核酸的降解和核苷酸代谢-K

合集下载

第十章 核酸酶促降解和核苷酸代谢详解

第十章 核酸酶促降解和核苷酸代谢详解

第二节 核苷酸的分解代谢
一、嘌呤核苷酸的降解 〈一〉部位:主要在肝、小肠、肾 〈二〉终产物:尿酸。
〈三〉特点:嘌呤环不被打破,产物不易溶于水。
腺嘌呤
H2O
腺嘌呤脱氨酶
鸟嘌呤
H2O
鸟嘌呤脱氨酶
NH3
次黄嘌呤
黄嘌呤氧化酶
NH3
黄嘌呤
H2O+O2
H2O2
黄嘌呤
氧化酶
H2O+O2
(灵长类以外的哺乳动物) 尿酸氧化酶
子物质合成嘧啶核苷酸的过程。 (2)原料:Gln、CO2、Asp、R-5-P(合成
dTMP尚需一碳单位) (3)合成部位:肝为主,胞液。
(4) 大致 过程:
(5)合成特点: 〈1〉先合成嘧啶环,后与R-5-P结合。 〈2〉先合成UMP、再转化生成CTP、dTMP等
〈二〉补救合成
利用嘧啶、嘧啶核苷合成嘧啶核苷酸的 过程。
IMP → → →AMP﹑GMP
合成IMP:十一步反应
IMP转为AMP 和GMP
特点: 〈1〉在R-5-P分子上逐步合成嘌呤核苷酸, 而不是先单独合成嘌呤环再和R-5-P 结合。 〈2〉先合成IMP再转化生成AMP、GMP。
(二) 嘧啶核苷酸的全合成
1、从头合成途径 (1)概念:机体利用AA、CO2、R-5-P等小分
二、核苷酸的半合成
〈一〉嘌呤核苷酸的补救合成 1、定义——某些组织器官利用游离的碱基 或核苷为原料合成核苷酸的途径。 2、简单过程:
ÏÙ àÑ ßÊ + PRPP APRT AMP + PPi
´Î »Æ àÑ ßÊ +PRPPHGPRT IMP+PPi
Äñ àÑ ßÊ +PRPP HGPRT GMP+PPi

核酸降解和核苷酸代谢

核酸降解和核苷酸代谢

R-5'-P
R-5'-P
5-氨基咪唑-4-羧酸 核苷酸(CAIR)
5-氨基咪唑核苷酸 (AIR)
甲酰甘氨咪核苷酸 (FGAM)
O
C
HO
C
C H2N
N Asp
H2O
ATP
CH
N
合成酶
R-5'-PFra bibliotekCOOH OC
HC N C H
CH2
C
H2N COOH
延胡索酸 N
CH
N
裂解酶
R-5'-P
O
C
H2N
C
C H2N
二、嘌呤核苷酸的降解
AMP
GMP
嘌呤核苷酸的结构
AMP GMP
H(I) 黄嘌呤氧化酶
(次黄嘌呤)
X
G
(黄嘌呤)
黄嘌呤 氧化酶
嘌呤碱的最终 代谢产物
腺嘌呤脱氨酶含量极少 腺苷脱氨酶和腺苷酸脱氨酶活性较高
腺嘌呤脱氨基主要在 核苷和核苷酸水平
鸟嘌呤脱氨酶分布广
鸟嘌呤脱氨基主要 在碱基水平
嘌呤类在核苷酸、核苷和碱基三个水平上的降解
1. 从头合成途径
(1)尿嘧啶核苷酸的合成
2ATP 2ADP+Pi
Gln + HCO3氨甲酰磷酸合成酶Ⅱ
(CPS-Ⅱ )
H2N C OPO3H2 + Glu
O
氨甲酰磷酸
CO2 + NH3 + H2O
2ATP N-乙酰谷氨酸
2ADP+Pi
氨基甲酰磷酸
Pi
线粒体
鸟氨酸
瓜氨酸
鸟氨酸循环
鸟氨酸
尿素

第16章 核酸的降解和核苷酸代谢

第16章  核酸的降解和核苷酸代谢
第十六章 核酸的降解和核苷酸代谢
核酸的基本结构单位是核苷酸。核酸代谢与核苷酸代谢密切相 关。这是一类在代谢上极为重要的物质,它们几乎参与细胞的所有 生化过程。
核酸降解产生核苷酸,核苷酸还能进一步分解。在生物体内, 核苷酸可由其他化合物所合成。某些辅酶的合成与核苷酸代谢亦有 关。
核苷酸的作用: (1)核苷酸是核酸生物合成的前体。 (2)核苷酸衍生物是许多生物合成的活性中间物。例如,UDP- 葡萄糖和CDP-二脂酰甘油分别是糖原和磷酸甘油酯合成的中间 物。 (3)ATP是生物能量代谢中通用的高能化合物。 (4)腺苷酸是三种重要辅酶(烟酰胺核苷酸、黄素腺嘌呤二核苷 酸和辅酶A)的组分。 (5)某些核苷酸是代谢的调节物质。如cAMP和cGMP是许多种激 素引起生理效应的中间介质。
(四)由嘌呤碱和核苷合成核苷酸 生物体内除能以简单前体物质“从头合成”核苷酸外,尚能由预 先形成的碱基和核苷合成核苷酸,这是对核苷酸代谢的一种“补救” 作用,以便更经济地利用已有的成分。 前已提到,核苷磷酸化酶所催化的转核糖基反应是可逆的。在特 异的核苷磷酸化酶作用下,各种碱基可与1—磷酸核糖反应生成核苷:
二、核苷酸的降解
核苷酸水解下磷酸即成为核苷。生物体内广泛存在的磷的磷酸单酯酶对一切核苷酸都能作用,无论磷酸基在 核苷的2’、3’或5’位置上都可被水解下来。某些特异性强的磷酸单酯 酶只能水解3’—核苷酸或5’—核苷酸,则分别称为3’—核苷酸酶或 5’—核苷酸酶。
(二)胸腺嘧啶核苷酸的合成
第三节 辅酶核苷酸的生物合成 生物体内尚有多种核苷酸衍生物作为辅酶而起作用。其中重要 的有:烟酰胺腺嘌呤二核苷酸、烟酰胺腺嘌呤二核苷酸磷酸、黄素 单核苷酸、黄素腺嘌呤二核苷酸及辅酶A。这几种辅酶核苷酸可在体 内自由存在。现将其生物合成途径分别叙述如下: 一、烟酰胺核苷酸的合成

核酸的酶促降解和核苷酸代谢

核酸的酶促降解和核苷酸代谢

核酸的酶促降解和核苷酸代谢核酸是构成生物体遗传物质的重要分子之一、它们在生物体内起着关键的功能,包括存储遗传信息、传递遗传信息和参与生物体的代谢过程。

然而,核酸分子并不是永久存在的,它们会经历酶促降解和核苷酸代谢过程。

酶促降解是一种通过酶催化反应将核酸分子分解为较小的碎片的过程。

这一过程在细胞中起着至关重要的作用,因为它能够控制细胞内的核酸浓度,并对细胞进行修复和调控。

具体而言,核酸的酶促降解主要通过核酸酶参与。

核酸酶可以识别特定的核酸分子,切割磷酸二酯键并将其分解成较小的碎片。

酶促降解的过程是高度调控的,这意味着细胞可以根据需要来降解核酸分子。

核酸酶的酶促降解反应可以发生在DNA和RNA分子上。

在DNA分子中,核酸酶可以通过识别特定的序列或结构来切割DNA链。

这些酶可以在DNA复制、修复和重组过程中发挥重要的作用。

在RNA分子中,核酸酶则可以通过识别特定的次级结构来切割RNA链。

这些酶在RNA降解和剪接等过程中起着关键作用。

核苷酸的合成通常发生在两个方向上。

一方面,细胞通过核苷酸合成途径将脱氧核苷酸和核苷酸合成为DNA和RNA的单体。

这些途径包括脱氧核苷酸合成途径和核苷酸合成途径。

另一方面,细胞还可以通过核苷酸分解途径将核苷酸分解为核苷和磷酸。

这些途径包括核苷酸降解途径和氨基酸代谢途径。

核酸酶和核苷酸代谢的失调会导致DNA和RNA的不稳定和降解,影响细胞的正常功能。

此外,核苷酸代谢紊乱还与多种人类疾病的发生和发展密切相关。

因此,研究核酸的酶促降解和核苷酸代谢机制对于理解生物体的正常功能和疾病的发生具有重要意义。

生物化学笔记- 核苷酸的降解和核苷酸代谢

生物化学笔记- 核苷酸的降解和核苷酸代谢

第十五章核苷酸的降解和核苷酸代谢第一节分解代谢一、核酸的降解核酸由磷酸二酯酶水解,有核糖核酸酶、脱氧核糖核酸酶、内切酶和外切酶之分。

蛇毒磷酸二酯酶和牛脾磷酸二酯酶都是外切酶,既可水解DNA,又可水解RNA,但蛇毒磷酸二酯酶从3’端水解,生成5’-核苷酸;牛脾磷酸二酯酶从5’端水解,生成3’-核苷酸。

细胞内还有限制性内切酶,可水解外源DNA。

二、核苷酸的降解核苷酸由磷酸单酯酶水解成核苷和磷酸,特异性强的酶只水解5’-核苷酸,称为5’-核苷酸酶,或相反。

核苷磷酸化酶将核苷分解为碱基和戊糖-1-磷酸,核苷水解酶生成碱基和戊糖。

核糖-1-磷酸可被磷酸核糖变位酶催化为核糖-5-磷酸,进入戊糖支路或合成PRPP。

三、嘌呤的分解(一)水解脱氨:腺嘌呤生成次黄嘌呤,鸟嘌呤生成黄嘌呤。

也可在核苷或核苷酸水平上脱氨。

(二)氧化:次黄嘌呤生成黄嘌呤,再氧化生成尿酸。

都由黄嘌呤氧化酶催化,生成过氧化氢。

别嘌呤醇是自杀底物,其氧化产物与酶活性中心的Mo4+紧密结合,有强烈抑制作用。

可防止尿酸钠沉积,用于治疗痛风。

(三)鸟类可将其他含氮物质转化为尿酸,而某些生物可将尿酸继续氧化分解为氨和CO2。

四、嘧啶的分解胞嘧啶先脱氨生成尿嘧啶,再还原成二氢尿嘧啶,然后开环,水解生成β-丙氨酸,可转氨参加有机酸代谢。

胸腺嘧啶与尿嘧啶相似,还原、开环、水解生成β-氨基异丁酸,可直接从尿排出,也可转氨生成甲基丙二酸半醛,最后生成琥珀酰辅酶A,进入三羧酸循环。

第二节合成代谢一、嘌呤核糖核苷酸的合成(一)从头合成途径1.嘌呤环的元素来源2.IMP的合成:其磷酸核糖部分由PRPP提供,由5-磷酸核糖与ATP在磷酸核糖焦磷酸激酶催化下生成。

IMP的合成有10步,分两个阶段,先生成咪唑环,再生成次黄嘌呤。

首先由谷氨酰胺的氨基取代焦磷酸,再连接甘氨酸、甲川基,甘氨酸的羰基生成氨基后环化,生成5-氨基咪唑核苷酸。

然后羧化,得到天冬氨酸的氨基,甲酰化,最后脱水闭环,生成IMP。

生物化学-生化知识点_第八章 核酸的降解和核苷酸的代谢

生物化学-生化知识点_第八章  核酸的降解和核苷酸的代谢

第八章核酸的降解和核苷酸的代谢下册 P3878-1 核酸和核苷酸的分解代谢核酸在核酸酶(磷酸二酯酶)作用下降解成核苷酸,核苷酸在核苷酸酶(磷酸单酯酶)作用下分解成核苷与磷酸,然后再在核苷磷酸化酶作用下可逆生成碱基(嘌呤和嘧啶)和戊糖-1-磷酸。

一一一嘌呤碱的分解代谢: P390 图33-2首先在各种脱氨酶作用下水解脱去氨基(脱氨也可以在核苷或核苷酸的水平上进行),腺嘌呤脱氨生成次黄嘌呤(I),鸟嘌呤脱氨生成黄嘌呤(X),I和X在黄嘌呤氧化酶作用下氧化生成尿酸。

人和猿及鸟类等为排尿酸动物,以尿酸作为嘌呤碱代谢最终产物;其他生物还能进一步分解尿酸形成尿囊素、尿囊酸、尿素及氨等不同代谢产物。

尿酸过多是痛风病起因,病人血尿酸 > 7mg%,为嘌呤代谢紊乱引起的疾病。

可服用别嘌呤醇,结构见P389,与次黄嘌呤相似。

别嘌呤醇在体内先被黄嘌呤氧化酶氧化成别黄嘌呤,别黄嘌呤与酶活性中心的Mo(Ⅳ)牢固结合,使Mo(Ⅳ)不易转变成Mo(Ⅵ),黄嘌呤氧化酶失活,使I和X不能生成尿酸,血尿酸含量下降。

一一一嘧啶碱的分解代谢:见P391 图33-3C:胞嘧啶先脱氨成尿嘧啶U,U再还原成二氢尿嘧啶后水解成β-丙氨酸。

T:胸腺嘧啶还原成二氢胸腺嘧啶后水解成β-氨基异丁酸。

8-2 核苷酸的生物合成一一一核糖核苷酸的生物合成一1一从头合成:从一些简单的非碱基前体物质合成核苷酸。

1.嘌呤核苷酸:从5-磷酸核糖焦磷酸(5-PRPP)开始在一系列酶催化下先合成五元环,后合成六元环,共十步生成次黄嘌呤核苷酸。

然后再生成A、G等嘌呤核苷酸。

2.嘧啶核苷酸:先合成嘧啶环(乳清酸),再与5-PRPP(含核糖、磷酸部分)反应生成乳清苷酸,失羧生成尿嘧啶核苷酸(UMP),再转变成其他嘧啶核苷酸。

一2一补救途径:利用已有的碱基、核苷合成核苷酸,更经济,可利用已有成分。

特别在从头合成受阻时(遗传缺陷或药物中毒)更为重要。

外源或降解产生的碱基和核苷可通过补救途径被生物体重新利用。

核酸的降解和核苷酸的代谢

核酸的降解和核苷酸的代谢

二 、核苷酸的生物降解
1、嘌呤的分解
嘌呤碱包括:A-腺嘌呤、G-鸟嘌呤
不同动物嘌呤代谢的最终产物也不同 人、猿以及鸟类、爬虫类和大多数昆虫:尿酸
其他哺乳动物、双翅目昆虫:尿囊素
硬骨鱼类:尿囊酸
尿囊素酶
尿酸酶
大多数鱼类、两栖类:尿素 尿囊酸酶
• 某些低等动物能将尿素进一步分解成NH3和 CO2排出。
Py Pu Py Py
G
A
C
U
G
A

p
p
p
p
p
p
p
p
p
p OH


RNAase I
RNAase I
RNAase T1
RNAase T1
Pu :嘌呤
Py:嘧啶
RNA: DNA:
RNase(酶稳定、耐高温) DNase(种类多、工具酶)
作用类别:
核酸内切酶: 磷酸二酯酶,作用点在核酸内部,产 物是寡核苷酸链。 核酸外切酶: 磷酸单酯酶,作用于核酸两端,产物 是单核苷酸。
甘油醛-3-磷酸
1.核酸酶
核酸酶的分类
核糖核酸酶(RNase):只水解RNA磷酸
根据对底物的 专一性分为
二酯键的酶(RNase)
脱氧核糖核酸酶(DNase):只能水解
DNA磷酸二酯键的酶。
非特异性核酸酶:既可水解RNA,又
可水解DNA磷酸二酯键的核酸酶
核酸内切酶 根据切割位点分为
核酸外切酶
内切核酸酶对RNA的水解位点示意图
来自NH3 氨甲酰磷酸
来自CO2
4
C
N3
C5
C2
C6
1
N
来自天冬氨酸

生物化学第33章核酸的降解和核苷酸代谢

生物化学第33章核酸的降解和核苷酸代谢

THANK YOU
感谢聆听
01
02
03
04
药物治疗
针对核酸降解和核苷酸代谢异 常的疾病,可采用药物治疗, 如使用核酸酶抑制剂、核苷酸 类似物等。
基因治疗
对于由基因突变引起的核酸降 解和核苷酸代谢异常疾病,基 因治疗是一种潜在的治疗方法 ,如通过基因编辑技术修复突 变基因。
饮食调整
饮食调整可帮助改善核苷酸代 谢异常,如减少高嘌呤食物的 摄入以降低血尿酸水平。
调节代谢
核酸降解产生的核苷酸及其代谢产物可以调节细胞 内核苷酸代谢相关酶的活性,从而影响核苷酸代谢 的速率和方向。
维持平衡
核酸降解与核苷酸代谢之间的动态平衡对于维持细 胞内核苷酸稳态至关重要,核酸降解的异常可能导 致核苷酸代谢紊乱。
核苷酸代谢对核酸降解的反馈作用
80%
产物反馈
核苷酸代谢产生的某些产物可以 反馈抑制核酸降解相关酶的活性 ,从而调节核酸降解的速率。
嘧啶核苷酸的ቤተ መጻሕፍቲ ባይዱ谢
嘧啶核苷酸的合成
先合成嘧啶环,再与磷酸核糖相连生 成嘧啶核苷酸。合成的部位主要在肝 和小肠黏膜中。
嘧啶核苷酸的分解
嘧啶碱基分解代谢是先去除环外氨基生 成嘧啶,再氧化开环,最终生成CO2、 β-丙氨酸及β-氨基异丁酸等。
核苷酸代谢的调控与意义
核苷酸代谢的调控
核苷酸代谢受到多种因素的调控,包括底物浓度、酶活性、基因表达等。此外, 核苷酸代谢还与细胞周期、细胞增殖和分化等生理过程密切相关。
核苷酸代谢的意义
核苷酸是生物体内重要的组成成分,参与遗传信息的传递和表达。同时,核苷 酸也是多种生物活性物质的合成前体,如辅酶、激素等。因此,核苷酸代谢对 于维持生物体的正常生理功能具有重要意义。

华中农业大学生物化学考研试题库附答案核酸的降解和核苷酸代谢

华中农业大学生物化学考研试题库附答案核酸的降解和核苷酸代谢

第12章核酸的降解和核苷酸代谢一、教学大纲基本要求核酸的酶促降解,水解核酸的有关酶(核酶外切酶、核酶内切酶、限制性内切酶),核苷酸、嘌呤碱、嘧啶碱的分解代谢,嘌呤核苷酸的合成,嘧啶核苷酸的合成,脱氧核糖核苷酸的合成,辅酶核苷酸的合成。

二、本章知识要点(一)核酸的酶促降解核酸酶(nucleases):是指所有可以水解核酸的酶,在细胞内催化核酸的降解,以维持核酸(尤其是RNA)的水平与细胞功能相适应。

食物中的核酸也需要在核酸酶的作用下被消化。

核酸酶按照作用底物可分为:DNA酶(DNase)、RNA酶(Rnase)。

按照作用的方式可分为:核酸外切酶和核酸内切酶,前者指作用于核酸链的5‘或3’端,有5’末端外切酶和3’末端外切酶两种;后者作用于链的内部,其中一部分具有严格的序列依赖性(4~8 bp),称为限制性内切酶。

核酸酶在DNA重组技术中是不可缺少的重要工具,尤其是限制性核酸内切酶更是所有基因人工改造的基础。

(二)核苷酸代谢1.核苷酸的生物学功能①作为核酸合成的原料,这是核苷酸最主要的功能;②体内能量的利用形式;③参与代谢和生理调节;④组成辅酶。

核苷酸最主要的功能是作为核酸合成的原料,体内核苷酸的合成有两条途径,一条是从头合成途径,一条是补救合成途径。

肝组织进行从头合成途径,脑、骨髓等则只能进行补救合成,前者是合成的主要途径。

核苷酸合成代谢中有一些嘌呤、嘧啶、氨基酸或叶酸等的类似物,可以干扰或阻断核苷酸的合成过程,故可作为核苷酸的抗代谢物。

不同生物嘌呤核苷酸的分解终产物不同,人体内核苷酸的分解代谢类似于食物中核苷酸的消化过程,嘌呤核苷酸的分解终产物是尿酸。

嘧啶核苷酸的分解终产物是β-丙氨酸或β-氨基异丁酸。

核苷酸的合成代谢受多种因素的调节。

(1)嘌呤核苷酸代谢①嘌呤核苷酸的合成代谢:体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。

嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 核酸的降解 和核苷酸代谢
h
1
主要内容: 核酸的消化与吸收:核酸酶,磷酸二酯酶,核苷
酸酶,核苷水解酶,核苷磷酸酶; 核苷酸的分解代谢:嘌呤核苷酸分解,嘧啶核苷
酸分解;
核苷酸的合成代谢:嘌呤核苷酸的生物合成,嘧啶 核苷酸的生物合成,脱氧核苷酸生物合成,核 苷三磷酸生物合成,核苷酸的补救合成途径。
酸,先合成
IMP,再转化 为AMP、 GMP 。
来自甲酸
C2 C4 N3
C8 N9
来自甲酸
利用简单的原始材料从头合成核苷酸的过程,此过程不包
括碱基和核苷等中间物,也来自是谷核氨苷酰酸胺合的成酰的胺氮主要途径
h
21
2.1.1.2 IMP的合成
IMP的合成是从5-磷 酸核糖开始的,先与 ATP反应生成5′-磷酸 核糖-1′-焦磷酸 (PRPP),然后嘌 呤环的各原子在 PRPP的C-1位置上逐 渐加上去。
核苷酸对维持胃肠道正常功能的作用 1)外源核苷酸能够加速肠细胞的分化、生长与修复,促进
小肠的成熟 2)外源核苷酸可改变肠道微生物的生长及类型
h
4
1 核酸和核苷酸的分解代谢
核酸的分解过程
核酸酶
核苷酸酶
核苷磷酸化酶
核酸
核苷酸
核苷 + 磷酸
碱基+戊糖-1-磷酸
h
5
1.1核酸的酶促降解
核酸酶:作用于核酸的磷酸二酯酶称为核酸酶,按 其作用位置分为:
h
8
1.1.3 非特异性核酸酶
➢ 既可水解RNA,又可水解DNA磷酸二酯键的核 酸酶。
✓ 小球菌核酸酶(内切酶),可作用于RNA或变 性的DNA,产生3’-核苷酸或寡核苷酸。
✓ 蛇毒磷酸二酯酶和牛脾磷酸二酯酶(外切酶)。
h
9
Байду номын сангаас
某些核酸外切酶对RNA、DNA均有 作用
牛脾磷酸二酯酶 3-核苷酸
蛇毒磷酸二酯酶 5-核苷酸
琥珀酰CoA
TCA
糖异生
18
2 核苷酸的生物合成
2.1 嘌呤核糖核苷酸的合成 从头合成途径(de novo synthesis pathway) 原料:氨基酸、甲酸盐、CO2 等 补救合成途径(salvage synthesis pathway) 利用体内游离的碱基或核苷合成
核酸降解的中间产物、外源
h
10
1.2 核苷酸的降解
核酸
核酸酶(磷酸二酯酶)
核苷酸
核苷酸酶(磷酸单酯酶)
核苷
核苷磷酸化酶
磷酸
嘌呤或嘧啶
戊糖-1-磷酸
h
11
核苷酸 + H2O 核苷酸酶 核苷+Pi
核苷 + H2O 核苷水解酶 嘌呤(或嘧啶)+戊糖 (核苷水解酶主要存在于植物和微生物体内,并且只能
对核糖核苷起作用,对脱氧核糖核苷不起作用。)
重点:核苷酸的分解代谢;脱氧核苷酸生物合成, 核苷三磷酸生物合成,核苷酸的补救合成途径。
难点:1.碱基的分解;2.核苷酸的从头合成。
h
2
核苷酸的生理生化作用
①合成核酸的原料: RNA合成:ATP,GTP,CTP,UTP
DNA合成:dATP,dGTP,dCTP,
② 能量的贮存和供应形d式TT:P ATP,GTP,UTP, CTP等
核糖核酸酶T1(RNaseT1),作用位点是3’ -鸟苷酸与其它核苷酸的5’-
OH间的键。(内切核酸酶)
h
7
1.1.2 脱氧核糖核酸酶
➢ 只能水解DNA磷酸二酯键的酶。 ✓ 牛胰脱氧核糖核酸酶(DNaseⅠ),可切割双
链和单链DNA,降解产物为3’-磷酸为末端的 寡核苷酸。
✓ 限制性核酸内切酶:细菌体内能识别并水解外 源 双 源 DNA 的 核 酸 内 切 酶 , 可 特 异 切 割 外 源 DNA特定序列中的磷酸二脂键(对碱基序列专 一),切断双键,常作为工具酶。
核酸外切酶:作用于核酸链的末端(3端或5端), 逐个水解下核苷酸。脱氧核糖核酸外切酶:只作
用于DNA; 核糖核酸外切酶:只作用于RNA 核酸内切酶:从核酸分子内部切断3,5 -磷酸二酯键。
限制性内切酶:在细菌细胞内存在的一类能识别并水
解外源双链DNA的核酸内切酶,可用于特异切割
DNA, 常作为工具酶。
核苷+ H3PO4 核苷磷酸化酶 嘌呤(或嘧啶)+1-磷酸戊糖
(核苷磷酸化酶存在广泛)
h
12
1.3 嘌呤的降解
这是一个氧化降解过程,不同生物降 解的产物不同。
h
13
嘌呤核苷酸的分h 解代谢
14
脱氨
尿酸的进一步分h 解
氧化 水解
15
1.4 嘧啶的降解
分解时环被破坏,N原子可变为尿素和NH3 第二碳转变为CO2 胞嘧啶不直接被动物体利用,一部分从尿中排出
h
19
2.1.1 从头合成
定义
利用磷酸核糖、AA、一碳单位及二氧化碳等简单物质 为原料,经过一系列酶促反应,合成嘌呤核苷酸的途径
合成部位:胞浆
主要器官:肝脏;其次,小肠和胸腺
脑和骨髓不能合成
h
20
2.1.1.1嘌呤环上各原子的来源 来自CO2
来自天冬氨酸
C6
来自甘氨酸
❖合成嘌呤核苷
N7 N1 C5
h
6
1.1.1 核糖核酸酶
❖只水解RNA磷酸二酯键的酶(RNase),不同的 RNase专一性不同。
Py Pu Py Pu G A C U G A

p
p
p
p
p
p
p
p
p
p
OH


RNAase I
RNAase T1
牛胰核糖核酸酶I(RNaseI),作用位点是嘧啶核苷-3’-磷酸与其它核苷
酸间的连接键。 (内切核酸酶)
h
16
胞嘧啶脱氨酶
二氢尿嘧啶脱氢酶
胞嘧啶
尿嘧啶
二氢尿嘧啶
H2O NH3
NAD(P)H+H+ NAD(P)+
H2O 二氢嘧
NH3+CO2+ β-丙氨酸
脲基丙酸酶
H2O
啶酶
β-脲基丙酸
二氢尿嘧啶脱氢酶
胸腺嘧啶
二氢胸腺嘧啶
NAD(P)H+H+ NAD(P)+
H2O
二氢嘧啶酶
NH3+CO2+β-氨基异丁酸 脲基丙酸酶
H2O
NADPH +H+ --------哺乳动物 NADH+H+ ----------细 菌
β-脲基异丁酸
脱氨 还原
h
水解
17
胞嘧啶 NH3
尿嘧啶
二氢尿嘧啶 H2O
β-丙氨酸 丙二酸单酰CoA
乙酰CoA
TCA
胸腺嘧啶
β-脲基异丁酸 H2O
CO2 + NH3
肝 尿素
h
β-氨基异丁酸 甲基丙二酸单酰CoA
③ 参与代谢或生理活动的调节 cAMP、cGMP:激素第二 信使
④ 参与构成酶的辅酶或辅基 NAD+,NADP+,FAD, FMN,CoA
⑤ 代谢中间物的载体 CDP:胆碱,胆胺,甘油二酯
腺苷:蛋氨酸(SAM)
h
3
核苷酸对免疫系统的促进作用 ➢ 提高人和动物对细菌、真菌感染的抵抗力、增加抗体产
生,增强细胞免疫能力,刺激淋巴细胞增生作用等 ➢ 饮食核苷酸对婴儿免疫系统的发育有明显的促进作用
相关文档
最新文档