。 与单极性非归零码不同,RZ码发送1时高 电平在整个码元期间T内只保持一段时间t, 在其余时间则返回到零电平,发送0时用零电 平表示。 t/T称为占空比,通常使用半占空码。 单极性归零码可以直接提取位定时信号, 是其他码型提取位定时信号时需要采用的一 种过渡码型。
通信原理第7版第6章PPT课件(樊昌信版)
系统的传递函数
描述线性时不变系统的数 学模型,表示输入和输出 之间的关系。
03
CATALOGUE
模拟调制系统
调制的定义与分类
调制的定义
调制是一种将低频信号加载到高 频载波上的技术,以便通过信道 传输。
调制的分类
调制可以分为模拟调制和数字调 制两大类。模拟调制是指用连续 变化的模拟信号去调制载波的幅 度、频率或相位。
章节概述
本章将介绍数字调制的基本原理和技术,包括振幅调制、频 率调制和相位调制等。
通过学习本章,学生将能够了解数字调制的基本概念、原理 和技术,掌握数字调制系统的性能分析和设计方法,为进一 步学习通信系统的其他相关内容打下基础。
02
CATALOGUE
信号与系统
信号的分类与特性
01
02
ห้องสมุดไป่ตู้
03
周期信号
线性调制系统(AM、FM)
AM(调幅)调制
AM调制是通过改变载波的幅度来传 递信息的一种调制方式。在AM调制 中,低频信息信号叠加在载波上,并 通过信道传输。
FM(调频)调制
FM调制是通过改变载波的频率来传递 信息的一种调制方式。在FM调制中, 低频信息信号用来控制载波的频率变 化,从而实现信息的传输。
有效性
衡量通信系统传输有效信息的 能力,通常用传输速率或频谱
效率来表示。
可靠性
衡量通信系统传输信息的可靠 程度,通常用误码率(BER) 或信噪比(SNR)来表示。
实时性
衡量通信系统传输实时信号的 能力,通常用延迟时间来表示
。
安全性
衡量通信系统保护信息传输安 全的能力,通常用加密和认证
技术来表示。
误码率(BER)计算
通信原理部分答案完整版
通信原理部分答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章绪论何谓数字通信,数字通信有哪些优缺点传输数字信号的通信系统统称为数字通信系统;优缺点:1.抗干扰能力强;2.传输差错可以控制;3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理;4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化;5.设备便于集成化、微机化。
数字通信采用时分多路复用,不需要体积较大的滤波器。
设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小,功耗低;6.便于构成综合数字网和综合业务数字网。
采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。
另外,电话业务和各种非话务业务都可以实现数字化,构成综合业务数字网;缺点:占用信道频带较宽。
一路模拟电话的频带为4KHZ带宽,一路数字电话约占64KHZ。
数字通信系统的一般模型中的各组成部分的主要功能是什么数字通行系统的模型见图1-4所示。
其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰能力;加密与解密的功能是保证传输信息的安全;数字调制和解调功能是把数字基带信号搬移到高频处以便在信道中传输;同步的功能是在首发双方时间上保持一致,保证数字通信系统的有序,准确和可靠的工作。
1-10通信系统的主要性能指标是有哪些?通信系统的主要性能指标涉及有效性、可靠性、适应性、经济性、标准性、可维护性等。
其中有效性和可靠性是主要性能指标,在模拟通信系统有效性可用有效传输频带来度量,同样的消息用不同的调制方式,则需要不同的频带宽度,数字通信系统的有效性可用传输速率和频带利用率来衡量。
《数字通信基础》第6答案
A
0
Ts 2
t
f s = 1/ Ts ,若能,试计算该分量的功率。
[解](1) Ps ( f ) = f s P (1 − P ) G ( f ) + Σ
2 2 ∞ m =−∞
f s (1 − P)G (mf s ) δ ( f − mf s )
2
2
∞ f ATs f AT ⎛ fT ⎞ ⎛m⎞ = s⋅ sinc 2 ⎜ s ⎟ + Σ s ⋅ s sinc 2 ⎜ ⎟ δ ( f − mf s ) 4 2 ⎝2⎠ ⎝ 2 ⎠ m =−∞ 2 2 2 A2Ts ⎛ fT ⎞ A ∞ ⎛m⎞ = Σ sinc 4 ⎜ ⎟ δ ( f − mf s ) sinc 4 ⎜ s ⎟ + 16 ⎝2⎠ ⎝ 2 ⎠ 16 m =−∞
m =−∞
∞ 3 1 1 1 ⎛ fT ⎞ ⎛m⎞ = f s ⋅ ⋅ Ts ⋅ sinc ⎜ s ⎟ + Σ f s ⋅ ⋅ Ts sinc ⎜ ⎟ δ ( f − mf s ) =−∞ m 4 3 2 3 ⎝3⎠ ⎝ 3 ⎠
2
∞
2
2
2
=
Ts ⎛ fT ⎞ 1 ∞ ⎛m⎞ Σ sinc 2 ⎜ ⎟ δ ( f − mf s ) sinc 2 ⎜ s ⎟ + =−∞ m 12 ⎝3⎠ ⎝ 3 ⎠ 36
(3)当 Ts = 10 ( s ) 时,基带信号的码率为
−3
R=
1 = 1000 波特 Ts
基带信号带宽为
B = f s = 1000 Hz
6-5 设某双极性数字基带信号的基本脉冲波形如图 P6-5 所示。它是一个高度为 1,宽度
τ = Ts 的矩形脉冲。且已知数字信息“1”的出现概率为 3/4, “0”的出现概率为 1/4:
数字通信 第六章 数字信号的频带传输技术 习题及答案
第六章数字信号的频带传输技术习题6-l 已知二进制数字序列10011010,设:载频为码元速率的2倍(对于2FSK来说,f 2=2 f 1,);请画出以上情况的2ASK、2FSK和2PSK、2DPSK波形:解:载频为码元速率的2倍(对于2FSK来说,f 2=2 f 1,)10011010已知二进制数字序列(1)码元速率为1200Baud,载波频率为1200Hz;(2)码元速率为1200Baud,载波频率为1800Hz。
分别画出上述两种情况的2PSK、2DPSK及相对码{b n}的波形(假定起始参考码元为1)。
解:(1)码元速率为1200Baud,载波频率为1200Hz;则载频与码元速率相等。
178179解、(2)码元速率为1200Baud ,载波频率为1800Hz 。
载频与码元速率为1:1.56-3 设某2FSK 调制系统的码元传输速率为1000Baud ,已调信号的载频为1000Hz 和2000Hz .(1)若发送数字信息为101011,试画出相应的2FSK 信号波形;(2)试讨论这时的2FSK 信号应选择怎样的解调器解调?(3)若发送数字信息是等概率的,试画出它的功率谱密度草图。
解:(1) 若发送数字信息为101011,试画出相应的2FSK 信号波形;180解 (2)试讨论这时的2FSK 信号应选择怎样的解调器解调?答 :选择相干解调和非相干解调器解调均可。
解 (3)若发送数字信息是等概率的,试画出它的功率谱密度草图。
6-4 设传码率为200Baud ,若是采用八进制ASK 系统,求系统的带宽和信息速率?若是采用二进制ASK 系统,其带宽和信息速率又为多少?解 :已知八进制ASK 系统传码率Baud R B 200=,系统的带宽::Hz R B B B 200==, 信息速率: s bit R R B b /60032008log 2=⨯=⨯=二进制ASK 系统:系统的带宽::Hz R B B B 200==,信息速率: s bit R R B b /20012002log 2=⨯=⨯=6-5 传码率为200Baud ,试比较8ASK 、8FSK 、8PSK 系统的带宽、信息速率及频带利用率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到该信道上,各用户信号同时传送;接收时按信道提取用户信
号, 从而实现多址通信。
第6章
多址通信
F1
ห้องสมุดไป่ตู้F2
F3
…
FN- 1
FN f
图 6-2 频分多址(FDMA)原理图
第6章
多址通信
在实际应用中,由于滤波器并非理想带通滤波器,且各
信号也并非完全正交,同时系统频率漂移会造成子频带间的 重叠, 因此总是存在一定的干扰。常用的解决办法是在各子 频带之间留有一定的保护间隔,以减少各子频带间的串扰。 FDMA系统基于频率划分信道,其多址干扰主要有:互调
应,根据该冲激响应来调整均衡器的抽头系数,以适应信道
的变化, 从而消除或减少码间干扰。 (3) 在时隙结构中都留有一定的保护时间间隔(称为保护 时间), 以减小码间串扰的影响,保证相邻突发脉冲之间互 不重叠。
第6章
多址通信
(4) 同步和定时是TDMA系统正常工作的前提。因为通信双 方只能在规定的时隙中发送和接收信号, 因此整个系统必须
常要考虑: ① 传送控制和信令信息; ② 信道多径效应的
影响; ③ 系统同步。 通常采取的措施有:
(1) 在时隙结构1中, 专门留有传送控制和信令信息的比 特。
第6章
多址通信
(2) 为了克服多径等因素引起的码间干扰,在时隙结构2 中留有用于自适应调整均衡器参数的训练序列。其基本原理 是:接收端均衡器根据确知的训练序列来估计信道的冲激响
第6章
多址通信
TDMA帧
T 1
T 2
T 3
…
T N
同步
控制
信息
保护
时隙结构1
信息
训练
信息
保护
时隙结构2
图 6-4 TDMA原理图
第6章
多址通信
在接收端, 各用户分别在指定的时隙内接收和提取相应 时隙的信息, 即按时间区分用户, 从而实现多址通信。
在TDMA系统中,每帧中的时隙结构(突发结构)的设计通
第6章
多址通信
第6章多址通信
6.1 多址方式
6.2 扩频通信 6.3 蜂窝技术 6.4 抗多址干扰技术概述 6.5 功率控制技术 6.6 智能天线 习题
第6章
多址通信
6.1 多 址 方 式
6.1.1 信道分割原理
信道复用是在两点之间的信道中同时传送互不干扰的多个
相互独立的用户信号,而多址通信则是在多点之间实现互不干
第6章
多址通信
s(t)
si(t)
j
图 6-1 正交信号识别器原理框图
第6章
多址通信
在实际应用中,要做到信号完全正交是比较困难的。 通
常可采用准正交信号,允许各信号之间存在一定的干扰, 但 要设法将干扰控制在允许的范围内。 目前,常用的多址接入方式有频分多址(FDMA)、时分多址 (TDMA)、码分多址(CDMA)、空分多址(SDMA)以及它们的混合应
(6.1-1)
则称{ s1(t), s2(t), …, sN(t)}为正交信号族,其中的任意两个信 号si(t)、sj(t)在区间(t1, t2)内称为正交信号。
第6章
多址通信
复用技术和多址通信的关键是如何设计具有正交特性的信
号集合,使各信号之间互不干扰。正交信号的正交划分和设计 是通过信号的正交分量λi(i=1, 2, …,N)的划分来实现的, 即
第6章
多址通信
信号正交分割的原理是使分割域内的各个信号相互正交, 即若信号集合{s1(t), s2(t), …, sN(t)}中任意两个信号满足
t2 s (t ) s (t )dt 1, i=j j t1 i t2 si (t ) s j (t )dt 0, i≠j t1
第6章
多址通信
(1) 合理规划载波中心频率,控制各载波中心频率的间隔, 合理配置各载波频率的位置。在互调干扰中, 影响最大的是 (f1+f2 -f3)形式和(2f1-f2)形式的三阶互调干扰。另外,在各载 波等间隔配置时,随着载波数的增加, (f1+f2-f3)形式的干扰 要比(2f1-f2)形式大得多。因此,在载波很多时, 应认真选择 各载波中心频率的间隔,而不能简单等间隔地配置载波。 (2) 尽可能提高系统的线性程度,减少发射机的互调和接 收机的互调。例如在卫星通信中,对上行线路的载波进行功率
第6章
多址通信
时隙0 MS 0
BS
时隙1
时
隙7
MS 1
MS 7
(a) 图 6-5 TDMA系统(GSM)原理框图 (a) 原理图; (b) 频率规划
…
第6章
多址通信
f1
f2 … 上行频带
f1 24
F1
F2 … 下行频带
F1 24
f
8 9 0 MHz
9 1 5 MHz
9 3 5 MHz
9 6 0 MHz
控制, 合理选择行波管放大器的工作点等。
第6章
多址通信
2) 邻道干扰 所谓邻道干扰,是指相邻频道中存在的寄生辐射落入本频 道接收通带内造成对有用信号的干扰。当邻道干扰强度足够大 时, 将会对有用信号造成损害。减小邻道干扰的主要方法有:
① 加大频道间的保护间隔; ② 合理进行频率规划;③ 严格
规定收发信机的技术指标,例如发射机寄生辐射强度, 接收机 中频选择性要求等。
s(t ) i si (t )
i 1
N
(6.1-2)
式中,si(t)为第i个用户信号;λi为第i个用户信号si(t)的正交参量。 正交参量应满足
1, i=j i j 0, i≠j
第6章
多址通信
接收时,采用一个正交识别器(如图6-1所示)就可以分离出信 号, 即
N N s (t ) j i si (t ) j (i j ) si (t ) i 1 i 1 si (t ), i j (6.1-3) 0, i j
第6章
多址通信
6.1.3 时分多址(TDMA)方式 TDMA是在给定传输频带的条件下,把传递时间划分成 周期性的帧,每一帧再分割成若干时隙ΔTi,每个时隙就是一 个通信信道, 分配给一个用户, 即λi=ΔTi 的情况。用户收发
各使用一个指定的时隙。 在发送端, 各个用户在指定的时隙
发射信号(突发信号)。 TDMA 原理如图 6-4 所示。
(b)
图 6-5 TDMA系统(GSM)原理框图 (a) 原理图; (b) 频率规划
第6章
多址通信
6.1.4 码分多址(CDMA)方式 在CDMA系统中,各用户使用相同的载波频率,占用相同
的频带,信号发射时间是任意的,是λi=Ci的情况。即在频率、
时间和空间上可相互重叠,用户的划分是利用不同地址码序列 来实现的。CDMA与FDMA、TDMA划分形式不同,FDMA、
第6章
多址通信
FDMA系统既可传送模拟信号,也可传送数字信号。在模拟蜂 窝通信系统中,采用FDMA 方式是惟一的选择,例如北美800 MHz 的AMPS体制和欧洲的TACS体制,如图6-3(a)所示。 通常信道带 宽为传输一路模拟话音所需的带宽(例如25 kHz), 采用频分双 工(FDD)方式来实现双工通信,即发送频率与接收频率不同。 分 配给用户的信道是一对频率。其中一个频率用于基站(BS)至移动 台(MS)的前向信道;另一个频率则用于移动台至基站的反向信道。 基站能同时发射和接收多个不同频率的信号,信道资源由移动交 换中心(MSC)进行分配和管理。 图6-3(b)给出了FDMA模拟蜂窝系 统的频谱分割,其中,前向信道占用较高的频段, 反向信道占 用较低的频段,中间为保护频段, 用户频道之间留有保护间隔 Fg。在数字蜂窝系统中, 很少单独采用FDMA方式, 通常是与 其他多址技术相结合。
第6章
多址通信
3) 同频道干扰 所谓同频道干扰,一般是指相同频率信道之间的干扰。
在蜂窝系统中,同频道干扰是指相邻区群中同频率信道之间
的相互干扰,它与频率规划和蜂窝结构有关。 对蜂窝通信系 统,减少同频道干扰的主要方法有: ① 合理规划频率; ② 选择合适的蜂窝结构;③ 采用功率控制技术等。
第6章
有精确的同步。 通常要由基准站统一系统中各站的时钟,以
确保严格的帧同步、时隙同步和位同步。如果接收端采用相干 解调,则接收机还必须获取载波同步。
第6章
多址通信
TDMA系统只能传送数字信号。例如在GSM数字蜂窝系统 中, 应用FDMA和TDMA 混合技术。其中,FDMA在GSM 900
MHz频段的上行(移动台到基站)890~915 MHz 或下行(基站到
移动台)935~960 MHz频带内分配了124个载波频率(简称载 频), 各个载频之间的间隔为200 kHz。 上行载频与下行载频是
成对的(双工通信)。双工收发载波对的频率间隔(双工保护频带)
为45 MHz。TDMA工作在GSM 900 MHz的每个载频上,把时 间分成由八个时隙(信道)组成的TDMA帧, 帧长为4.6 ms,F1 -f1=45 MHz,如图 6-5 所示。
扰的多方通信。 多址通信也称为多址接入或多址连接。
第6章
多址通信
信道复用与多址通信都是为了充分利用信道资源,提高传输 的有效性。它们的数学基础都是信号正交分割原理,即信道分割 理论:先赋予各个信号不同的特征,然后根据每个信号特征之间 的差别来区分信号,从而实现互不干扰的通信。例如在频分复用 (FDM)点对点通信过程中,传输频带按频率划分成互不重叠的 多路信道, 每一路信道可传送不同的信号,从而实现多路信号的 传送。在多点之间实现多址通信与点到点之间的信号复用通信在 技术上有所不同,信号复用的目的在于区分多路, 而多址通信的 目的在于区分多个动态地址(例如用户号码等); 复用技术通常在 中频或基带上实现,而多址技术通常在射频上实现,它利用射频 辐射的电磁波来寻找识别动态地址;多址通信存在多址干扰问题, 多址干扰是由于多个用户要求同时通信, 而系统不能完全将它们 彼此隔离开而引起的干扰; 复用技术是一个点对点传输问题,而 多址技术则是一个点对多点的通信问题。