Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects
国际自动化与计算杂志.英文版.
国际自动化与计算杂志.英文版.1.Improved Exponential Stability Criteria for Uncertain Neutral System with Nonlinear Parameter PerturbationsFang Qiu,Ban-Tong Cui2.Robust Active Suspension Design Subject to Vehicle Inertial Parameter VariationsHai-Ping Du,Nong Zhang3.Delay-dependent Non-fragile H∞ Filtering for Uncertain Fuzzy Systems Based on Switching Fuzzy Model and Piecewise Lyapunov FunctionZhi-Le Xia,Jun-Min Li,Jiang-Rong Li4.Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying DelaysWei-Sheng Chen,Rui-Hong Li,Jing Li5.H∞ Output Feedback Control for Stochastic Systems with Mode-dependent Time-varying Delays and Markovian Jump ParametersXu-Dong Zhao,Qing-Shuang Zeng6.Delay and Its Time-derivative Dependent Robust Stability of Uncertain Neutral Systems with Saturating ActuatorsFatima El Haoussi,El Houssaine Tissir7.Parallel Fuzzy P+Fuzzy I+Fuzzy D Controller:Design and Performance EvaluationVineet Kumar,A.P.Mittal8.Observers for Descriptor Systems with Slope-restricted NonlinearitiesLin-Na Zhou,Chun-Yu Yang,Qing-Ling Zhang9.Parameterized Solution to a Class of Sylvester MatrixEquationsYu-Peng Qiao,Hong-Sheng Qi,Dai-Zhan Cheng10.Indirect Adaptive Fuzzy and Impulsive Control of Nonlinear SystemsHai-Bo Jiang11.Robust Fuzzy Tracking Control for Nonlinear Networked Control Systems with Integral Quadratic ConstraintsZhi-Sheng Chen,Yong He,Min Wu12.A Power-and Coverage-aware Clustering Scheme for Wireless Sensor NetworksLiang Xue,Xin-Ping Guan,Zhi-Xin Liu,Qing-Chao Zheng13.Guaranteed Cost Active Fault-tolerant Control of Networked Control System with Packet Dropout and Transmission DelayXiao-Yuan Luo,Mei-Jie Shang,Cai-Lian Chen,Xin-Ping Guanparison of Two Novel MRAS Based Strategies for Identifying Parameters in Permanent Magnet Synchronous MotorsKan Liu,Qiao Zhang,Zi-Qiang Zhu,Jing Zhang,An-Wen Shen,Paul Stewart15.Modeling and Analysis of Scheduling for Distributed Real-time Embedded SystemsHai-Tao Zhang,Gui-Fang Wu16.Passive Steganalysis Based on Higher Order Image Statistics of Curvelet TransformS.Geetha,Siva S.Sivatha Sindhu,N.Kamaraj17.Movement Invariants-based Algorithm for Medical Image Tilt CorrectionMei-Sen Pan,Jing-Tian Tang,Xiao-Li Yang18.Target Tracking and Obstacle Avoidance for Multi-agent SystemsJing Yan,Xin-Ping Guan,Fu-Xiao Tan19.Automatic Generation of Optimally Rigid Formations Using Decentralized MethodsRui Ren,Yu-Yan Zhang,Xiao-Yuan Luo,Shao-Bao Li20.Semi-blind Adaptive Beamforming for High-throughput Quadrature Amplitude Modulation SystemsSheng Chen,Wang Yao,Lajos Hanzo21.Throughput Analysis of IEEE 802.11 Multirate WLANs with Collision Aware Rate Adaptation AlgorithmDhanasekaran Senthilkumar,A. Krishnan22.Innovative Product Design Based on Customer Requirement Weight Calculation ModelChen-Guang Guo,Yong-Xian Liu,Shou-Ming Hou,Wei Wang23.A Service Composition Approach Based on Sequence Mining for Migrating E-learning Legacy System to SOAZhuo Zhang,Dong-Dai Zhou,Hong-Ji Yang,Shao-Chun Zhong24.Modeling of Agile Intelligent Manufacturing-oriented Production Scheduling SystemZhong-Qi Sheng,Chang-Ping Tang,Ci-Xing Lv25.Estimation of Reliability and Cost Relationship for Architecture-based SoftwareHui Guan,Wei-Ru Chen,Ning Huang,Hong-Ji Yang1.A Computer-aided Design System for Framed-mould in Autoclave ProcessingTian-Guo Jin,Feng-Yang Bi2.Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural NetworkXu Yang3.The Knee Joint Design and Control of Above-knee Intelligent Bionic Leg Based on Magneto-rheological DamperHua-Long Xie,Ze-Zhong Liang,Fei Li,Li-Xin Guo4.Modeling of Pneumatic Muscle with Shape Memory Alloy and Braided SleeveBin-Rui Wang,Ying-Lian Jin,Dong Wei5.Extended Object Model for Product Configuration DesignZhi-Wei Xu,Ze-Zhong Liang,Zhong-Qi Sheng6.Analysis of Sheet Metal Extrusion Process Using Finite Element MethodXin-Cun Zhuang,Hua Xiang,Zhen Zhao7.Implementation of Enterprises' Interoperation Based on OntologyXiao-Feng Di,Yu-Shun Fan8.Path Planning Approach in Unknown EnvironmentTing-Kai Wang,Quan Dang,Pei-Yuan Pan9.Sliding Mode Variable Structure Control for Visual Servoing SystemFei Li,Hua-Long Xie10.Correlation of Direct Piezoelectric Effect on EAPap under Ambient FactorsLi-Jie Zhao,Chang-Ping Tang,Peng Gong11.XML-based Data Processing in Network Supported Collaborative DesignQi Wang,Zhong-Wei Ren,Zhong-Feng Guo12.Production Management Modelling Based on MASLi He,Zheng-Hao Wang,Ke-Long Zhang13.Experimental Tests of Autonomous Ground Vehicles with PreviewCunjia Liu,Wen-Hua Chen,John Andrews14.Modelling and Remote Control of an ExcavatorYang Liu,Mohammad Shahidul Hasan,Hong-Nian Yu15.TOPSIS with Belief Structure for Group Belief Multiple Criteria Decision MakingJiang Jiang,Ying-Wu Chen,Da-Wei Tang,Yu-Wang Chen16.Video Analysis Based on Volumetric Event DetectionJing Wang,Zhi-Jie Xu17.Improving Decision Tree Performance by Exception HandlingAppavu Alias Balamurugan Subramanian,S.Pramala,B.Rajalakshmi,Ramasamy Rajaram18.Robustness Analysis of Discrete-time Indirect Model Reference Adaptive Control with Normalized Adaptive LawsQing-Zheng Gao,Xue-Jun Xie19.A Novel Lifecycle Model for Web-based Application Development in Small and Medium EnterprisesWei Huang,Ru Li,Carsten Maple,Hong-Ji Yang,David Foskett,Vince Cleaver20.Design of a Two-dimensional Recursive Filter Using the Bees AlgorithmD. T. Pham,Ebubekir Ko(c)21.Designing Genetic Regulatory Networks Using Fuzzy Petri Nets ApproachRaed I. Hamed,Syed I. Ahson,Rafat Parveen1.State of the Art and Emerging Trends in Operations and Maintenance of Offshore Oil and Gas Production Facilities: Some Experiences and ObservationsJayantha P.Liyanage2.Statistical Safety Analysis of Maintenance Management Process of Excavator UnitsLjubisa Papic,Milorad Pantelic,Joseph Aronov,Ajit Kumar Verma3.Improving Energy and Power Efficiency Using NComputing and Approaches for Predicting Reliability of Complex Computing SystemsHoang Pham,Hoang Pham Jr.4.Running Temperature and Mechanical Stability of Grease as Maintenance Parameters of Railway BearingsJan Lundberg,Aditya Parida,Peter S(o)derholm5.Subsea Maintenance Service Delivery: Mapping Factors Influencing Scheduled Service DurationEfosa Emmanuel Uyiomendo,Tore Markeset6.A Systemic Approach to Integrated E-maintenance of Large Engineering PlantsAjit Kumar Verma,A.Srividya,P.G.Ramesh7.Authentication and Access Control in RFID Based Logistics-customs Clearance Service PlatformHui-Fang Deng,Wen Deng,Han Li,Hong-Ji Yang8.Evolutionary Trajectory Planning for an Industrial RobotR.Saravanan,S.Ramabalan,C.Balamurugan,A.Subash9.Improved Exponential Stability Criteria for Recurrent Neural Networks with Time-varying Discrete and Distributed DelaysYuan-Yuan Wu,Tao Li,Yu-Qiang Wu10.An Improved Approach to Delay-dependent Robust Stabilization for Uncertain Singular Time-delay SystemsXin Sun,Qing-Ling Zhang,Chun-Yu Yang,Zhan Su,Yong-Yun Shao11.Robust Stability of Nonlinear Plants with a Non-symmetric Prandtl-Ishlinskii Hysteresis ModelChang-An Jiang,Ming-Cong Deng,Akira Inoue12.Stability Analysis of Discrete-time Systems with Additive Time-varying DelaysXian-Ming Tang,Jin-Shou Yu13.Delay-dependent Stability Analysis for Markovian Jump Systems with Interval Time-varying-delaysXu-Dong Zhao,Qing-Shuang Zeng14.H∞ Synchronization of Chaotic Systems via Delayed Feedback ControlLi Sheng,Hui-Zhong Yang15.Adaptive Fuzzy Observer Backstepping Control for a Class of Uncertain Nonlinear Systems with Unknown Time-delayShao-Cheng Tong,Ning Sheng16.Simulation-based Optimal Design of α-β-γ-δ FilterChun-Mu Wu,Paul P.Lin,Zhen-Yu Han,Shu-Rong Li17.Independent Cycle Time Assignment for Min-max SystemsWen-De Chen,Yue-Gang Tao,Hong-Nian Yu1.An Assessment Tool for Land Reuse with Artificial Intelligence MethodDieter D. Genske,Dongbin Huang,Ariane Ruff2.Interpolation of Images Using Discrete Wavelet Transform to Simulate Image Resizing as in Human VisionRohini S. Asamwar,Kishor M. Bhurchandi,Abhay S. Gandhi3.Watermarking of Digital Images in Frequency DomainSami E. I. Baba,Lala Z. Krikor,Thawar Arif,Zyad Shaaban4.An Effective Image Retrieval Mechanism Using Family-based Spatial Consistency Filtration with Object RegionJing Sun,Ying-Jie Xing5.Robust Object Tracking under Appearance Change ConditionsQi-Cong Wang,Yuan-Hao Gong,Chen-Hui Yang,Cui-Hua Li6.A Visual Attention Model for Robot Object TrackingJin-Kui Chu,Rong-Hua Li,Qing-Ying Li,Hong-Qing Wang7.SVM-based Identification and Un-calibrated Visual Servoing for Micro-manipulationXin-Han Huang,Xiang-Jin Zeng,Min Wang8.Action Control of Soccer Robots Based on Simulated Human IntelligenceTie-Jun Li,Gui-Qiang Chen,Gui-Fang Shao9.Emotional Gait Generation for a Humanoid RobotLun Xie,Zhi-Liang Wang,Wei Wang,Guo-Chen Yu10.Cultural Algorithm for Minimization of Binary Decision Diagram and Its Application in Crosstalk Fault DetectionZhong-Liang Pan,Ling Chen,Guang-Zhao Zhang11.A Novel Fuzzy Direct Torque Control System for Three-level Inverter-fed Induction MachineShu-Xi Liu,Ming-Yu Wang,Yu-Guang Chen,Shan Li12.Statistic Learning-based Defect Detection for Twill FabricsLi-Wei Han,De Xu13.Nonsaturation Throughput Enhancement of IEEE 802.11b Distributed Coordination Function for Heterogeneous Traffic under Noisy EnvironmentDhanasekaran Senthilkumar,A. Krishnan14.Structure and Dynamics of Artificial Regulatory Networks Evolved by Segmental Duplication and Divergence ModelXiang-Hong Lin,Tian-Wen Zhang15.Random Fuzzy Chance-constrained Programming Based on Adaptive Chaos Quantum Honey Bee Algorithm and Robustness AnalysisHan Xue,Xun Li,Hong-Xu Ma16.A Bit-level Text Compression Scheme Based on the ACW AlgorithmHussein A1-Bahadili,Shakir M. Hussain17.A Note on an Economic Lot-sizing Problem with Perishable Inventory and Economies of Scale Costs:Approximation Solutions and Worst Case AnalysisQing-Guo Bai,Yu-Zhong Zhang,Guang-Long Dong1.Virtual Reality: A State-of-the-Art SurveyNing-Ning Zhou,Yu-Long Deng2.Real-time Virtual Environment Signal Extraction and DenoisingUsing Programmable Graphics HardwareYang Su,Zhi-Jie Xu,Xiang-Qian Jiang3.Effective Virtual Reality Based Building Navigation Using Dynamic Loading and Path OptimizationQing-Jin Peng,Xiu-Mei Kang,Ting-Ting Zhao4.The Skin Deformation of a 3D Virtual HumanXiao-Jing Zhou,Zheng-Xu Zhao5.Technology for Simulating Crowd Evacuation BehaviorsWen-Hu Qin,Guo-Hui Su,Xiao-Na Li6.Research on Modelling Digital Paper-cut PreservationXiao-Fen Wang,Ying-Rui Liu,Wen-Sheng Zhang7.On Problems of Multicomponent System Maintenance ModellingTomasz Nowakowski,Sylwia Werbinka8.Soft Sensing Modelling Based on Optimal Selection of Secondary Variables and Its ApplicationQi Li,Cheng Shao9.Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear SystemsXiao-Yuan Luo,Zhi-Hao Zhu,Xin-Ping Guan10.Output Feedback for Stochastic Nonlinear Systems with Unmeasurable Inverse DynamicsXin Yu,Na Duan11.Kalman Filtering with Partial Markovian Packet LossesBao-Feng Wang,Ge Guo12.A Modified Projection Method for Linear FeasibilityProblemsYi-Ju Wang,Hong-Yu Zhang13.A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction SystemSiva S. Sivatha Sindhu,S. Geetha,M. Marikannan,A. Kannan14.New Delay-dependent Global Asymptotic Stability Condition for Hopfield Neural Networks with Time-varying DelaysGuang-Deng Zong,Jia Liu hHTTp://15.Crosscumulants Based Approaches for the Structure Identification of Volterra ModelsHouda Mathlouthi,Kamel Abederrahim,Faouzi Msahli,Gerard Favier1.Coalition Formation in Weighted Simple-majority Games under Proportional Payoff Allocation RulesZhi-Gang Cao,Xiao-Guang Yang2.Stability Analysis for Recurrent Neural Networks with Time-varying DelayYuan-Yuan Wu,Yu-Qiang Wu3.A New Type of Solution Method for the Generalized Linear Complementarity Problem over a Polyhedral ConeHong-Chun Sun,Yan-Liang Dong4.An Improved Control Algorithm for High-order Nonlinear Systems with Unmodelled DynamicsNa Duan,Fu-Nian Hu,Xin Yu5.Controller Design of High Order Nonholonomic System with Nonlinear DriftsXiu-Yun Zheng,Yu-Qiang Wu6.Directional Filter for SAR Images Based on NonsubsampledContourlet Transform and Immune Clonal SelectionXiao-Hui Yang,Li-Cheng Jiao,Deng-Feng Li7.Text Extraction and Enhancement of Binary Images Using Cellular AutomataG. Sahoo,Tapas Kumar,B.L. Rains,C.M. Bhatia8.GH2 Control for Uncertain Discrete-time-delay Fuzzy Systems Based on a Switching Fuzzy Model and Piecewise Lyapunov FunctionZhi-Le Xia,Jun-Min Li9.A New Energy Optimal Control Scheme for a Separately Excited DC Motor Based Incremental Motion DriveMilan A.Sheta,Vivek Agarwal,Paluri S.V.Nataraj10.Nonlinear Backstepping Ship Course ControllerAnna Witkowska,Roman Smierzchalski11.A New Method of Embedded Fourth Order with Four Stages to Study Raster CNN SimulationR. Ponalagusamy,S. Senthilkumar12.A Minimum-energy Path-preserving Topology Control Algorithm for Wireless Sensor NetworksJin-Zhao Lin,Xian Zhou,Yun Li13.Synchronization and Exponential Estimates of Complex Networks with Mixed Time-varying Coupling DelaysYang Dai,YunZe Cai,Xiao-Ming Xu14.Step-coordination Algorithm of Traffic Control Based on Multi-agent SystemHai-Tao Zhang,Fang Yu,Wen Li15.A Research of the Employment Problem on Common Job-seekersand GraduatesBai-Da Qu。
基于平滑非线性能量算子划分的尖峰相关特征癫痫发作自动检测算法
第14卷㊀第3期Vol.14No.3㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2024年3月㊀Mar.2024㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2024)03-0128-05中图分类号:TP18,TP399文献标志码:A基于平滑非线性能量算子划分的尖峰相关特征癫痫发作自动检测算法何雪兰,吴㊀江,蒋路茸(浙江理工大学信息科学与工程学院,杭州310018)摘㊀要:针对癫痫发作自动检测算法多集中于时域㊁频域等传统特征,无法全面表征癫痫脑电信号的信息等问题,本文结合癫痫脑电图中异常波振幅和频率提高的现象,提出一种基于平滑非线性能量算子划分的尖峰相关特征癫痫发作自动检测算法㊂该算法使用传统的时域㊁频域特征,结合尖峰相关性特征对脑电信号进行刻画,使用有监督的机器学习分类器,测试癫痫发作自动检测的有效性和可靠性㊂本文将提出的方法在开源数据集CHBMIT上进行了评估,获得了96.52%的准确率㊁95.65%的敏感性和97.09%的特异性㊂实验结果表明,基于平滑非线性能量算子划分的尖峰相关特征,能够作为癫痫脑电信息的补充,提高癫痫发作检测的性能㊂关键词:癫痫发作检测;机器学习;尖峰相关性;平滑非线性能量算子Automaticseizuredetectionalgorithmbasedonspike-relatedfeaturesofsmoothednonlinearenergyoperatordivisionHEXuelan,WUJiang,JIANGLurong(SchoolofInformationScienceandEngineering,ZhejiangSci-TechUniversity,Hangzhou310018,China)Abstract:Mostcurrentseizureautomaticdetectionalgorithmsfocusontraditionalfeaturessuchastimedomainandfrequencydomain,whichcannotfullycharacterizetheinformationofepilepticEEGsignals.Thispaperproposesanautomaticseizuredetectionalgorithmbasedonspikecorrelationfeaturesdividedbyasmoothnonlinearenergyoperator,takingintoaccountthephenomenonthattheamplitudeandfrequencyofabnormalwavesinepilepticEEGwillincrease.Thealgorithmusestraditionaltime-domainandfrequency-domainfeatures,combinedwithspikecorrelationfeaturestocharacterizetheEEGsignal,andusessupervisedmachinelearningclassifierstotestitseffectivenessandreliabilityforautomaticseizuredetection.TheresearchevaluatestheproposedmethodontheopensourcedatasetCHBMITandobtains96.52%onaccuracy,95.65%onsensitivityand97.09%onspecificity.Theexperimentalresultsshowthattheproposedspike-relatedfeaturesbasedonthesmoothednonlinearenergyoperatorsegmentationcanbeusedasacomplementtotheepilepticEEGinformationtoimprovetheperformanceofseizuredetection.Keywords:seizuredetection;machinelearning;spikecorrelation;smoothednonlinearenergyoperator基金项目:浙江省基础公益项目(LGF19F010008);北京邮电大学泛网无线通信教育部重点实验室(BUPT)(KFKT-2018101);浙江省重点研发计(2022C03136);国家自然科学基金(61602417)㊂作者简介:何雪兰(1999-),女,硕士研究生,主要研究方向:癫痫检测;吴㊀江(1978-),男,博士,高级工程师,主要研究方向:无线通信技术,工业物联网㊂通讯作者:蒋路茸(1982-),男,博士,教授,主要研究方向:生理电信号处理㊁复杂网络和无线传感器网络㊂Email:jianglurong@zstu.edu.cn收稿日期:2023-03-150㊀引㊀言癫痫是一种神经系统疾病,由大脑神经元异常放电引起[1],常常表现为突发性㊁反复性和复发性等特点㊂癫痫发作的临床症状复杂多样,如阵发性痉挛㊁意识丧失㊁认知功能障碍等[2]㊂这些发作事件对患者的认知水平及正常生活都产生了明显影响㊂因此,癫痫的诊断和治疗对于预防癫痫发作和改善生活质量至关重要㊂头皮脑电图是一种用于临床记录脑活动的无创信号采集方法[3],用于记录大脑活动时的电波变化㊂头皮脑电图包含丰富的生理㊁心理和病理信息,是评估癫痫和其他脑部疾病的有效工具[4]㊂在脑电图的记录中,癫痫发作和癫痫样放电(如棘波㊁尖波和棘慢波复合体)是癫痫的重要生物标志物[5],并被广泛应用于临床评价㊂目前,临床上基于脑电图的识别与分析是医生进行癫痫检测的黄金标准,但对海量的临床脑电数据进行人工筛查,不仅给医生带来沉重的负担,还存在较强的主观性㊁判断标准不统一等问题[6-7],影响分析的效率和准确性㊂因此,设计一种自动的癫痫发作检测方法是亟待解决的问题㊂为了克服传统诊断方法的局限性㊁提高医疗效率,伴随着机器学习的快速发展,癫痫发作的自动检测已成为行业内关注的重点㊂研究者们根据头皮脑电图的时域㊁频域或非线性特征建立了特征工程方法[8-10],并通过具有一个或多个特征的分类器检测癫痫发作㊂Mursalin等学者[11]从时域㊁频域和基于熵的特征中选择突出特征,使用随机森林分类器学习选定特征集合的特性,获得了更好的分类结果㊂杨舒涵等学者[12]使用时域和非线性特征对脑电信号进行表征,结合XGBoost分类器,实现了癫痫的自动检测㊂Zarei等学者[13]使用离散小波变换DWT和正交匹配追踪(OrthogonalMatchingPursuit,OMP)提取EEG中不同的系数,计算非线性特征和统计特征,使用SVM进行分类,获得了较好的检测性能㊂吴端波等学者[14]使用aEEG尖峰和cEEG棘波提取的方法计算棘波率,使用阈值法对癫痫进行发作检测㊂上述模型虽然都能取得较好的分类结果,但是也存在以下问题:(1)多数研究在特征提取阶段仅从时域㊁频域或时频域中表征脑电信号信息,这些特征所涵盖的信息量并不足以全面描述一段EEG信号㊂(2)在癫痫发作的自动检测中,强调周期性的信号转换对于有效㊁可靠地区分癫痫发作的重复特征至关重要,而互相关是时域上广泛用于表示信号周期性的方法㊂针对上述问题,本文提出一种基于平滑非线性能量算子划分的尖峰相关(SpikeCorrelation,SC)特征的癫痫发作自动检测算法㊂SC是关于自适应提取的脑电图尖峰信号段之间时间延迟的最大互相关㊂使用平滑非线性能量算子衡量癫痫脑电信号中出现的异常波,将脑电信号在癫痫发作期和非发作期的尖峰相关特征作为度量患者大脑活动的一个重要补充㊂本文提出的算法主要使用巴特沃斯滤波器对脑电信号进行滤波,去除外部伪迹的干扰,然后从传统特征角度出发,提取时域㊁频域特征,再结合提出的尖峰相关特征,进一步表征癫痫发作时的异常信息㊂最后结合有监督的机器学习分类模型,实现癫痫发作的自动检测㊂1㊀方法癫痫发作自动检测整体流程设计如图1所示,其中包含预处理㊁特征提取和分类等3个模块㊂脑电信号通道筛选滤波数据分割归一化预处理特征提取传统特征:时域、频域尖峰相关特征分类癫痫发作/非发作图1㊀癫痫发作自动检测流程图Fig.1㊀Flowchartofseizuredetection1.1㊀脑电信号预处理头皮脑电数据通过放置在头皮固定位置的电极采集得到㊂由于外置电极,这种采集方式很容易受到外部干扰,导致采集到的数据被噪声污染㊂此外,由于受试者在采集过程中生理活动产生的内部伪迹(如:眨眼㊁心脏跳动等)[15],也会对数据产生干扰,影响分类结果㊂因此,针对内部伪迹,本文首先对采集到的脑电信号进行通道筛选,剔除受眼部运动干扰严重的2个电极FT1和FT2;同时,由于左侧耳电磁极易受到心电伪迹的干扰,因此也剔除了靠近耳部的2个电极FT9和FT10㊂所以,在通道筛选阶段,共选择了脑电图中20个通道信号㊂㊀㊀滤波是一种常见的去除脑电信号外部伪迹的方法,本文采用1 48Hz的带通巴特沃斯滤波器进行滤波,抑制其他频率范围的信号[16]㊂根据数据集中标注的癫痫发作开始和结束时间,为了保证波形的完整性,设置重叠率为50%的滑动窗口,将脑电信号分割成4s的数据片段,最后对所有片段进行归一化处理㊂由于通道筛选和滤波后的脑电信号幅值的浮动一般是在可接受范围内,最大最小标准化能够较大程度地还原真实EEG信号波形㊂因此,本文采用最大最小标准化对原始EEG信号进行归一化操作,推得的公式为:Xmin-max=X-X-maxX()-minX()(1)1.2㊀特征提取原始脑电信号数据量庞大,且不具有代表性,而特征提取方法可以提炼出能够表征癫痫发作特征的数据,用于模型的建立㊂因此,本文主要使用传统时域㊁频域特征和基于平滑非线性能量算子的尖峰相关性特征,对脑电数据进行特征提取㊂1.2.1㊀传统特征提取研究主要从时域和频域两个角度对脑电信号进行传统特征提取㊂本文主要提取时域上每个通道的最大值㊁最小值㊁平均值㊁峰度(Kurtosis)㊁偏斜度921第3期何雪兰,等:基于平滑非线性能量算子划分的尖峰相关特征癫痫发作自动检测算法(Sknewness)和线长(LineLength);频域上主要提取每个信号频域分量的振幅㊂其中,峰度㊁偏斜度和线长的数学定义分别见式(2) (4):Kurtosis=E[(x-mean(x))4]{E[(x-mean(x))2]}2(2)Sknewness=E[(x-mean(x)std(x))3](3)LineLength=1nðni=1absxi+1-xi()(4)㊀㊀其中,x表示脑电信号片段;E表示对括号中数值求期望;xi表示采样点i的值;n表示片段x中采样点数㊂1.2.2㊀尖峰相关特征提取根据癫痫发作时脑电信号异常波的振幅和频率发生改变的特异性现象,本文提出将尖峰相关特征作为表征癫痫发作时异常特征的补充㊂非线性能量算子(NLEO)是一种对信号进行能量度量的方法[17],能够跟踪信号的瞬时能量㊂对于离散信号xn,其非线性能量算子表达如式(5)所示:φ[x(n)]=x(n-l)x(n-p)-x(n-q)x(n-s)(5)㊀㊀通常,当癫痫脑电信号中出现异常放电时,脑电波的振幅和频率会有所提高,可以更好地突出异常波在平稳状态下的放电波形,但非线性能量对脑电信号中可能存在的噪音信号也具有很高的敏感度㊂为了进一步提高NLEO对非平稳信号的表征能力和抗干扰能力,文献[18]提出了一种NLEO的改进方法,即平滑非线性能量算子(SNLEO),将计算所得的能量与一个窗函数进行卷积运算,在一定程度上减小低波幅噪音信号对输出结果的影响㊂SNLEO计算见式(6):φ[x(n)]=w(n)∗φ[x(n)](6)㊀㊀其中,w是一个矩形的窗函数, ∗ 表示卷积操作㊂在非线性能量算子的计算中,本文使用的参数值为l=1,p=2,q=0和s=3,并采用7个点的窗函数进行卷积计算㊂获得SNLEO后,需要设定一个合适的阈值,尽可能多地筛选出可能是尖峰的样本,同时最小化漏检率㊂本文使用自适应阈值,对SNLEO进行尖峰筛选识别㊂本文采用影响检测尖峰数量没有大范围变化的阈值作为最优阈值㊂最优阈值的搜索范围为SNLEO的10% 90%[19],相邻2个峰值的中间被确定为一个尖峰的起始点或结束点㊂由于数据在划分过程中导致波形的不连续问题,本文将检测到的第一个和最后一个尖峰丢弃,以确保每个片段具有完整的尖峰形态㊂如果检测出尖峰,则将每个划分好的尖峰与后续5个尖峰片段相关联㊂本文使用尖峰相关性(SpikeCorrelation,SC)来定义该矩阵,并将SC的平均值和标准差作为癫痫发作检测的特征㊂SC计算见式(7 8):SCi,j=maxmRxixj(m)(7)Rxixj(m;i,j)=E[xi(n)xj(n+m)]σxiσxj(8)㊀㊀其中,xi㊁xj是脑电EEG信号的片段,这里i=[2, ,S-6],j=[i+1, ,i+5];S表示在一个片段中检测到的峰值数;σ表示脑电图片段的标准差㊂估计SC特征的处理过程如图2所示㊂将一个片段的第一个和最后一个丢弃,而后根据得到的尖峰计算其与后面5个尖峰的相关性㊂根据图2(a)中样例计算出的尖峰相关矩阵如图3所示㊂10050-501234时间/s(a)癫痫发作片段样例EEG/μV400200SNLEO/μV23224168尖峰数/个1234时间/s(b)片段(a)对应的S N L E Ot h(c)基于(b)确定的自适应阈值t h阈值104.87710050-50EEG/μV1234时间/s(d)划分好的尖峰片段(“*”表示丢弃的片段)12345678910t h图2㊀使用自适应阈值的SNLEO计算尖峰相关性示意图Fig.2㊀SchematicdiagramofSNLEOcalculationofspikecorrelationsusingadaptivethreshold1234567892345678910图3㊀尖峰片段得到的最大相关矩阵Fig.3㊀Maximumcorrelationmatrixobtainedfromspikefragments031智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第14卷㊀㊀㊀此外,计算了SNLEO的平均值㊁标准差和平均最大SNLEO值spikiness㊂其中,spikiness被定义为SNLEO中峰值的最大值除以SNLEO的平均值[20],以及检测到的峰值数量(snum)㊁平均持续时间(swidth)和平均峰值间间隔(sgap)㊂基于SNLEO划分的尖峰相关特征的具体描述见表1㊂表1㊀尖峰相关特征的描述Table1㊀Descriptionofspike-relatedcharacteristics特征描述mean(SC)尖峰相关性矩阵的平均值std(SC)尖峰相关性矩阵的标准差mean(SNLEO)SNLEO的平均值std(SNLEO)SNLEO的标准差spikiness平均最大SNLEO值snum峰值数量swidth平均持续时间sgap平均峰值间间距1.3㊀分类模型使用传统机器学习分类器RF和SVM来评估本文提出的方法,这些分类器经常被用于癫痫发作的自动检测㊂2㊀实验2.1㊀数据集本研究采用公开的头皮脑电数据集CHB-MIT㊂该数据集共记录了美国波士顿儿童医院的23名癫痫患者的头皮脑电数据,每个患者的数据都是由多个.edf文件组成,采样频率256Hz,共含有157次癫痫发作㊂大多数文件包含有23个EEG通道信号,并采用国际标准10-20系统使用的EEG电极位置命名这些通道记录㊂由于癫痫发作时间远小于发作间期的时间,为了保证数据集正负样本的均衡性,本文采用欠采样的方式在发作间期随机采样和癫痫发作样本数量相当的负样本㊂2.2㊀评价指标为了验证本文方法的有效性,采用准确率(Acc)㊁敏感性(Sen)㊁特异性(Spe)㊁F1值和AUC等指标进行实验评估㊂计算方法见式(9) 式(11):Acc=TP+TNTP+TN+FP+FN(9)Sen=TPTP+FN(10)Spe=TNTN+FP(11)㊀㊀其中,TP㊁FP㊁FN和TN分别为真阳性㊁假阳性㊁假阴性和真阴性㊂本文产生的所有实验结果都是在配置为Intel(R)Core(TM)i7-9700CPU@3.00GHz,16GBRAM的计算机上实现的㊂实验模型使用Python3.7和Scikit-learn构建㊂2.3㊀结果分析本文先对提取的传统时域㊁频域特征分别使用RF和SVM分类模型进行测试,所得实验结果见表2㊂由表2可知,SVM分类模型表现最佳㊂表2㊀基于传统特征的实验结果Table2㊀Experimentalresultsbasedontraditionalcharacteristics特征分类器AccSenSpe传统特征RF0.86210.75330.9339SVM0.95900.93850.9736㊀㊀在确定分类模型SVM的基础上,将传统特征和尖峰相关特征结合,探讨尖峰相关特征对癫痫脑电信号的表征能力㊂添加前后对比结果见表3㊂表3㊀尖峰相关特征对比的分类结果Table3㊀Classificationresultsofspike-relatedfeaturecomparison分类器特征AccSenSpeSVM传统特征0.95900.93850.9736传统特征+尖峰相关特征0.96520.95650.9709㊀㊀由表3可知,尖峰相关特征能够对癫痫脑电信号信息进行表征㊂加入尖峰相关特征后,检测结果在Acc上提升了0.62%,在Sen上提升了1.8%,在Spe上有所降低㊂在实际的临床应用中,正确识别发作样本比正确识别非发作样本更重要,因此Sen指标更能准确衡量方法的优劣㊂本文提出的方法虽然在Spe上略有降低,但Sen指标上有一定程度的提升㊂3㊀结束语本文提出了一种基于平滑非线性能量算子划分的尖峰相关特征的癫痫发作自动检测算法㊂该算法使用传统的时域㊁频域特征,结合尖峰相关性特征对脑电信号进行刻画,使用RF和SVM分类器来测试癫痫发作自动检测的有效性和可靠性㊂将所提方法在开源数据集CHB-MIT上进行了评估,SVM分类器获得了更好的结果,其准确率㊁敏感性和特异性分别为96.52%,95.65%和97.09%㊂此外,研究开展的特征消融实验结果表明,提出的基于平滑非线性能131第3期何雪兰,等:基于平滑非线性能量算子划分的尖峰相关特征癫痫发作自动检测算法量算子划分的尖峰相关特征,能够作为癫痫脑电信息的补充,进一步提高癫痫发作检测的性能㊂参考文献[1]PATELDC,TEWARIBP,CHAUNSALIL,etal.Neuron–gliainteractionsinthepathophysiologyofepilepsy[J].NatureReviewsNeuroscience,2019,20(5):282-297.[2]SPECCHION,WIRRELLEC,SCHEFFERIE,etal.InternationalLeagueAgainstEpilepsyclassificationanddefinitionofepilepsysyndromeswithonsetinchildhood:PositionpaperbytheILAETaskForceonNosologyandDefinitions[J].Epilepsia,2022,63(6):1398-1442.[3]SCHADA,SCHINDLERK,SCHELTERB,etal.Applicationofamultivariateseizuredetectionandpredictionmethodtonon-invasiveandintracraniallong-termEEGrecordings[J].ClinicalNeurophysiology,2008,119(1):197-211.[4]BENBADISSR,BENICZKYS,BERTRAME,etal.TheroleofEEGinpatientswithsuspectedepilepsy[J].EpilepticDisorders,2020,22(2):143-155.[5]王学峰.癫癎的脑电图:传统观点㊁新认识和新领域[J].中华神经科杂志,2004,37(3):7-9.[6]刘晓燕,黄珍妮,秦炯.不同类型小儿癫痫持续状态的临床及脑电图分析[J].中华神经科杂志,2000,33(2):73-73.[7]MATURANAMI,MEISELC,DELLK,etal.Criticalslowingdownasabiomarkerforseizuresusceptibility[J].NatureCommunications,2020,11(1):2172.[8]彭睿旻,江军,匡光涛,等.基于EEG的癫痫自动检测:综述与展望[J].自动化学报,2022,48(2):335-350.[9]HOSSEINIMP,HOSSEINIA,AHIK.AreviewonmachinelearningforEEGsignalprocessinginbioengineering[J].IEEEReviewsinBiomedicalEngineering,2020,14:204-218.[10]ACHARYAUR,HAGIWARAY,DESHPANDESN,etal.CharacterizationoffocalEEGsignals:Areview[J].FutureGenerationComputerSystems,2019,91:290-299.[11]MURSALINM,ZHANGY,CHENY,etal.Automatedepilepticseizuredetectionusingimprovedcorrelation-basedfeatureselectionwithrandomforestclassifier[J].Neurocomputing,2017,241:204-214.[12]杨舒涵,李博,周丰丰.基于机器学习的跨患者癫痫自动检测算法[J].吉林大学学报(理学版),2021,59(1):101-106.[13]ZAREIA,ASLBM.Automaticseizuredetectionusingorthogonalmatchingpursuit,discretewavelettransform,andentropybasedfeaturesofEEGsignals[J].ComputersinBiologyandMedicine,2021,131:104250.[14]吴端坡,王紫萌,董芳,等.基于aEEG尖峰和cEEG棘波提取的癫痫发作检测算法[J].实验技术与管理,2020,37(12):57-62.[15]骆睿鹏,冯铭科,黄鑫,等.脑电信号预处理方法研究综述[J].电子科技,2023,36(4):36-43.[16]OCBAGABIRHT,ABOALAYONKAI,FAEZIPOURM.EfficientEEGanalysisforseizuremonitoringinepilepticpatients[C]//2013IEEELongIslandSystems,ApplicationsandTechnologyConference(LISAT).Farmingdate,USA:IEEE,2013:1-6.[17]BOONYAKITANONTP,LEK-UTHAIA,CHOMTHOK,etal.AreviewoffeatureextractionandperformanceevaluationinepilepticseizuredetectionusingEEG[J].BiomedicalSignalProcessingandControl,2020,57:101702.[18]MUKHOPADHYAYS,RAYGC.Anewinterpretationofnonlinearenergyoperatoranditsefficacyinspikedetection[J].IEEETransactionsonBiomedicalEngineering,1998,45(2):180-187.[19]TAPANIKT,VANHATALOS,STEVENSONNJ.IncorporatingspikecorrelationsintoanSVM-basedneonatalseizuredetector[C]//EMBEC&NBC2017:JointConferenceoftheEuropeanMedicalandBiologicalEngineeringConference(EMBEC)andtheNordic-BalticConferenceonBiomedicalEngineeringandMedicalPhysics(NBC).Singapore:Springer,2018:322-325.[20]TAPANIKT,VANHATALOS,STEVENSONNJ.Time-varyingEEGcorrelationsimproveautomatedneonatalseizuredetection[J].InternationalJournalofNeuralSystems,2019,29(4):1850030.231智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第14卷㊀。
Noise-InducedSyn...
Noise-Induced Synchronization among Sub-RF CMOS Neural Oscillators forSkew-Free Clock DistributionAkira Utagawa,Tetsuya Asai,Tetsuya Hirose,and Yoshihito AmemiyaGraduate School of Information Science and Technology,Hokkaido UniversityKita14,Nishi9,Kita-ku,Sapporo060-0814,JAPANEmail:**********************.hokudai.ac.jpAbstract—A possible idea is presented here for deal-ing with clock skew problems on synchronous digital sys-tems.Nakao et al.recently reported that independent neu-ral oscillators can be synchronized by applying temporal random impulses to the oscillators[1].We regard neural oscillators as independent clock sources on LSIs;i.e.,clock sources are distributed on LSIs,and they are forced to syn-chronize through the use of random noises.We designed neuron-based clock generators operating at sub-RF region (<1GHz)by modifying the original neuron model to a new model that is suitable for CMOS implementation with 0.25-µm CMOS parameters.Through circuit simulations, we demonstrate that the clock generators are certainly syn-chronized by pseudo-random noises.1.IntroductionSynchronous sequential circuits with global clock-distribution systems are the mainstream of implementation in present digital VLSI systems where the clock distribu-tion is the core of synchronous digital operations.Practical clocks given through external pads are distributed to se-quential circuits being synchronous to the same clocks via distributed clock networks.System clocks for synchronous digital circuits must arrive at all the registers simultane-ously.In practice,time mismatches of clock arrival which are called‘clock skew’occur in LSIs[2].The major rea-sons for these mismatches derive from the system clock distribution(wiring defects or asymmetric clock paths),the propagation delay of the clock chip,and the clock traces on the board.The propagation delay is dependent on the fab-rication process,voltage,temperature,and loading,which makes the clock skew even more complicated.Small clock skews prevent us from increasing the clock frequency,and large skews may result in severe malfunctions.Indeed clock-skew effects on the circuit performance rise as the in-tegration density(∼miniaturization)or the clock frequency increases.To resolve these clock-skew issues,various technolo-gies on clock distribution are widely used in present digi-tal systems such as zero-skew clock distribution[3],insert-ing buffers for skew compensation[4]and controlling the clock-wire length[5].In regular circuit structures,clock skews are effectively reduced by designing clock paths based on H trees(see[6]for details including statistical analysis).For large-scale complex clock networks,opti-mizing buffers in the clock distribution tree usually reduces clock skew.One possible way to cancel clock skew is to use asynchronous digital circuits where only local clocks are used instead of global system clocks[7].However, the functions of these circuits currently cannot satisfy var-ious sophisticated demands.Moreover,major LSI design-ers have recently started using advanced genetic algorithms in their post-manufacturing processes to calculate the re-quired margin[8].The present solutions for the skew problems may in-crease both the total length of clock distribution wires and the power consumption,as well as optimization and post-processing costs.In this paper,we propose another solution for the skew problems.Nakao et al.recently reported that independent neural oscillators can be synchronized by ap-plying appropriate noises to the oscillators[1].We here regard neural oscillators as independent clock sources on LSIs;i.e.,clock sources are distributed on LSIs,and they are forced to synchronize with the addition of artificial (or natural if possible)noises.In the following sections, we show a modified neuron-based model that are suitable for hardware implementation,neuron-based clock genera-tor for sub-RF operations(<1GHz),and circuit simulation results representing synchronous(or asynchronous)oscil-lations with(or without)external noises.2.The ModelIn the original model[1],FitzHugh-Nagumo neuron was used to demonstrate the noise-induced synchronization be-tween the time courses of N trials under different initial conditions.Instead we use N Wilson-Cowan oscillators in our model that are suitable for analog CMOS implementa-tion.The dynamics are given bydu idt=−u i+fβ(u i−v i),(1) dv idt=−v i+fβ(u i−θ)+I(t),(2)where u i and v i represent the system variables of the i-th os-cillator,θthe threshold,I(t)the common temporal random impulse and fβ(·)the sigmoid function with slopeβ.2007 International Symposium on Nonlinear Theory and its A pplications NOLTA'07, Vancouver, Canada, September 16-19, 20070.510.5 1vuu nullcline v nullcline trajectoryFigure 1:Nullclines and trajectories of single Wilson-Cowan type oscillator receiving random impulses.0 0.5 1 160170180 190200utime0 0.51 160170180 190200vtimeFigure 2:Time courses of system variables of single Wilson-Cowan type oscillator receiving random impulses.Figure 1shows numerical simulation results of a single Wilson-Cowan oscillator receiving temporal random im-pulses given by I (t )=α j δ(t −t (1)j )−δ(t −t (2)j )where δ(t )=Θ(t )−Θ(t −w )(Θ,w and t j represent the step func-tion,the pulse width and the positive random number witht (1)j t (2)j for all j s,respectively).The system parameters were θ=0.5,β=10,α=0.1,w =1,and the averaged inter-spike interval of |I (t )|was set at 100.We observed the limit-cycle oscillations,and confirmed that the trajectory was certainly fluctuated by I (t ).The time courses of u and v are shown in Fig.2.We conducted numerical simulations using 10oscillators (N =10).All the oscillators have the same parameters,and accept (or do not accept)the common random impulse I (t ).The initial condition of each oscillator was randomly chosen.Figure 3shows the raster plots of 10oscillators (vertical bars were plotted at which u i >0.5and du i /dt >0).When the oscillators did not accept I (t )(α=0),they exhibited independent oscillations as shown in Fig.3(a);1510 240024502500 25502600o s c i l l a t o r n o .time(b) with noise1510 240024502500 25502600o s c i l l a t o r n o .time(a) without noiseFigure 3:Raster plots of 10oscillators.(a)independent oscillations without random impulses,(b)synchronous os-cillations with random impulses.0 0.5 1 0100020003000 40005000R (t )time(b) with noise0 0.5 1 010002000300040005000R (t )time(a) without noiseFigure 4:Time courses of order parameter values (a)with-out random impulses and (b)with random impulses.however,all the oscillators were synchronized when α=0.1as shown in Fig.3(b).To evaluate the degree of the synchronization,we use the following order parameter:R (t )=1N j exp(i θj ) ,where N represents the number of oscillators,i the imagi-nary unit and θj =tan −1[(v j −v ∗)/(u j −u ∗)]((u ∗,v ∗)repre-sents the fixed point of the oscillator).When all the oscilla-tor are synchronized,R (t )equals 1because of the uniformθj s,while R (t )is less than 1if the oscillators are not syn-chronized.Figure 4shows the time courses of the order parameter values.When α=0,R (t )was unstable and was always less than 1[Fig.4(a)],whereas R (t )remained at 1after it became stable at t ≈2000when α=0.1[Fig.4(b)].These results indicate that if we implemented these oscilla-tors as clock generators on CMOS LSIs,applying common random pulses to the oscillators could synchronize them.Figure 5:Wilson-Cowan circuit for sub-RF operations.0.5 1 1.5 2 2.5 00.511.5 22.5v (V )u (V)u nullcline v nullcline trajectoryFigure 6:Nullclines and trajectories of oscillator circuit receiving pseudo-random impulse.3.The circuit and simulation resultsWe designed a Wilson-Cowan oscillator circuit for sub-RF operations (Fig.5).The circuit consists of a di fferen-tial pair (M1to M3)and a bu ffer circuit composed of two standard inverters.In the following simulations,we used TSMC’s 0.25-µm CMOS parameters with W /L =0.36µm /0.24µm except for M3’s channel length (L =2.4µm).Pseudo-random sequences (V mseq )were generated using a 4-bit M-sequence circuit,and were distributed to the circuit through a RC filter.The supply voltage was fixed at 2.5V .Figure 6shows SPICE results of the nullclines and tra-jectories receiving random impulses (C =10fF,R =100k Ω,the clock frequency of the M-sequence circuit was 50MHz,which resulted in a 300-ns pseudo-random se-quence).Time courses of u and v are shown in Fig.7.We observed qualitatively-equivalent nullclines and trajec-toriesto those of the Wilcon-Cowan oscillators.We con-firmed the limit-cycle oscillations where the trajectory was e ffectively fluctuated by the M-sequence circuit with the0 0.5 1 1.5 2 2.5 5051 52 5354 55 56 57 58 59 60u (V )time (ns)0 0.5 1 1.5 2 2.5 5051 52 5354 55 56 57 58 59 60v (V )time (ns)Figure 7:Time courses of system variables of oscillator circuit receiving pseudo-random impulses.1510 1.951.961.97 1.981.992o s c i l l a t o r n o .time (µs)(b) with noise1510 1.951.961.97 1.981.992o s c i l l a t o r n o .time (µs)(a) without noiseFigure 8:Raster plots of 10oscillator circuits.(a)in-dependent oscillations without random impulses,(b)syn-chronous oscillations with random impulses.RC filter.The oscillation frequency was about 1GHz when the reference voltage V ref was set at 1V .Figure 8shows the raster plots of 10oscillator circuits (vertical bars were plotted at which v i >1.25V and dv i /dt >0).All the cir-cuits exhibited independent oscillations when random se-quence V mseq was not given to them [Fig.8(a)],whereas they exhibited complete synchronization when V mseq was given [Fig.8(b)].Time courses of the order parameter val-ues were shown in Fig.9.When random impulse was not given to the circuit,R (t )was not stable and was always less than 1[Fig.9(a)],while R (t )remained at 1after it be-came stable at t ≈700µs when random impulse was given [Fig.9(b)].Our results indicate that if we distributed these circuits as ubiquitous clock sources on CMOS LSIs,they could be synchronized when common random impulses were given to the circuits.Although this may cancel out the present clock skew problems,device mismatches between0 0.5 1 012 345R (t )time (µs)(b) with noise0 0.5 1 012 345R (t )time (µs)(a) without noiseFigure 9:Time courses of order parameter values (a)with-out random impulses and (b)with random impulses.0.90.92 0.94 0.96 0.98 1 0 0.5 11.5 22.5 3〈 R (t ) 〉σ (mV)Figure 10:Synchrony dependence on parameter mismatch.the clock sources may prevent the sources from complete synchronization.Therefore,we investigated the device-mismatch dependence of the proposed circuits.For our dis-tributing purposes,local mismatches in a single oscillator circuit would be negligible;i.e.,mismatches in a di fferen-tial pair (M1and M2)and a current mirror.Mismatches in inverters corresponding to threshold θin Wilson-Cowan model would also be negligible because they only shift the fixed point,and do not vastly change the oscillation fre-quency.However,mismatches of M3between the oscilla-tors may drastically change each oscillator’s intrinsic fre-quency.Therefore,we distributed threshold voltages of M3s of all the oscillators.Zero-bias threshold voltages (VTO)of M3s were randomly chosen from the Gaussian distribution (mean:0.37V and standard deviation:σ).Fig-ure 10shows the dependence of averaged order-parameter values 〈R (t )〉(from 0to 1µs)on σ.We generated 10ran-dom VTO sets for each σ,and plotted the error bars and the mean values in the figure.We confirmed that 〈R (t )〉was gradually decreased when σwas increased.4.ConclusionWe designed CMOS sub-RF oscillators that could be synchronized using common random impulses,based on a theory in [1].We proposed a modified Wilson-Cowan model for implementing FitzHugh-Nagmo oscillators.We confirmed that the synchronization properties of the mod-ified model were qualitatively equivalent to those of the original model.We then designed sub-RF oscillator cir-cuits based on the modified model.Through circuit simula-tions,we demonstrated that the circuits exhibited the same synchronization properties as in the original and modified models.For our clock-distributing purposes,we investi-gated the synchrony dependence on device mismatches be-tween the distributed oscillator circuits.The result showed that the synchrony was gradually decreased when variance of the mismatch was linearly increased,which indicated that our ‘ubiquitous’clock sources with small device mis-matches would be synchronized by optimizing our param-eter sets.References[1]H.Nakao,K.Arai,and K.Nagai,“Synchrony oflimit-cycle oscillators induced by random external impulses,”Phys.Rev.E vol.72,026220,2005.[2]D.E.Brueske and S.H.K.Embabi,“A dynamic clocksynchronization technique for large systems,”IEEE p.,Packag.,Manufact.Technol.B ,vol.17,pp.350-361,1994.[3]R.S.Tsay,“An exact zero-skew clock routing algo-rithm,”IEEE Trans.on Comp.-Aided Design of Inte-grated Cir.Syst.,vol.12,no.2,pp.242-249,1993.[4]R.B.Watson,Jr.,and R.B.Iknaian,“Clock bu fferchip with multiple target automatic skew compensa-tion,”IEEE J.Solid-State Circuits ,vol.30,pp.1267-1276,1995.[5]T.-H.Chao,Y .-C.Hsu,J.-M.Ho,and A.B.Kahng,“Zero skew clock routing with minimum wirelength,”IEEE Trans.Circuits and Systems II ,vol.39,no.11,pp.799-814,1992.[6]M.Hashimoto,T.Yamamoto,and H.Onodera,“Sta-tistical analysis of clock skew variation in H-tree structure,”IEICE Trans.on Fundamentals of Elec-tronics,Communications and Computer Sciences ,vol.E88-A,no.12,pp.3375-3381,2005.[7]C.J.Myers,Asynchronous Circuit Design ,Wiley-Interscience,2001.[8]E.Takahashi,Y .Kasai,M.Murakawa and T.Higuchi,“Post-fabrication clock-timing adjustment using ge-netic algorithms,”IEEE J.Solid-State Circuits ,vol.39,no.4,pp.643-649,2004.。
InternationalJournalofNonlinearScience:国际非线性科学杂志
257ISSN: 1749-3889 ( print ) 1749-3897 (online)BimonthlyVol.7 (2009) No.3JuneEngland, UK ***************************.uk International Journal ofN o n l i n e a r S c i e n c e Edited by International Committee for Nonlinear Science, WAUPublished by World Academic Union (World Academic Press)CONTENTS259.New Exact Travelling Wave Solutions for Some Nonlinear Evolution EquationsA. Hendi268.A New Hierarchy of Generalized Fisher Equations and Its Bi- Hamiltonian StructuresLu Sun274.New Exact Solutions of Nonlinear Variants of the RLW, the PHI-four and Boussinesq Equations Based on Modified Extended Direct Algebraic MethodA. A. Soliman, H. A. Abdo283. Monotone Methods in Nonlinear Elliptic Boundary Value ProblemG.A.Afrouzi, Z.Naghizadeh, S.Mahdavi290. Influence of Solvents Polarity on NLO Properties of Fluorone Dye Ahmad Y. Nooraldeen1, M. Palanichant, P. K. Palanisamy301.Projective Synchronization of Chaotic Systems with Different Dimensions via Backstepping DesignXuerong Shi, Zhongxian Wang307.Adaptive Control and Synchronization of a Four-Dimensional Energy Resources System of JiangSu ProvinceLin Jia , Huanchao Tang312.Optimal Control of the Viscous KdV-Burgers Equation Using an Equivalent Index MethodAnna Gao, Chunyu Shen,Xinghua Fan319.Adaptive Control of Generalized Viscous Burgers’ Equation Xiaoyan Deng, Wenxia Chen, Jianmei Zhang327. Wavelet Density Degree of a Class of Wiener Processes Xuewen Xia, Ting Dai332.Niches’ Similarity Degree Based on Type-2 Fuzzy Niches’ Model Jing Hua, Yimin Li340.Full Process Nonlinear Analysis the Fatigue Behavior of the Crane Beam Strengthened with CFRPHuaming Zhu, Peigang Gu, Jinlong Wang, Qiyin Shi345.The Infinite Propagation Speed and the Limit Behavior for the B-family Equation with Dispersive TermXiuming Li353.The Classification of all Single Traveling Wave Solutions to Fornberg-Whitham EquationChunxiang Feng, Changxing Wu360.New Jacobi Elliptic Functions Solutions for the Higher-orderNonlinear Schrodinger EquationBaojian Hong, Dianchen Lu368.A Counterexample on Gap Property of Bi-Lipschitz Constants Ying Xiong, Lifeng Xi371.A Method for Recovering the Shape for Inverse Scattering Problem of Acoustic WavesLihua Cheng, Tieyan Lian, Ping Li379.An Approach of Image Hiding and Encryption Based on a New Hyper-chaotic SystemHongxing Yao, Meng Li258International Journal of Nonlinear Science (IJNS)BibliographicISSN: 1749-3889 (print), 1749-3897 (online), BimonthlyEdited by International Editorial Committee of Nonlinear Science, WAUPublished by World Academic Union (World Academic Press)Publisher Contact:Academic House, 113 Mill LaneWavertree Technology Park, Liverpool L13 4AH, England, UKEmail:******************.uk,*********************************URL: www. World Academic Union .comContribution enquiries and submittingThe paper(s) could be submitted to the managing editor ***************************.uk. Author also can contact our editorial offices by mail or email at addresses below directly.For more detail to submit papers please visit Editorial BoardEditor in Chief: Boling Guo, Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China;************.cnCo-Editor in Chief: Lixin Tian, Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu,212013;China;**************.cn,************.cnStanding Members of Editorial Board:Ghasem Alizahdeh Afrouzi, Department ofMathematics, Faculty of Basic Sciences, Mazandaran University,Babolsar,Iran;**************.ir Stephen Anco, Department of Mathematics, Brock University, 500 Glenridge Avenue St. Catharines, ON L2S3A1,Canada;***************Adrian Constantin ,Department of Mathematics, Lund University,22100Lund,****************.seSweden;*************************.se,Ying Fan, Department of Management Science, Institute of Policy and Management, ChineseAcademy of Sciences, Beijing 100080,China,**************.cn.Juergen Garloff, University of Applied Sciences/ HTWG Konstanz, Faculty of Computer Science, Postfach100543, D-78405 Konstanz, Germany;************************Tasawar Hayat, Department of mathematics,Quaid-I-AzamUniversity,Pakistan,*****************Y Jiang, William Lee Innovation Center, University of Manchester, Manchester, M60 1QD UK;*******************Zhujun Jing,Institute of Mathematics, Academy of Mathematics and Systems Sciences, ChineseAcademy of Science, Beijing, 100080,China;******************Yue Liu,Department of Mathematics, University of Texas, Arlington,TX76019,USA;************Zengrong Liu,Department of Mathematics, Shanghai University, Shanghai, 201800,China;******************.cnNorio Okada, Disaster Prevention Research Institute, KyotoUniversity,****************.kyoto-u.ac.jp Jacques Peyriere,Université Paris-Sud, Mathématique, bˆa t. 42591405 ORSAY Cedex , France;************************,****************************.frWeiyi Su, Department of Mathematics, NanjingUniversity, Nanjing,Jiangsu, 210093,China;*************.cnKonstantina Trivisa ,Department of Mathematics, University of Maryland College Park,MD20472-4015,USA;****************.eduYaguang Wang,Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240,China;***************.cnAbdul-Majid Wazwaz, 3700 W. 103rd Street Department of Mathematics and Computer Science, Saint Xavier University, Chicago, IL 60655 ,USA;**************Yiming Wei, Institute of Policy and management, Chinese Academy of Science, Beijing, 100080,China;*****************Zhiying Wen,Department of Mathematics, Tsinghua University, Beijing, 100084, China;*******************Zhenyuan Xu, Faculty of Science, Southern Yangtze University, Wuxi , Jiangsu 214063 ,China;*********************Huicheng Yi n, Department of Mathematics, Nanjing University, Nanjing, Jiangsu, 210093, China;****************.cnPingwen Zhang, School of Mathematic Sciences, Peking University, Beijing, 100871, China;**************.cnSecretary: Xuedi Wang, Xinghua FanEditorial office:Academic House, 113 Mill Lane Wavertree Technology Park Liverpool L13 4AH, England, UK Email:***************************.uk **************************.uk ************.cn。
基于近似熵的癫痫发作预测研究
*国家自然科学基金资助项目(63,66);广东省自然科学基金资助项目(5)通信作者z y @y 基于近似熵的癫痫发作预测研究*刘治远1,解玲丽2,陈子怡3,黄瑞梅1,李小江1,周毅1(1.中山大学中山医学院生物医学工程系,广州510080;2.中山大学数学与计算科学学院,广州510275;3.中山大学附属第一医院神经内科,广州510080)摘要:临床采用诱发方法检测获得的失神发作患者EEG 信号,研究其发作前脑电信号的动力学变化的规律,寻找预测癫痫失神发作一般规律和方法。
我们选择合适的电极对,使用非线性动力学的方法,采用复杂度变化度量的近似熵指标,通过闪光刺激癫痫患者获得的EEG 信号进行动力学特征研究,根据EE G 信号表现出的同步情况实现对癫痫发作的预测。
结果表明,本研究可以实现对临床光刺激进行诱发的癫痫失神患者的发作进行预测。
研究中采用优化电极的方法优于采用固定电极对。
关键词:癫痫;脑电图;T 检验;近似熵;发作预测中图分类号:R318文献标识码:A 文章编号:1672-6278(2011)01-0020-04Prediction of Epileptic Seizure based on Approximate Entropy of EEGLIU Zhiyuan 1,XIE Lingli 2,CHEN Ziyi 3,HUA NG Ruimei 1,LI Xiao jiang 1,ZHOU Yi1(1.D epartment o f Biomedical Engineering ,Zhon gs han Schoo l o f M edicine,Sun Y at -s en U nive rsity,G uan gzho u 510080,China ;2.School o f Mathematics and Com putational Science,Sun Y at -s en U niv ersity,G uan gzho u 510275;3.De partment o f Neu r o lo gy,the F irs t A ff liate d Hos pital,Sun Y at -sen U niv ersity,G ua n gzhou 510080)Abstr act:In this study,we try to find out the general regularity and method to predict absences seizure by studying regularities of dynamics of spatiotemporal transitio ns of EEG during epilep tic seizures.With no nlinear dynamical method,using Appro ximate Entropy (A pEn),w e s tudied the dy namical features o f EEG signal w hich w as o btained fro m clinical data.The selection of cri tical cortical cites involved a model w hich could opti mize the pro bability to be best.Before epileptic absence seizure,the T-index of those critical cites will change to so me deg ree and will progressively conv erge.Then,a pro bably predictio n can be given.The prediction scheme o f opti ma electrode is better than using fi xed electrodeduring tw o seizures is considerable.Key wor ds:Epilepsy;Electroencephalog ram(EEG);T-test;Appro xi mate entropy;Prediction of seizures1引言癫痫患者一般有两种不同的状态:表现正常的发作间期和发作期,有些病例还含有明显的发作前期和发作后期。
动画专业英语词汇
Action ....................... 动作Animator .................. 原画者,动画设计Assista .................... 动画者Antic ....................... 预备动作Air Brushing …喷效Angle .............................. 角度Animated Zoom ……画面扩大或缩小Animation Film......................... ........ 动画片Animation Computer …电脑控制动画摄影Atmosphere Sketch .............. 气氛草图B.P.(Bot Pegs) ................... 下定位Bg(Background) ................... 背景Blurs ............................. 模糊Blk(Blink) ..................眨眼Brk Dn(B.D.)(Break-Down) …中割Bg Layout .............................. 背景设计稿Background Keys ................... ...背景样本Background Hookup ............. 衔接背景Background Pan ...................... 长背景Background Still 短背景Bar Sheets ............................ 音节表Beat................... 节拍Blank ..................空白Bloom ............................ 闪光Blow Up ..............................放大Camera Notes ................. 摄影注意事项C.U.(Close-Up) …特写Clean Up .............. 清稿,修形,作监Cut ............................ 镜头结束Cel=Celluloid ............................. 化学板Cycle ................................ 循环Cw(Clock-Wise) …顺时针转动Ccw(Counter Clock-Wise) …逆时针转动Continue(Cont ,Con‘D)…继续Cam(Camera) ................. 摄影机Cush(Cushion) ……缓冲C=Center ................ 中心点Camera Shake ……镜头振动Checker ................... ....... 检查员Constant .................... 等速持续Color Keys=Color Mark-Ups 色指定Color Model ................... 彩色造型Color Flash(Paint Flash) …跳色Camera Animation………动画摄影机Cel Level .......................化学板层次Character .................... 人物造型Dialog (Dialogue ............... 双重曝光Multi Runs ............. 多重曝光1st Run .................. 第一次曝光2nd Run........................ 地二次曝光Dry Brushing ……干刷Diag Pan(Diagonal) .................. 斜移Dwf(Drawing) .......................... 画,动画纸Double Image ............... 双重影像Dailies (Rushes) ……样片Director ................................. 导演Dissolve(X. D) .................... ......溶景,叠化Distortion ............................................. 变形Double Frame ......................................... 双(画)格Drawing Disc .................................... 动画圆盘E.C. U = Extreme Close Up 大特写Ext(Exterior) ................ ... 外面;室外景Eft(Effect) .......................... 特效Editing ......................... 剪辑Exit(Moves Out, O. S. ) …出去Enter(In) ................. 入画Ease-In....................... ... 渐快Ease-Out .................. 渐慢Editor...................... 剪辑师Episode ……片集Field(Fld) .............................. 安全框Fade(In/On) ……画面淡入Fade(Out/Off) ……画面淡出Fin(Finish) ..................... 完成Folos(Follows) …跟随,跟着Fast; Quickly ……快速Field Guide ……安全框指示Finial Check ........... ...... 总检Footage .................... 尺数(英尺)F.G. (Foreground)…前景Focal Length ……焦距Frame …格数Freeze Frame ..................... 停格Gain In ……移入Head Up ............... 抬头Hook Up ...................... 接景;衔接Hold ...............画面停格Halo ............................... 光圈Int(Interior) ......................... 里面;室内景Inb(In Between) .................................. 动画In-Betweener ……动画员I&P(Ink & Paint) …描线和着色Inking ..................描线In Sync .................... 同步Intermittent ..................... 间歇Iris Out ..................... 画面旋逝Jiggle .................. 摇动Jump …跳Jitter ................ 跳动Lip Sync(Synchronization) 口形Level ........................... 层Look ……看Listen ........................ 听Layout .......................... 设计稿;构图Laughs(Laffs) ……笑L/S(Light Source) ……光源Line Test(Pencil Test) …铅笔稿试拍;线拍M. S. (Medium Shot) ..................... 中景M. C. U. (Mediium Close Up) …近景Moves Out(Exit; O. S. ) ...... ........... 出去Moves In ................................... 进入Match Line ......................... 组合线Multi Runs ................. 多重拍摄Mouth ............................. 嘴Mouth Charts ........................ 口形图Mag T rack(Magnetic S ound T rack) 音轨Multicel Levels …多层次化学板Multiplane ....................... 多层设计N/S Pegs ...................... 南北定位器N.G.(No Good) ..................... 不好的,作废Narration ……旁白叙述Ol(Overlay) ...................... .. 前层景Out Of Scene ................. 到画外面O.S.(Off Stage Off Scene) …出景Off Model .......................... 走型Ol/Ul(Underlay) 前层与中层间的景Overlap Action …重叠动作Ones ...................... 一格;单格Pose ...................... 姿势Pos(Position) ……位置;定点Pan ........................... 移动Pops In /On ..................... 突然出现Pause ....................... 停顿;暂停Perspective ……透视Peg Bar ...................... 定位尺P.T.(Painting) ...... ........... 着色Paint Flashes(Color Flashes) 跳色Papercut ................... ...... 剪纸片Pencil Test ............. 铅笔稿试拍Persistence Of Vision 视觉暂留Post-Synchronized Sound后期同步录音Puppet .......................... ...... 木偶片Ripple Glass ................... 水纹玻璃Re-Peg ............................ 重新定位Ruff(Rough-Drawing) …草稿Run ...................... 跑Reg(Register) ..................... .组合Rpt(Repeat) ................................. 重复Retakes ...................... 重拍;修改Registration Pegs ……定位器Registration Holes ……定位洞Silhouette(Silo) .................... 剪影Speed Line ................... 流线Storm Out ............................. 速转出Sparkle ....................... 火花;闪光Shadow ................ 阴影Smile ....................... 微笑Smoke ……烟Stop .............................. 停止Slow ...................... ..... 慢慢的Sc(Scene) .......................... 镜号S/A(SameAs)............................... 兼用S.S(Screen Shake) …画面振动Size Comparison ……大小比例Storyboard(Sab) …分镜头台本Sfx(Sound Effect) …声效;音效Settle ..................................... 定姿;定置Self-Line(Self-Trace Line) 色线Sound Chart(Bar Sheeets) 音节表Special Effect ....................... 特效Spin ................................. 旋转T.A.(Top Aux) .............. 上辅助定位T.P.(Top Pegs) .............. 上定位Track ........................................................ 声带Turns ........................................................ 转向Take …………拍摄(一般指拍摄顺序) Truck I n................................................ 镜头推人Truck Out ................................ 镜头拉出Tr(Trace) .................同描Tapers ................................. 渐Taper-Up ......................... 渐快Taper-Down .................... 渐慢Tight Field .......................... 小安全框Tap(Beat) ...................节拍Tittle ..................... 片名;字幕Ul(Underlay) ............................ 中景;后景Up .................... 上面Use ....................... 用Vert Up ................... 垂直上移V.O. (V oice Over) …旁白;画外音Value .................................... 明暗度Wipe .........................转(换)景方式Work Print …工作样片X(X-Diss) (X. D. ) ……两景交融Xerox Down ................ .. 缩小Xerox Up(Xerox Paste-Ups) 放大X-Sheet ...................... 摄影表Zoom Out ........................... 拉出Zoon Chart.................镜头推拉轨迹Zoom In ……推进Zoom Lens …变焦距镜头MMagnetic Tape 磁性录音带Makeup A rtist 美容师Manipulation 操纵Markup 固定利润Matte 影像形板Maysles Films 梅思利电影公司Memory-Hook 回马枪Memory-Jogger 回马枪Merrill Lynch 美林动画Metamorphic A nimation 变形动画Metamorphosis 变形Micro-Markets 微众市场Mixer 混音师Modeling 模型制作Montage 蒙太奇Morph 型变Mos 不需要现场收音的无声取景Motion Board 活动脚本或动作脚本Motion Capture 动作资料截取Motion Cintrol 电脑控制拍摄系统Motion Picture Film 动画影片Motion Tests 动作测试Motor Home 移动居住车Mouse 滑鼠Mouthpiece 发言人Multi-City Bidding 多城市竟标Music Bookends 音乐书签Music First 以音乐为优先Musical Instrument Digital Interface Midi电子乐器一的数位介面NNational Association O f Broadc国家广播电子技师协会National Cash Register 国家收银机公司Nbc 国家广播公司Negative Conformer 底片组合员Ng 不好的镜头Nonlinear Editing 非线性剪辑OOfff-Camera 镜外表演Off-Key 走调Offline System 线外系统Offline System 线外剪辑系统One-Stop Operation 一贯作业On Camera 镜内表演On-Camera Sag Rates 演员同业公会规定的上镜费On Location 出外景Online Editing 线上剪辑One-Light 单一光度One-Light Film Print 单光影片洗印One-Stop Operation 一次作业Opaquer 著色人员Open Camera 公开摄影Optical House 视觉效果工作室Optical Printer 光学印片室Original Arrangment 编曲著作Original Recording 录音著作Original Score 总谱制作Out-Of-Pocket 现款支付Outside Props 棚外道具师Outtakes 借用镜头PPacific Data Images 太平洋影像公司Pegs 过场用之画面Pencil Test 铅笔测试稿Perceived Value 知觉价值Personalities 知名人士Personality Testimonials 名人见证Petsuasion 说服Photo Cd 影像光碟Pickup Footage 从旧有的广告借凑而来的影片Pictures First 以画面为优先Pixels 像素Playback 播放Playback Person 录影机播放员Post-Scoring 后制配乐Posttesting 后测Pre-Lite 预先排演Pre-Production Meeting 拍制前会议Pre-Production Stage 制前阶段Prescoring Music 拍摄前配乐Pretesting 前测Price-Quote 报价或喊价Printed Circuiry 印刷电路Producer 广告公司的制片,制作人Product Shot 商品展示镜头Production Assistant P .A 制作助理Production Boutique 制片工作室Production Notes 制作住记Production Package 制作议价组合Production Specification Sheets 制作分工明细表Promotions 促销Prop People 道具师Peoperties 舞台道具Props 道具Public-Domain Music大众共有或版权公有的音乐Publisher's Fee 发行费用Pulldowm 抓片RRanddom A ccess 随机存取Random Access Memory Ra随m机存取记忆体Raster 屏面Read Only Memory Rom 唯读记忆体Real Opinions 真实反应的意见Real People 消费大众或一般人Real People Reactions And Opinions消费大众的真实反应及意见Recordist 录音师Reebok 锐跑Reflections 反光Rendering 算图Rental Facilities 出租公司Residual 后续付款Rhapsody In Blue 《蓝色狂想曲》Rhythm And Hues 莱休电脑动画公司Right-To-Work 自由工作权Ripomatic/Stealomatic Storyboard 借境脚本Roll Camera 开动摄影机Rotoscope 逐格帖合的重覆动画动作Rough Cut 粗剪SSample Reels 作品集Scencs 场景Scenics A rtist 布景设计师Scratch Track 临时音轨Screen Actors Guild Sag 电影演员同业公会Screen Extra's Guild Sag 电影临时演员同业公会Scripts 剧本Script Clerk 场记Set Construction Costs 搭景费用Set Designer 布景设计师Set Dresser 布影装饰师Shadows 阴影Shape Library 清晰对焦Shooting Board 模型资料库Shooting Day 制作脚本拍片日Shooting In Two 一次两画格的方式拍摄Shot List 拍摄程序表Shutter 快门Sides 台词表Silent Scenes 无声场景Silent Takes 无声取景Slate 开拍板Slice-Of-Life Episodes 生活片段式对白Snapshot 快照拍摄Solid State Screensound 数位录音工作站Song-And-Dance 歌舞片Sound People 音效人员Sound Stage 隔音场Sound Take 有声摄影Special Effects Person 特殊效果人员Special-Effects 特效Specification Sheet 职责明细表Speed 运转正常Splice 捻接Sprint斯布林特电话公司Stand-In 替身Stand-Up Presenters 播报员推荐Standing Sets 常备的布景配置Star Personality 知名人物Stereo-Mixing 立体声混音Sticks 排字手托Stills 剧照Still Photos 静态照片Stock Footage 底片材料、库存影片Stop-Motion 单格拍制Story Line 故事情节Storyboard 故事脚本Strobe-Lighe Photography 频闪闪光灯摄影法Subaru Autombile 速霸陆汽车Super 16mm Format 超16 厘米底片规格Sync Sound 同步收音Synchronized 同步TThe Screening Room 试播室Takes 取景镜头Talent Reports 劳务报价单Teamsters 卡车驾驶员Teamsters Union 卡车驾驶员工会Telepromrter 读稿机Test Commercial 测试性广告Testimonial Release Print 电影院放映片Three-Dimensional 3d 三度空间Ight Close-Up 大特写Time-Code 时码Tissue S heets 薄绵纸Top Light 顶光Trim 剪修Trims 修剪下来的片头尾Tracing Paper 扫图纸Track Left 摄影机左移Track R ight 摄影机右移Track Time 音轨时限Trade 通路Tri-X 柯打tri-X 底片Turnarounds 转场Unique Selling Proposition 独特的销售主张VVideo 视觉或影像部分Video Master 影像母带Video Tape Recording Person 录音带录制员Vignetters 集锦式快接画面处理Virtual Reality 虚拟实境Visual Timeline 视觉时间尺Visually Oriented 视觉导向Voiceover Announcer 旁白播音员WWardrobe Attendant 服装师West And Brady 威布广告公司Wild Wall 活动墙板Window Burn-In 叠印框Wire-Frame 立体线稿Words-And-Music 旁白加音乐Words First 以文案为优先Zoom 变焦Zoom In 镜头向前推进。
专业英语
专业英语Specialized English一、将词组译成英语信道容量Channel capacity信息量Amount of information信号功率Signal power噪声功率Noise power噪声谱密度Noise spectral density通信保真Fidelity of communication光波系统Optical system中继距离Distance spacing半导体激光器Semiconductor laser光纤放大器Fiber amplifier波分复用Wavelength-division multiplexing 光纤损耗Fiber loss光纤色散Fiber dispersion掺饵光纤放大器Erbium-doped fiber amplifier同步数字系列Synchronous digital hierarchy 支路信号Tributary signals数字交叉连接Digital cross connect网络维护Network maintenance支路映射Tributary mapping同步传输帧Transmission frame线路终端复用器Line Terminal Multiplexer灵敏度Sensitivity虚容器Virtual container成帧字节framing bytes段开销Section overhead端到端传输End of transmission误码监视Error monitoring信号处理节点Signal processing node净负荷Net load指针Pointer离线率The rate of off-time软交换Soft switching功率谱密度Power spectral density开环功率控制Open loop power control抗干扰能力Anti jamming ability拦截Blocking rate虚电路Virtual circuit时隙Time slot时分复用Time division multiplexing局域网Local area network服务质量Service quality广域网Wide area network公众交换电话网Public switched telephone network分组交换Packet switching蓝牙规范Bluetooth specification免提电话 A hands-free phone通用接入框架Universal access framework接入控制协议Access control protocol业务发现协议Service Discovery Protocol立体声耳机Stereo headset网络电视Network television数字用户线接入复用器Digital subscriber line access multiplexer 视频点播Video on demandIP组员协议IP crew agreement机顶盒The set-top box前向纠错Forward error correction高清电视High definition television实时流协议Real time streaming protocol通信信道Communication channel光发送机Optical transmitter光接收机Optical receiver光脉冲Optical pulse光源Light source非线性效应Nonlinear effect信噪比Signal to noise ratio误码率Bit error rate强度调制直接检验Intensity modulation direct inspection嵌入式系统Embedded system特定用途集成电路Application specific integrated circuit数字助理Digital assistant通信协议Communication protocol微控制器Micro controller实时系统Real time system二、将词组译成应为pulse code modulation 脉冲编码调制the highest frequency component 最高频率分量signaling and synchronization information 信号和同步信息per-channel codec system 每个信道编解码系统two-to-four wire conversion 两到四线转换the lower-frequency portion of the spectrum 低频部分的频谱nonlinear A/D converter 非线性模数转换器amplitude distortion振幅失真to prevent power-line frequency noise from being transmitted防止电力线频率噪声的传播resolution of the resulting digital signal解决由此产生的数字信号the resulting serial bit stream由此产生的串行位流line-to-line crosstalk 线间串扰in a fully integrated form 在一个完全集成的形式coaxial systems同轴系统multimode fiber多模光纤single-mode fiber单模光纤fiber losses 光纤损耗fiber dispersion光纤色散coherent lightwave systems 相干光通信系统fiber amplifiers光纤放大器wavelength-division multiplexing 波分复用erbium-doped fiber amplifier 掺铒光纤放大器propagation mode传播模式refractive index profile折射率剖面optical receiver光接收机dielectric介质destructive interference破坏性干涉stepped-index fiber加强指数纤维synchronous transmission system同步传输系统the equipment supplied by different manufacturers不同厂商提供的设备terminal multiplexer 终端复用器synchronous DXC 同步数字交叉连接设备individual tributary signals各支路信号section overhead段开销central processing unit中央处理单元Local area network 局部区域网络Network topology 网络拓扑Token ring network 令牌环网络reed relay簧片继电器electromechanical switching device机电开关装置crosstalk串扰labour-intensive 劳动密集型semiconductor lasers 半导体激光器light-emitting diode 发光二极管semiconductor photodiodes 半导体光电二极管intensity modulation with direct detection 强度调制直接检测error-correction codes 纠错码receiver sensitivity 接收机灵敏度三、简写PCM (Pulse-code modulation) 脉冲编码调制CDMA (Code division multiple access)码分多址PAM (Pulse amplitude modulation) 脉冲振幅调制ATM (Asynchronous Transfer Mode) 异步传输模式GPRS(General Packet Radio Service)通用分组无线服务USB (Universal serial Bus)通用串行总线AON (Active optical network) 有源光纤网FTTC (fiber to the curb) 光纤到路边WWW ( world wide web ) 全球资讯网LAN (Local Side Band) 局域网WAN (wide area network)广域网WLAN 无线局域网SSB (single side band) 单边带DSP ( digital signal processing) 数字信号处理LASER ( light amplification by stimulated emission of radiation )受激辐射的光放大CCITT(Telephone Consultative Committee)国际电话与电报顾问委员会SLIC (subscriber-line interface circuit)用户线接口电路EDFA (erbium-doped fiber amplifier)掺饵光纤放大器DSF (Dispersion shifted fiber)色散位移光纤ADM (Add and drop multiplexer)分插复用IEEE (Institute of Electrical and Electronic Engineers)电气与电子工程师学会ITU (International Telecommunications Union) 国际电信联盟CATV (Cable Television)有线电视ISDN (Integrated Services Digital Network) 综合数字业务网AGC 自动增益控制器TDM (time-division multiplexer)时分复用SDH(Asynchronous Digital Hierarchy)同步数字系列CCS (Common-Channel Signaling)公共信道信令WDM (wavelength-division multiplexing) 波分复用NNI (Network Node Interface) 网络节点接口LTM (Line Terminal Multiplexer) 线路终端复用器MEMS (Micro Electro Mechanical switching) 微机电开关CPU (central processing unit)中央处理单元CSMA/CD (Multiple Access with collision detection)多路存取/碰撞检测PDCP (Personal Digital cellular packet) 分组数据聚合协议PN 伪码GSM 全球移动通信系统CELP (Code Excited Linear Predictive) 线性预测HDSL (High-bit-rate Digital Subscriber Line) 高比特率数字用户线ADSL (Asymmetrical Digital Subscriber Line) 非对称数字用户线CAP ( Carrierless amplitude modulation) 无载波振幅调制DMT (Discrete multi-tone modulation) 离散多音调制FTTC (Fiber to the curb) 路用光纤FTTH (Fiber to the home) 家用光纤IDN (integrated digital network) 集成数字网络PSTN (public telephone switched network) 公共交换电话网WiFi 无线上网。
异结构混沌系统之间的非线性反馈同步
混沌同步方面 , 同结构系统的同步控制方法较易实 现 , 而异结构系统之间的混沌同步控制方法较为复 杂 . 所以 , 研究电路易于实现的普通三阶自治混沌 系统 , 并用简单方法实现异结构系统的混沌同步具 有一定的实践意义 . 笔者选取了文献 [ 7 ] 中的两个三阶自治混沌系 统 , 这两个系统的非线性函数分别为平方函数和符 号函数 . 该系统具有电路易于实现的特点 . 其中 , 非线性函数为平方函数的系统与 Genei so 系统结构
Abstract : Two different st ruct ures of t hirdΟ order autonomo us chaotic s yst ems which i s ea sy to realize in elect ric ci rcuit are cho sen. The cha racte ri stics of t he t wo chaot ic syst ems are anal yzed. Experime ntal ci rcui t s a re designed about t wo chaotic s yst ems usi ng t he si mul ation sof tware EWB . Two s yst em s are not t opologically e quivalent , but t hey have simila rit y i n t he st range at t ractor st ruct ure. Chaos synchronization between t he t wo system s is realized via nonli near feedback cont rol . The nonlinear fee dback cont roller is desi gned based on t he stabili ty t heory , and t he area of feedback gai n i s t aken. The si mulation resul t verifi es t he conclusion. Key w or ds : t hi rd Οorder aut onomous chaotic syst em ; ci rcui t ry realization ; nonlinear feedback cont rol ; chaos synchronization 非线性动力学系统中所含有的非线性函数使系 统产生混沌 , 非线性函数性质不同 , 使混沌系统的 动力学行为和特性也不相同 . 常见的非线性函数有 平 方 函 数 ( Genei so 系 统 [ 1 ] , Sprot t 系 统 [ 2 ] , Henon 系统[ 3 ] ) 、立方函数 ( Coullet 系统 [ 4 ] ) 、分 段线性函数 ( 蔡氏电路 ) 、 x x 函数 ( 变形 Coullet 系统[ 5 ] ) 、符号函数 ( Elwakil 系统 [ 6 ] ) 等 . 很多混 沌及控制方面的研究都是基于一些著名的系统 , 如 Lore nz 系统 、Chen 系 统、 Ro sslor 系 统等 . 但这 些系统从电路设计角度来看 , 总是带有特殊性 ; 在
脑机接口技术的无创性脑电刺激
脑机接口技术的无创性脑电刺激The field of brain-computer interface (BCI) technology has witnessed remarkable advancements in recent years, particularly in the realm of noninvasive brain stimulation through electroencephalography (EEG). This technique allows for direct communication between the human brain and external devices, opening up new horizons in the treatment of neurological disorders, rehabilitation, and even cognitive enhancement.近年来,脑机接口(BCI)技术领域取得了显著进展,特别是在通过脑电图(EEG)进行的无创性脑刺激方面。
这种技术实现了人脑与外部设备之间的直接交流,为神经系统疾病的治疗、康复甚至认知增强开辟了新的领域。
Noninvasive brain stimulation using EEG-based BCI involves the recording of electrical activity in the brain through electrodes placed on the scalp. These electrodes capture the brain's neural signals, which are then processed and translated into commands that can control external devices. This process allows for the precise targeting of specific brain regions, enabling the delivery of tailored stimuli to modulate neural activity.基于EEG的BCI无创性脑刺激技术涉及通过放置在头皮上的电极记录大脑的电活动。
应用脑电非线性分析检测意识障碍患者残余皮质功能岛相互联系的研究
应 , 检 测 残 余 皮 质功 能 岛 的 相互 联 系 。 并
方法 : 究 对 象 均 为颅 脑 外 伤 或 脑卒 中患 者包 括 3 研 O例 P S患 者 、0例 MC V 2 S患 者 和 3 0例 正 常 意识 患 者 。 有 患 者依 所
次采 集 安 静 闭眼 、 声音 刺 激 和 痛觉 刺 激 三 种状 态 下 的脑 电 信 号 , 并计 算 脑 电信 号 的互 近 似 熵 ( — p n 非 线性 指 数 。 CAE ) 结果 :V P S患 者局 部 和 远 隔皮 质 网络 受 到 广泛 抑制 , 痛 觉 和 听 觉 刺 激 几 乎无 反 应 。MC 对 S患 者 局 部 皮 质 网 络 的 相互
Me ii e 0 0 51 )l 3 一 1 3 dcn ,2 1 ,2 ( 2: 1 l 1 5
Ab t a t sr c
Obet eT neta h o ia rsos o pif n u ir t uifrsbet i prietvgt i jc v :o i sgt te crcl ep ne t a u a d adt y s m l o u jc n es tn ee t e i v i e t nl o i s s av s t P S n ii l cnc u teMC ) n esr it cn et n o t eiulcrc u ci a i ad t e V )ad m n osi ss t( S,ad m aue n ron c o f h rs a o i fnt n s n s a( ma o a e i e d t a l ol l wt e crecpaorpi E G o —ierdn mc aa s N A . i l t neh gahc(E )nn l a y a i nl i D ) h e o l n y s(
光滑Chua系统异宿轨道存在性的证明
光滑Chua系统异宿轨道存在性的证明陈建军;禹思敏【摘要】本文用待定系数法证明了具有三次多项式光滑Chua系统异宿轨道的存在性.首先,将光滑Chua系统转换为只含有一个变量的非线性微分方程.其次,证明了该非线性微分方程存在一个指数形式的无穷级数展开式表示的异宿轨道.最后,证明了该无穷级数展开式的一致收敛性,结合Shilnikov不等式,论证了该系统存在Smale马蹄,因而是Shilnikov意义下的混沌.%In this paper, the undetermined coefficient method is applied to prove the existence of heteroclinic orbit in a smooth Chua system with a cubic polynomial. Firstly, the smooth Chua system is converted to a nonlinear differential equation with only one variable. Secondly, the nonlinear differential equation is verified to have a heteroclinic orbit expressed by the infinite series expansion with the exponential form. Finally, the uniform convergence of the series expansion of the heteroclinic is proved. Combining the existence of heteroclinic orbit with Shilnikov inequalities, Smale horseshoses has been found in the smooth Chua system, and it is chaotic in the sense of Shilnikov.【期刊名称】《工程数学学报》【年(卷),期】2011(028)005【总页数】9页(P693-701)【关键词】待定系数法;异宿轨道;Shilnikov定理;光滑型Chua系统【作者】陈建军;禹思敏【作者单位】广东工业大学自动化学院,广州510006;广东工业大学自动化学院,广州510006【正文语种】中文【中图分类】O191 引言近年来,混沌在非线性科学、工程和数学等领域中获得了广泛研究和应用[1-3].目前大多数研究混沌的方法是在数值仿真基础上进行的,如计算李氏指数和分岔图等[4,5].而有关严格的数学分析证明混沌存在性的文献却不多[6-8],主要原因是用解析方法论证系统的混沌特性难度较大,从而使得有些混沌系统在提出若干年之后才被严格的数学所证明.Chua系统主要包括分段线性型和光滑型两种基本类型,其混沌机理研究一直为国内外学者所关注.例如,对于三分段线性型Chua系统,Chua在1986年给出了混沌存在性严格的数学证明[6].另一方面,Mees、Li和Chen等提出在满足同宿轨和异宿轨的基本特性、Shilnikov不等式和特征方程等条件下,直接确定状态方程中的各个参数,进而证明了三分段线性型Chua系统,两分段线性型Lorenz系统混沌的存在性[9,10].但有关光滑型Chua系统混沌存在性的结果却鲜见报道.众所周知,最常用的证明自治系统混沌存在性的判定定理是Shilnikov定理[11,12],近年来,Shilnikov方法有了一些新进展[10,13-21],Zhou等用Shilnikov定理对Chen系统的混沌轨道特性进行了详细的分析,并第一次得到其精确的边界[13].Li等基于shilnikov定理证明了Chen系统存在或者不存在同宿轨道和异宿舍轨道时,各个参数应满足的条件[15].文献[19]对Arneodo等提出的具有三个参数的连续分段线性的微分方程族,在结合Hopf-Zero分岔的情况下,证明了系统族存在一类具有两个参数的同宿轨道.特别是对于具有平方项和交叉项的三阶二次型广义Lorenz系统族,Zhou等提出在满足同宿轨和异宿轨基本特性、Shilnikov不等式和特征方程条件下,利用无穷级数展开法,并保证级数的收敛性,证明了同宿轨道和异宿轨道的存在性[16-18].在此基础上,我们基于Shilnikov定理和待定系数法,给出了非线性项为三次多项式的光滑型Chua系统中异宿轨道无穷级数的数学表达式和一致收敛性的结果,由此证明了该系统中异宿轨道的存在性.2 预备知识2.1 Shinikov定理对于一个三阶自治系统式中矢量场f:R3→R3∈Cr(r≥2),设xe∈R3是(1)式的一个平衡点,满足f(xe)=0.若系统在平衡点xe处的Jacobin矩阵J=Df(xe)的特征值为r,σ±jw,且满足σγlt;0,w=0,其中σ,γ,w∈R,则称xe为双曲鞍焦点,简称鞍焦点.假设系统有两个不同的鞍焦平衡点1和2,系统的一个动态有界轨道,当t→±∞,这个轨道都趋近同一个平衡点,则这个轨道就是同宿轨道,而异宿轨道是连接两个不同的鞍焦点类型的平衡点,当t→+∞,轨道趋近平衡点1,而t→−∞,该轨道趋近平衡点2.异宿轨道Shilnikov定理:令xe1和xe2分别为(1)式的两个不同的平衡点,若同时满足以下两个条件,则存在斯梅尔马蹄意义下的混沌.1) xe1和xe2均为鞍焦点,并满足Shilnikov不等式|σi/γi|lt;1(i=1,2),式中γ1γ2gt;0,或者σ1σ2gt;0;2) 存在一条连接两个平衡点xe1和xe2异宿轨道.2.2 具有三次多项式的光滑Chua系统具有三次多项式光滑Chua系统的无量纲状态方程为[22]其中f(x)为三次多项式,其数学表达式为f(x)=cx3−dx.上面(2)式和(3)式中αgt;0,βgt;0,cgt;0,dgt;0为参数,取α=10,β=100/7,c=2/7,d=1/7,得混沌吸引子相图,如图1所示.图1: 光滑Chua系统混沌吸引子相图由(2)和(3)式求得系统的三个平衡点分别为O1(0,0,0),0).从图1可以看出,该系统的轨道交替围绕着平衡点O2和O3旋转,由此可知该系统有一个异宿轨道连接O2和O3.3 光滑Chua系统的异宿轨道经计算,得(2)式中平衡点O2和O3对应的Jacobi矩阵为对应的特征方程为其中记∆=4P3+27Q2,由三次方程求根公式知,当∆gt;0时,(5)式有唯一的负实根γ1和一对共轭复根σ1±jw1,γ1,σ1,w1的数学表达式为根据(5)式和(6)式,得特征方程(4)式的一个实根γ和一对共轭复根σ1±jw分别为可知平衡点O2和O3,它们所对应的Jacobi矩阵都有(7)式的三个相同的根.根据(2)式,得当k=2时,有注意到(14)式中α1=0,否则由(15),(16)式可以得出αk=0(k≥1,k∈N∗),所以有对比(4)式得知l是系统在O3的Jacobi矩阵所对应特征方程的负实根,记经推导,(16)式可以进一步简化为式中C为常数,其数学表达式为其中(i,j,p)∈N∗,且i≥1,j≥1,p≥1.在(2)式中,当∆gt;0时,方程只有唯一的负实根,故当k∈N∗,k≥2时,有由(15)和(16)式,得出αk(k ∈ N∗,k ≥ 2)完全由α,β,c,d,l,α1决定,并且有αk=φk(k∈N∗,k≥2),其中φk(k∈ N∗,k≥2)是关于参数α,β,c,d,l的函数.注意到方程(11)具有对称性,若tgt;0,x(t)是方程(11)的解,而当tlt;0时,−x(−t)也是方程(11)的解.当tlt;0时,得进而得出连接O2和O3的异宿轨道具有如下形式为保证φ(t)的连续性,要求φ(0−)=φ(0+),得显见f(0)=−rlt;0.计算φk(2≤k≤13),得同理,经计算得从上述数据中可知,当k为偶数时,φklt;0;当k为奇数时,φkgt;0(k≥2).于是当k为奇数,且常数α2为充分大正数时,有F(α2)gt;0,由零点定理得F(α1)=0,α1∈(0,α2).由于F′(α1)gt;0,(22)式无重根.当k为偶数时,φklt;0,可以得出方程不存在正实根,它有k/2对共轭复根.表1给出了k为奇数时,(22)式所对应的关于α1正实根的值.表1: k为奇数时,(22)式对应关于α1正实根的值k=3 α1=0.6842 k=5α1=0.6285 k=7 α1=0.6197 k=9 α1=0.6117 k=11 α1=0.6051 k=13α1=0.5996当k继续增大时,计算可知α1的值基本稳定在0.5996,于是可近似认为α1=0.5996,因此数值仿真可以说明满足方程(22)的α1确实存在.下面证明无穷级数(12)式的一致收敛性.4 异宿轨道的收敛性现仅考虑能产生混沌吸引子的典型参数α=10,β=100/7,c=2/7,d=1/7,对于其它参数,如果它的异宿轨道存在,证明与此相似.当tgt;0时,由(15)和(16)式得故Ak单调递减且收敛于0.注意到Bk是系数α1,α2,···,αk−1的不高于三次的多项式函数.由(21)式知α1,α2,···,αk−1有界,于是Bk有界,其部分和序列也有界.因此,由Dirichlet判别法,得以下级数收敛于是|φ(t)|收敛.同理可证明当tlt;0时,|φ(t)|也收敛.显然满足Shilnikov不等式,其中的一个异宿轨道如图2所示.图2: α=10,β=100/7,c=2/7,d=1/7时光滑Chua系统的异宿轨道当∆gt;0时,由(6)式和(7)式,得γlt;0.对于(4)式,由根与系数的关系得由(23)式,得γ+2σlt;0.故只须σgt;0,Shilnikov不等式|σ/γ|lt;1成立,若σgt;0,有经上述分析,可得出如下结论:若光滑Chua系统参数αgt;0,βgt;0,cgt;0,dgt;0,满足∆gt;0和(24)式,并有(20)式所表示的异宿轨道时,该系统是Shilnikov意义下的混沌.5 结论基于Shilnikov定理和待定系数法,对参数α=10,β=100/7,c=2/7,d=1/7的非线性项为三次多项式光滑Chua系统进行了研究.导出了异宿轨道无穷级数的数学表达式,并证明了其一致收敛性,由此证明了该系统中存在一条Shilnikov类型的异宿轨道,根据Shilnikov判定定理,知该系统有Smale马蹄,因而是Shilnikov意义下的混沌.参考文献:【相关文献】[1]Lv J H,Chen G R.Generating multiscroll chaotic attractors:theories,metholds and applications[J].International Journal of Bifurcation and Chaos,2006,16(4):775-858[2]李战国,徐伟.不确定混沌系统自适应改进投影同步与参数估计[J].工程数学学报,2010,27(1):30-36 Li Z G,Xu W.Adaptive modif i ed projective synchronization and parameter estimation for chaotic systems with uncertain parameters[J].Chinese Journal of Engineering Mathematics,2010,27(1):30-36[3]Lou J,Wen Q Z.Modelling cancer dynamics in HIV-1 infected individuals[J].Chinese Journal of Engineering Mathematics,2010,27(2):375-379[4]Yu S M,Tang K S,Chen G R.Generation of n×m-scroll attractors under a Chua-circuit framework[J].International Journal of Bifurcation and Chaos,2007,17(11):3951-3964 [5]Tsuneda A.A gallery of attractors from smooth Chua’s equation[J].International Journal of Bifurcation and Chaos,2005,15(1):1-49[6]Chua L,Komuro M,Matsumto T.The double scroll family[J].IEEE Transaction on Circuits and System,1986,33(11):1072-1118[7]Stewart I.The Lorenz attractor exists[J].Nature,2002,406:948-949[8]Matsumoto T,Chua L O,Ayaki K.Reality of chaos in the double scroll circuit:a computer-assisted proof[J].IEEE Transaction on Circuits and System,1988,35(7):909-925[9]Mees A I,Chapman P B.Homoclinic and heteroclinic orbits in the double scroll attractor[J].IEEE Transaction on Circuits and System,1987,34(9):1115-1120[10]Li Z,Chen G R,Halang W A.Homoclinic and heteroclinic orbits in a modif i ed Lorenz system[J].Information Sciences,2004,165(3-4):235-245[11]Shilnikov L P.A case of the existence of a countable number of periodicmotions[J].Soviet Mathmatics Docklady,1965,6:163-166[12]Shilnikov L P.On a new type of bifurcation of multidimensional dynamicalsystems[J].Soviet Mathmatics,1969,10(1):1368-1371[13]Zhou T S,Tang Y,Chen G plex dynamical behaviors of the chaotic Chen’s system[J].International Journal of Bifurcation and Chaos,2003,13(9):2561-2574[14]Li X L,Li X M,Zheng Z H.Homoclinic shadowing and its application to chaotic systems[J].International Journal of Bifurcation and Chaos,2008,18(5):1363-1375[15]Li T,Chen G T,Chen G R.On homoclinic and heteroclinic orbits of Chen’ssystem[J].International Journal of Bifurcation and Chaos,2006,16(10):3035-3041[16]Zhou T S,Tang Y,Chen G R.Chen’s attractor exists[J].International Journal of Bifurcation and Chaos,2004,14(9):3167-3177[17]Zhou T S,Chen G R.Classification of chaos in 3d autonomous quadratic system-1 basic framwork and methods[J].International Journal of Bifurcation and Chaos,2006,16(9):2459-2479[18]Sun F Y.Shilnikov heteroclinic orbits in a chaotic system[J].International Journal of Modern Physics B,2007,21(25):4429-4436[19]Llibre J,Ponce E,Teruel A E.Horseshoes near homoclinic orbits for piecewise linear differential system in R3[J].International Journal of Bifurcation and Chaos,2007,17(4):1171-1184[20]Lin W,Chen G R.Heteroclinical repellers imply chaos[J].International Journal of Bifurcation and Chaos,2006,16(5):1471-1489[21]Yao M H,Zhang W.Shilnikov-type multipulse orbits and chaotic dynamics of a parametrically and externally excited rectangular chin plate[J].International Journal of Bifurcation and Chaos,2007,17(3):851-875[22]Zhong G Q.Implemention of Chua’s circuit with a cubic nonlinearity[J].IEEE Transaction on Circuits and System,1994,41(12):934-941。
An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination
An Overview of Recent Progress in the Study of Distributed Multi-agent CoordinationYongcan Cao,Member,IEEE,Wenwu Yu,Member,IEEE,Wei Ren,Member,IEEE,and Guanrong Chen,Fellow,IEEEAbstract—This article reviews some main results and progress in distributed multi-agent coordination,focusing on papers pub-lished in major control systems and robotics journals since 2006.Distributed coordination of multiple vehicles,including unmanned aerial vehicles,unmanned ground vehicles and un-manned underwater vehicles,has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions,such as consensus,formation control,optimization, and estimation.After the review,a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations.Index Terms—Distributed coordination,formation control,sen-sor networks,multi-agent systemI.I NTRODUCTIONC ONTROL theory and practice may date back to thebeginning of the last century when Wright Brothers attempted theirfirst testflight in1903.Since then,control theory has gradually gained popularity,receiving more and wider attention especially during the World War II when it was developed and applied tofire-control systems,missile nav-igation and guidance,as well as various electronic automation devices.In the past several decades,modern control theory was further advanced due to the booming of aerospace technology based on large-scale engineering systems.During the rapid and sustained development of the modern control theory,technology for controlling a single vehicle, albeit higher-dimensional and complex,has become relatively mature and has produced many effective tools such as PID control,adaptive control,nonlinear control,intelligent control, This work was supported by the National Science Foundation under CAREER Award ECCS-1213291,the National Natural Science Foundation of China under Grant No.61104145and61120106010,the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2011581,the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20110092120024,the Fundamental Research Funds for the Central Universities of China,and the Hong Kong RGC under GRF Grant CityU1114/11E.The work of Yongcan Cao was supported by a National Research Council Research Associateship Award at AFRL.Y.Cao is with the Control Science Center of Excellence,Air Force Research Laboratory,Wright-Patterson AFB,OH45433,USA.W.Yu is with the Department of Mathematics,Southeast University,Nanjing210096,China and also with the School of Electrical and Computer Engineering,RMIT University,Melbourne VIC3001,Australia.W.Ren is with the Department of Electrical Engineering,University of California,Riverside,CA92521,USA.G.Chen is with the Department of Electronic Engineering,City University of Hong Kong,Hong Kong SAR,China.Copyright(c)2009IEEE.Personal use of this material is permitted. However,permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@.and robust control methodologies.In the past two decades in particular,control of multiple vehicles has received increas-ing demands spurred by the fact that many benefits can be obtained when a single complicated vehicle is equivalently replaced by multiple yet simpler vehicles.In this endeavor, two approaches are commonly adopted for controlling multiple vehicles:a centralized approach and a distributed approach. The centralized approach is based on the assumption that a central station is available and powerful enough to control a whole group of vehicles.Essentially,the centralized ap-proach is a direct extension of the traditional single-vehicle-based control philosophy and strategy.On the contrary,the distributed approach does not require a central station for control,at the cost of becoming far more complex in structure and organization.Although both approaches are considered practical depending on the situations and conditions of the real applications,the distributed approach is believed more promising due to many inevitable physical constraints such as limited resources and energy,short wireless communication ranges,narrow bandwidths,and large sizes of vehicles to manage and control.Therefore,the focus of this overview is placed on the distributed approach.In distributed control of a group of autonomous vehicles,the main objective typically is to have the whole group of vehicles working in a cooperative fashion throughout a distributed pro-tocol.Here,cooperative refers to a close relationship among all vehicles in the group where information sharing plays a central role.The distributed approach has many advantages in achieving cooperative group performances,especially with low operational costs,less system requirements,high robustness, strong adaptivity,andflexible scalability,therefore has been widely recognized and appreciated.The study of distributed control of multiple vehicles was perhapsfirst motivated by the work in distributed comput-ing[1],management science[2],and statistical physics[3]. In the control systems society,some pioneering works are generally referred to[4],[5],where an asynchronous agree-ment problem was studied for distributed decision-making problems.Thereafter,some consensus algorithms were studied under various information-flow constraints[6]–[10].There are several journal special issues on the related topics published af-ter2006,including the IEEE Transactions on Control Systems Technology(vol.15,no.4,2007),Proceedings of the IEEE (vol.94,no.4,2007),ASME Journal of Dynamic Systems, Measurement,and Control(vol.129,no.5,2007),SIAM Journal of Control and Optimization(vol.48,no.1,2009),and International Journal of Robust and Nonlinear Control(vol.21,no.12,2011).In addition,there are some recent reviewsand progress reports given in the surveys[11]–[15]and thebooks[16]–[23],among others.This article reviews some main results and recent progressin distributed multi-agent coordination,published in majorcontrol systems and robotics journals since2006.Due to space limitations,we refer the readers to[24]for a more completeversion of the same overview.For results before2006,thereaders are referred to[11]–[14].Specifically,this article reviews the recent research resultsin the following directions,which are not independent but actually may have overlapping to some extent:1.Consensus and the like(synchronization,rendezvous).Consensus refers to the group behavior that all theagents asymptotically reach a certain common agreementthrough a local distributed protocol,with or without predefined common speed and orientation.2.Distributed formation and the like(flocking).Distributedformation refers to the group behavior that all the agents form a pre-designed geometrical configuration throughlocal interactions with or without a common reference.3.Distributed optimization.This refers to algorithmic devel-opments for the analysis and optimization of large-scaledistributed systems.4.Distributed estimation and control.This refers to dis-tributed control design based on local estimation aboutthe needed global information.The rest of this article is organized as follows.In Section II,basic notations of graph theory and stochastic matrices are introduced.Sections III,IV,V,and VI describe the recentresearch results and progress in consensus,formation control, optimization,and estimation.Finally,the article is concludedby a short section of discussions with future perspectives.II.P RELIMINARIESA.Graph TheoryFor a system of n connected agents,its network topology can be modeled as a directed graph denoted by G=(V,W),where V={v1,v2,···,v n}and W⊆V×V are,respectively, the set of agents and the set of edges which directionallyconnect the agents together.Specifically,the directed edgedenoted by an ordered pair(v i,v j)means that agent j can access the state information of agent i.Accordingly,agent i is a neighbor of agent j.A directed path is a sequence of directed edges in the form of(v1,v2),(v2,v3),···,with all v i∈V.A directed graph has a directed spanning tree if there exists at least one agent that has a directed path to every other agent.The union of a set of directed graphs with the same setof agents,{G i1,···,G im},is a directed graph with the sameset of agents and its set of edges is given by the union of the edge sets of all the directed graphs G ij,j=1,···,m.A complete directed graph is a directed graph in which each pair of distinct agents is bidirectionally connected by an edge,thus there is a directed path from any agent to any other agent in the network.Two matrices are used to represent the network topology: the adjacency matrix A=[a ij]∈R n×n with a ij>0if (v j,v i)∈W and a ij=0otherwise,and the Laplacian matrix L=[ℓij]∈R n×n withℓii= n j=1a ij andℓij=−a ij,i=j, which is generally asymmetric for directed graphs.B.Stochastic MatricesA nonnegative square matrix is called(row)stochastic matrix if its every row is summed up to one.The product of two stochastic matrices is still a stochastic matrix.A row stochastic matrix P∈R n×n is called indecomposable and aperiodic if lim k→∞P k=1y T for some y∈R n[25],where 1is a vector with all elements being1.III.C ONSENSUSConsider a group of n agents,each with single-integrator kinematics described by˙x i(t)=u i(t),i=1,···,n,(1) where x i(t)and u i(t)are,respectively,the state and the control input of the i th agent.A typical consensus control algorithm is designed asu i(t)=nj=1a ij(t)[x j(t)−x i(t)],(2)where a ij(t)is the(i,j)th entry of the corresponding ad-jacency matrix at time t.The main idea behind(2)is that each agent moves towards the weighted average of the states of its neighbors.Given the switching network pattern due to the continuous motions of the dynamic agents,coupling coefficients a ij(t)in(2),hence the graph topologies,are generally time-varying.It is shown in[9],[10]that consensus is achieved if the underlying directed graph has a directed spanning tree in some jointly fashion in terms of a union of its time-varying graph topologies.The idea behind consensus serves as a fundamental principle for the design of distributed multi-agent coordination algo-rithms.Therefore,investigating consensus has been a main research direction in the study of distributed multi-agent co-ordination.To bridge the gap between the study of consensus algorithms and many physical properties inherited in practical systems,it is necessary and meaningful to study consensus by considering many practical factors,such as actuation,control, communication,computation,and vehicle dynamics,which characterize some important features of practical systems.This is the main motivation to study consensus.In the following part of the section,an overview of the research progress in the study of consensus is given,regarding stochastic network topologies and dynamics,complex dynamical systems,delay effects,and quantization,mainly after2006.Several milestone results prior to2006can be found in[2],[4]–[6],[8]–[10], [26].A.Stochastic Network Topologies and DynamicsIn multi-agent systems,the network topology among all vehicles plays a crucial role in determining consensus.The objective here is to explicitly identify necessary and/or suffi-cient conditions on the network topology such that consensus can be achieved under properly designed algorithms.It is often reasonable to consider the case when the network topology is deterministic under ideal communication chan-nels.Accordingly,main research on the consensus problem was conducted under a deterministicfixed/switching network topology.That is,the adjacency matrix A(t)is deterministic. Some other times,when considering random communication failures,random packet drops,and communication channel instabilities inherited in physical communication channels,it is necessary and important to study consensus problem in the stochastic setting where a network topology evolves according to some random distributions.That is,the adjacency matrix A(t)is stochastically evolving.In the deterministic setting,consensus is said to be achieved if all agents eventually reach agreement on a common state. In the stochastic setting,consensus is said to be achieved almost surely(respectively,in mean-square or in probability)if all agents reach agreement on a common state almost surely (respectively,in mean-square or with probability one).Note that the problem studied in the stochastic setting is slightly different from that studied in the deterministic setting due to the different assumptions in terms of the network topology. Consensus over a stochastic network topology was perhaps first studied in[27],where some sufficient conditions on the network topology were given to guarantee consensus with probability one for systems with single-integrator kinemat-ics(1),where the rate of convergence was also studied.Further results for consensus under a stochastic network topology were reported in[28]–[30],where research effort was conducted for systems with single-integrator kinematics[28],[29]or double-integrator dynamics[30].Consensus for single-integrator kine-matics under stochastic network topology has been exten-sively studied in particular,where some general conditions for almost-surely consensus was derived[29].Loosely speaking, almost-surely consensus for single-integrator kinematics can be achieved,i.e.,x i(t)−x j(t)→0almost surely,if and only if the expectation of the network topology,namely,the network topology associated with expectation E[A(t)],has a directed spanning tree.It is worth noting that the conditions are analogous to that in[9],[10],but in the stochastic setting. In view of the special structure of the closed-loop systems concerning consensus for single-integrator kinematics,basic properties of the stochastic matrices play a crucial role in the convergence analysis of the associated control algorithms. Consensus for double-integrator dynamics was studied in[30], where the switching network topology is assumed to be driven by a Bernoulli process,and it was shown that consensus can be achieved if the union of all the graphs has a directed spanning tree.Apparently,the requirement on the network topology for double-integrator dynamics is a special case of that for single-integrator kinematics due to the difference nature of thefinal states(constantfinal states for single-integrator kinematics and possible dynamicfinal states for double-integrator dynamics) caused by the substantial dynamical difference.It is still an open question as if some general conditions(corresponding to some specific algorithms)can be found for consensus with double-integrator dynamics.In addition to analyzing the conditions on the network topology such that consensus can be achieved,a special type of consensus algorithm,the so-called gossip algorithm[31],[32], has been used to achieve consensus in the stochastic setting. The gossip algorithm can always guarantee consensus almost surely if the available pairwise communication channels satisfy certain conditions(such as a connected graph).The way of network topology switching does not play any role in the consideration of consensus.The current study on consensus over stochastic network topologies has shown some interesting results regarding:(1) consensus algorithm design for various multi-agent systems,(2)conditions of the network topologies on consensus,and(3)effects of the stochastic network topologies on the con-vergence rate.Future research on this topic includes,but not limited to,the following two directions:(1)when the network topology itself is stochastic,how to determine the probability of reaching consensus almost surely?(2)compared with the deterministic network topology,what are the advantages and disadvantages of the stochastic network topology,regarding such as robustness and convergence rate?As is well known,disturbances and uncertainties often exist in networked systems,for example,channel noise,commu-nication noise,uncertainties in network parameters,etc.In addition to the stochastic network topologies discussed above, the effect of stochastic disturbances[33],[34]and uncertain-ties[35]on the consensus problem also needs investigation. Study has been mainly devoted to analyzing the performance of consensus algorithms subject to disturbances and to present-ing conditions on the uncertainties such that consensus can be achieved.In addition,another interesting direction in dealing with disturbances and uncertainties is to design distributed localfiltering algorithms so as to save energy and improve computational efficiency.Distributed localfiltering algorithms play an important role and are more effective than traditional centralizedfiltering algorithms for multi-agent systems.For example,in[36]–[38]some distributed Kalmanfilters are designed to implement data fusion.In[39],by analyzing consensus and pinning control in synchronization of complex networks,distributed consensusfiltering in sensor networks is addressed.Recently,Kalmanfiltering over a packet-dropping network is designed through a probabilistic approach[40]. Today,it remains a challenging problem to incorporate both dynamics of consensus and probabilistic(Kalman)filtering into a unified framework.plex Dynamical SystemsSince consensus is concerned with the behavior of a group of vehicles,it is natural to consider the system dynamics for practical vehicles in the study of the consensus problem. Although the study of consensus under various system dynam-ics is due to the existence of complex dynamics in practical systems,it is also interesting to observe that system dynamics play an important role in determining thefinal consensus state.For instance,the well-studied consensus of multi-agent systems with single-integrator kinematics often converges to a constantfinal value instead.However,consensus for double-integrator dynamics might admit a dynamicfinal value(i.e.,a time function).These important issues motivate the study of consensus under various system dynamics.As a direct extension of the study of the consensus prob-lem for systems with simple dynamics,for example,with single-integrator kinematics or double-integrator dynamics, consensus with general linear dynamics was also studied recently[41]–[43],where research is mainly devoted tofinding feedback control laws such that consensus(in terms of the output states)can be achieved for general linear systems˙x i=Ax i+Bu i,y i=Cx i,(3) where A,B,and C are constant matrices with compatible sizes.Apparently,the well-studied single-integrator kinematics and double-integrator dynamics are special cases of(3)for properly choosing A,B,and C.As a further extension,consensus for complex systems has also been extensively studied.Here,the term consensus for complex systems is used for the study of consensus problem when the system dynamics are nonlinear[44]–[48]or with nonlinear consensus algorithms[49],[50].Examples of the nonlinear system dynamics include:•Nonlinear oscillators[45].The dynamics are often as-sumed to be governed by the Kuramoto equation˙θi=ωi+Kstability.A well-studied consensus algorithm for(1)is given in(2),where it is now assumed that time delay exists.Two types of time delays,communication delay and input delay, have been considered in the munication delay accounts for the time for transmitting information from origin to destination.More precisely,if it takes time T ij for agent i to receive information from agent j,the closed-loop system of(1)using(2)under afixed network topology becomes˙x i(t)=nj=1a ij(t)[x j(t−T ij)−x i(t)].(7)An interpretation of(7)is that at time t,agent i receives information from agent j and uses data x j(t−T ij)instead of x j(t)due to the time delay.Note that agent i can get its own information instantly,therefore,input delay can be considered as the summation of computation time and execution time. More precisely,if the input delay for agent i is given by T p i, then the closed-loop system of(1)using(2)becomes˙x i(t)=nj=1a ij(t)[x j(t−T p i)−x i(t−T p i)].(8)Clearly,(7)refers to the case when only communication delay is considered while(8)refers to the case when only input delay is considered.It should be emphasized that both communication delay and input delay might be time-varying and they might co-exist at the same time.In addition to time delay,it is also important to consider packet drops in exchanging state information.Fortunately, consensus with packet drops can be considered as a special case of consensus with time delay,because re-sending packets after they were dropped can be easily done but just having time delay in the data transmission channels.Thus,the main problem involved in consensus with time delay is to study the effects of time delay on the convergence and performance of consensus,referred to as consensusabil-ity[52].Because time delay might affect the system stability,it is important to study under what conditions consensus can still be guaranteed even if time delay exists.In other words,can onefind conditions on the time delay such that consensus can be achieved?For this purpose,the effect of time delay on the consensusability of(1)using(2)was investigated.When there exists only(constant)input delay,a sufficient condition on the time delay to guarantee consensus under afixed undirected interaction graph is presented in[8].Specifically,an upper bound for the time delay is derived under which consensus can be achieved.This is a well-expected result because time delay normally degrades the system performance gradually but will not destroy the system stability unless the time delay is above a certain threshold.Further studies can be found in, e.g.,[53],[54],which demonstrate that for(1)using(2),the communication delay does not affect the consensusability but the input delay does.In a similar manner,consensus with time delay was studied for systems with different dynamics, where the dynamics(1)are replaced by other more complex ones,such as double-integrator dynamics[55],[56],complex networks[57],[58],rigid bodies[59],[60],and general nonlinear dynamics[61].In summary,the existing study of consensus with time delay mainly focuses on analyzing the stability of consensus algo-rithms with time delay for various types of system dynamics, including linear and nonlinear dynamics.Generally speaking, consensus with time delay for systems with nonlinear dynam-ics is more challenging.For most consensus algorithms with time delays,the main research question is to determine an upper bound of the time delay under which time delay does not affect the consensusability.For communication delay,it is possible to achieve consensus under a relatively large time delay threshold.A notable phenomenon in this case is that thefinal consensus state is constant.Considering both linear and nonlinear system dynamics in consensus,the main tools for stability analysis of the closed-loop systems include matrix theory[53],Lyapunov functions[57],frequency-domain ap-proach[54],passivity[58],and the contraction principle[62]. Although consensus with time delay has been studied extensively,it is often assumed that time delay is either constant or random.However,time delay itself might obey its own dynamics,which possibly depend on the communication distance,total computation load and computation capability, etc.Therefore,it is more suitable to represent the time delay as another system variable to be considered in the study of the consensus problem.In addition,it is also important to consider time delay and other physical constraints simultaneously in the study of the consensus problem.D.QuantizationQuantized consensus has been studied recently with motiva-tion from digital signal processing.Here,quantized consensus refers to consensus when the measurements are digital rather than analog therefore the information received by each agent is not continuous and might have been truncated due to digital finite precision constraints.Roughly speaking,for an analog signal s,a typical quantizer with an accuracy parameterδ, also referred to as quantization step size,is described by Q(s)=q(s,δ),where Q(s)is the quantized signal and q(·,·) is the associated quantization function.For instance[63],a quantizer rounding a signal s to its nearest integer can be expressed as Q(s)=n,if s∈[(n−1/2)δ,(n+1/2)δ],n∈Z, where Z denotes the integer set.Note that the types of quantizers might be different for different systems,hence Q(s) may differ for different systems.Due to the truncation of the signals received,consensus is now considered achieved if the maximal state difference is not larger than the accuracy level associated with the whole system.A notable feature for consensus with quantization is that the time to reach consensus is usuallyfinite.That is,it often takes afinite period of time for all agents’states to converge to an accuracy interval.Accordingly,the main research is to investigate the convergence time associated with the proposed consensus algorithm.Quantized consensus was probablyfirst studied in[63], where a quantized gossip algorithm was proposed and its convergence was analyzed.In particular,the bound of theconvergence time for a complete graph was shown to be poly-nomial in the network size.In[64],coding/decoding strate-gies were introduced to the quantized consensus algorithms, where it was shown that the convergence rate depends on the accuracy of the quantization but not the coding/decoding schemes.In[65],quantized consensus was studied via the gossip algorithm,with both lower and upper bounds of the expected convergence time in the worst case derived in terms of the principle submatrices of the Laplacian matrix.Further results regarding quantized consensus were reported in[66]–[68],where the main research was also on the convergence time for various proposed quantized consensus algorithms as well as the quantization effects on the convergence time.It is intuitively reasonable that the convergence time depends on both the quantization level and the network topology.It is then natural to ask if and how the quantization methods affect the convergence time.This is an important measure of the robustness of a quantized consensus algorithm(with respect to the quantization method).Note that it is interesting but also more challenging to study consensus for general linear/nonlinear systems with quantiza-tion.Because the difference between the truncated signal and the original signal is bounded,consensus with quantization can be considered as a special case of one without quantization when there exist bounded disturbances.Therefore,if consensus can be achieved for a group of vehicles in the absence of quantization,it might be intuitively correct to say that the differences among the states of all vehicles will be bounded if the quantization precision is small enough.However,it is still an open question to rigorously describe the quantization effects on consensus with general linear/nonlinear systems.E.RemarksIn summary,the existing research on the consensus problem has covered a number of physical properties for practical systems and control performance analysis.However,the study of the consensus problem covering multiple physical properties and/or control performance analysis has been largely ignored. In other words,two or more problems discussed in the above subsections might need to be taken into consideration simul-taneously when studying the consensus problem.In addition, consensus algorithms normally guarantee the agreement of a team of agents on some common states without taking group formation into consideration.To reflect many practical applications where a group of agents are normally required to form some preferred geometric structure,it is desirable to consider a task-oriented formation control problem for a group of mobile agents,which motivates the study of formation control presented in the next section.IV.F ORMATION C ONTROLCompared with the consensus problem where thefinal states of all agents typically reach a singleton,thefinal states of all agents can be more diversified under the formation control scenario.Indeed,formation control is more desirable in many practical applications such as formationflying,co-operative transportation,sensor networks,as well as combat intelligence,surveillance,and reconnaissance.In addition,theperformance of a team of agents working cooperatively oftenexceeds the simple integration of the performances of all individual agents.For its broad applications and advantages,formation control has been a very active research subject inthe control systems community,where a certain geometric pattern is aimed to form with or without a group reference.More precisely,the main objective of formation control is to coordinate a group of agents such that they can achievesome desired formation so that some tasks can befinished bythe collaboration of the agents.Generally speaking,formation control can be categorized according to the group reference.Formation control without a group reference,called formationproducing,refers to the algorithm design for a group of agents to reach some pre-desired geometric pattern in the absenceof a group reference,which can also be considered as the control objective.Formation control with a group reference,called formation tracking,refers to the same task but followingthe predesignated group reference.Due to the existence of the group reference,formation tracking is usually much morechallenging than formation producing and control algorithmsfor the latter might not be useful for the former.As of today, there are still many open questions in solving the formationtracking problem.The following part of the section reviews and discussesrecent research results and progress in formation control, including formation producing and formation tracking,mainlyaccomplished after2006.Several milestone results prior to 2006can be found in[69]–[71].A.Formation ProducingThe existing work in formation control aims at analyzingthe formation behavior under certain control laws,along with stability analysis.1)Matrix Theory Approach:Due to the nature of multi-agent systems,matrix theory has been frequently used in thestability analysis of their distributed coordination.Note that consensus input to each agent(see e.g.,(2))isessentially a weighted average of the differences between the states of the agent’s neighbors and its own.As an extensionof the consensus algorithms,some coupling matrices wereintroduced here to offset the corresponding control inputs by some angles[72],[73].For example,given(1),the controlinput(2)is revised as u i(t)= n j=1a ij(t)C[x j(t)−x i(t)], where C is a coupling matrix with compatible size.If x i∈R3, then C can be viewed as the3-D rotational matrix.The mainidea behind the revised algorithm is that the original controlinput for reaching consensus is now rotated by some angles. The closed-loop system can be expressed in a vector form, whose stability can be determined by studying the distribution of the eigenvalues of a certain transfer matrix.Main research work was conducted in[72],[73]to analyze the collective motions for systems with single-integrator kinematics and double-integrator dynamics,where the network topology,the damping gain,and C were shown to affect the collective motions.Analogously,the collective motions for a team of nonlinear self-propelling agents were shown to be affected by。
通信名词中英对照
名词委编号词条英文01.001通信communication01.002电信telecommunication01.003信息information01.004信息技术information technology IT01.005吉普曲线Jipp curve01.006模拟通信analog communication01.007数字通信digital communication01.008有线通信wire communication01.009无线通信wireless communication01.010无线电通信radio communication01.011电话通信telephone communication01.012数据通信data communication01.013图像通信image communication01.014静止图像通信still image communication static image communication 01.015全活动视频full-motion video01.016传真通信fax communication facsimile communication 01.017传真存储转发facsimile storage and forwarding01.018视像通信video communication01.019多媒体通信multimedia communication01.020自适应(的)adaptive01.021自适应通信adaptive communication01.022网(络)network01.023分级网(络)hierarchical network01.024对等网络peer-to-peer network01.025有源网络active network01.026无源网络passive network01.027网络拓扑network topology01.028星状网star network01.029树状网tree network01.030网状网mesh network01.031环状网ring network01.032重叠网overlay network01.033通信系统communication system01.034时变系统time-varying system01.035信源source01.036信宿sink01.037信道channel01.038通道path01.039波道channel01.040物理信道physical channel01.041逻辑信道logical channel01.042承载信道bearer channel01.043对称信道symmetrical channel01.044不对称信道asymmetrical channel01.045多用户信道multiuser channel01.046正向信道forward channel01.047反向信道backward channel01.048同信道co-channel01.049邻信道adjacent channel01.050信道间隔channel spacing01.051信道容量channel capacity01.052信号signal01.053模拟信号analog signal01.054数字信号digital signal01.055n值信号n-ary signal01.056随机信号stochastic signal01.057伪随机信号pseudo-random signal01.058对称信号symmetrical signal01.059突发信号burst01.060正交信号orthogonal signal01.061双极性信号bipolar signal01.062单极性信号unipolar signal01.063有用信号desired signal wanted signal 01.064无用信号undesired signal unwanted signal 01.065信号带宽signal bandwidth01.066波形waveform01.067载波carrier01.068副载波subcarrier01.069谐波harmonic01.070行波traveling wave01.071发送transmit send01.072接收receive01.073传送transport01.074传输transmit transmission 01.075传播propagation01.076传播常数propagation constant01.077传播媒介propagation medium01.078传播时延propagation delay01.079传播速度propagation velocity01.080传递函数transfer function01.081传递特性transfer characteristic01.082传输媒体transmission medium01.083传输控制transmission control01.084传输损耗transmission loss01.085传输因数transmission factor01.086传输线路transmission line01.087传输性能transmission performance01.088数据传输data transmission01.089突发传输burst transmission01.090并行传输parallel transmission01.091串行传输serial transmission01.092带间传输interband transmission01.093带内传输intraband transmission01.094基带传输baseband transmission01.095基带baseband01.096基带信号baseband signal01.097基带处理baseband processing01.098参考模型reference model01.099参考系统reference system01.100单工simplex01.101双工duplex01.102半双工half duplex01.103频分双工frequency-division duplex FDD01.104时分双工time-division duplex TDD01.105白噪声white noise01.106背景噪声background noise01.107大气噪声atmosphere noise01.108高斯噪声Gaussian noise01.109高斯白噪声white Gaussian noise WGN01.110加性高斯白噪声additive white Gaussian noise AWGN01.111互调噪声intermodulation noise01.112参考噪声reference noise01.113加权噪声weighted noise01.114量化噪声quantization noise01.115热噪声thermal noise01.116散粒噪声shot noise01.117闪烁噪声flicker noise01.118随机噪声random noiseSNR01.119信噪比signal-to-noise ratio signal to noi01.120噪声带宽noise bandwidth01.121干扰interference01.122干扰信号interfering signal01.123干涉图样interference pattern01.124同信道干扰co-channel interference01.125邻信道干扰adjacent channel interference01.126信道间干扰interchannel interference01.127符号间干扰intersymbol interference ISI01.128多址干扰multi-site interference01.129电磁干扰electromagnetic interference EMI01.130电磁兼容性electromagnetic compatibility EMC01.131抗干扰性immunity01.132载波干扰比carrier-to-interference ratio C/I01.133信号干扰比signal to interference ratio01.134率失真理论rate distortion theory01.135失真distortion01.136线性失真linear distortion01.137非线性失真nonlinear distortion01.138量化失真quantization distortion quantizing distortion 01.139过负荷失真overload distortion01.140互调失真intermodulation distortion01.141互调产物intermodulation product01.142不规则畸变fortuitous distortion01.143串扰crosstalk01.144信串比signal-to-crosstalk ratio01.145衰减串话比attenuation-to-crosstalk ratio ACR 01.146侧音sidetone01.147插入损耗insertion loss01.148回波echo01.149回波损耗return loss01.150时延delay01.151群时延group delay01.152包络时延envelop delay01.153窄带narrowband01.154阔带wideband01.155宽带broadband01.156子带subband01.157边带sideband01.158单边带single sideband SSB 01.159双边带double sideband DSB 01.160残留边带vestigial sideband VSB 01.161保护(频)带guard band01.162带内(的)in band01.163带外(的)out of band01.164数字化digitization01.165香农定律Shannon law01.166奈奎斯特定理Nyquist theorem01.167二进制(的)binary01.168二进制数字binary digit bit01.169二进制信道binary channel01.170八比特组octet01.171八进制(的)octal01.172波特baud01.173比特流bit stream01.174比特率bit rate01.175等效比特率equivalent bit rate01.176符号率symbol rate01.177比特差错bit error01.178比特差错率bit error ratio01.179块差错概率block error probability01.180比特滑动bit slip01.181比特间隔bit interval01.182比特交织bit interleaving01.183比特劫取bit robbing01.184比特填充bit stuffing01.185比特同步bit synchronization01.186比特图案bit pattern01.187同步(的)synchronous01.188不同步(的)non-synchronous01.189数字差错digital error01.190差错比特error bit01.191突发差错burst error01.192超时time-out01.193样值sample01.194抽样sampling01.195抽样时间sampling time01.196抽样率sampling rate01.197定时timing01.198定时抽取timing extraction01.199定时恢复timing recovery01.200定时信号timing signal01.201定时信息timing information01.202抖动jitter01.203抖动积累jitter accumulation01.204抖动限值jitter limit01.205量化quantization01.206均匀量化uniform quantization01.207非均匀量化non-uniform quantization non-uniform quantizing 01.208量化误差quantization error01.209开销overhead01.210内务信息housekeeping information01.211时域time domain01.212时隙time-slot TS01.213时基time base01.214时钟恢复clock recovery01.215时钟提取clock extraction01.216帧frame01.217帧结构frame structure01.218帧定位frame alignment01.219帧格式frame format01.220帧滑动frame slip01.221帧同步frame synchronization01.222帧失步out-of-frame OOF01.223帧丢失loss-of-frame01.224复帧multiframe01.225超帧superframe01.226成帧framing01.227成帧图案framing pattern01.228IP技术IP technology01.229分组packet01.230分组拆卸packet disassembly01.231分组装配packet assembly01.232异步转移模式asynchronous transfer mode ATM01.233同步转移模式synchronous transfer mode STMdynamic synchronous transfer mode DTM 01.234动态同步转移模式01.235对等操作peering01.236跳时time hopping01.237跳频frequency hopping FH 01.238扩频frequency spread01.239变频frequency conversion01.240上变频up conversion01.241下变频down conversion01.242并串转换parallel-to-serial conversioserializationdeserialization 01.243串并转换serial-to-parallel conversio01.244模数转换analog-to-digital conversion01.245数模转换digital-to-analog conversion01.246倒谱cepstrum01.247倒相phase inversion01.248极化polarization01.249加扰scrambling01.250解扰descrambling01.251检测detection01.252检错error detection01.253纠错error correcting01.254压缩compression01.255压扩companding01.256扩充expansion01.257压缩比compression ratio01.258数字线对增益digital pair gain DPG 01.259交织interleaving01.260聚合带宽aggregate bandwidth01.261均衡equalization01.262码速调整justification01.263脉冲整形pulse shaping01.264脉冲再生pulse shaping01.265奇偶检验parity check01.266滤波filtering01.267限带滤波band-limiting filtering01.268限幅limiting01.269信号变换signal conversion01.270信号再生signal regeneration01.271预加重pre-emphasis01.272预均衡pre-equalization01.273预校正pre-correction01.274模mode01.275TEM模TEM mode01.276TE模TE mode01.277TM模TM mode01.278相位phase01.279频段frequency band01.280频率frequency01.281高频high frequency HF 01.282甚高频very high frequency VHF 01.283特高频ultrahigh frequency UHF 01.284超高频super high frequency SHF 01.285音频audio frequency AF 01.286射频radio frequency01.287视频video01.288频率响应frequency response01.289频谱frequency spectrum01.290复频谱complex spectrum01.291频域frequency domain01.292谱宽spectral width01.293功率谱power spectrum01.294功率谱密度power spectrum density01.295半功率点half-power point01.296波段band01.297波长wavelength01.298长波long wave LW 01.299中波medium wave MW 01.300短波shortwave SW 01.301超短波ultrashort wave USW 01.302微波microwave MW 01.303导频信号pilot signal01.304参考导频reference pilot01.305单音tone01.306可靠性reliability01.307可用性availability01.308可用时间up time01.309可用状态up state01.310不可用性unavailability01.311不可用时间unavailability time01.312不可用状态down state01.313不能工作状态disabled state01.314冲激impulse01.315冲激响应impulse response01.316带宽距离积bandwidth-distance product01.317增益带宽积gain-bandwidth product01.318增益gain01.319自动增益控制automatic gain control AGC 01.320电平level01.321分贝decibel dB 01.322毫瓦分贝dBm01.323发射emission01.324辐射radiation01.325前馈feedforward01.326反馈feedback01.327正反馈positive feedback01.328负反馈negative feedback01.329反射波reflected wave01.330反射系数reflection coefficient01.331线性linearity01.332非线性nonlinearity01.333载波恢复carrier recovery01.334频偏frequency deviation01.335带宽bandwidth BW 01.336按需分配带宽bandwidth on demand01.337负荷load01.338净荷payload01.339接收机灵敏度receiver sensitivity01.340眼图eye diagram eye pattern 01.341容错fault tolerance01.342透明性transparencyconnectivity transparency01.343连通(性)透明性01.344业务透明性service transparency01.345应用透明性application transparency01.346过冲overshoot01.347过载点overload point01.348钳位clamping01.349门限threshold01.350耦合coupling01.351衰减attenuation01.352衰减系数attenuation coefficient01.353锁相phase locking01.354相干coherence01.355选通gating01.356选择性selectivity01.357争用contention01.358业务属性service attribute01.359连接connection01.360无连接connectionless01.361面向连接connection-oriented01.362多点到多点连接multipoint-to-multipoint connection 01.363多点到点连接multipoint-to-point connection01.364点到多点连接point-to-multipoint connection01.365点到点连接point-to-point connection01.366回程backhaul01.367接入access01.368交叉连接cross-connect01.369级联cascading01.370桥接bridging01.371互连interconnection01.372互联interconnection01.373互通interworking01.374互操作性interoperability01.375呼叫call01.376呼叫建立call set-up01.377主叫方calling party01.378被叫方called party01.379最终用户end user01.380编号numbering01.381寻址addressing01.382选路routing01.383动态选路dynamic routing01.384拥塞控制congestion control01.385链路link01.386上行链路uplink01.387下行链路downlink01.388长途线路long distance line01.389线路段line section01.390支路tributary01.391话路voice channel01.392节点node01.393端口port01.394接口interface01.395物理接口physical interface01.396接口速率interface rate01.397二端网络two-terminal network01.398四端网络four-terminal network01.399流stream01.400流量控制flow control01.401业务量控制traffic control01.402实时控制real-time control01.403调解功能mediation function01.404端到端性能end-to-end performance01.405端到端通信end-to-end communication01.406单方向unidirectional01.407双方向bidirectional01.408单向式one-way01.409双向式two-way01.410话音voice01.411语音speech01.412备用冗余standby redundancy01.413热备用hot standby01.414远程供电remote power-feeding01.415多址接入multiple access01.416频分多址frequency-division multiple access FDMA 01.417时分多址time-division multiple access TDMA 01.418空分多址space-division multiple access SDMA 01.419码分多址code-division multiple access CDMA 01.420时分码分多址time-division CDMA TD-CDMA 01.421波分多址wavelength-division multiple access WDMA01.422复用multiplexing01.423分用demultiplexing01.424频分复用frequency-division multiplexing FDM 01.425时分复用time-division multiplexing01.426码分复用code-division multiplexing01.427波分复用wavelength-division multiplexing01.428异类复用heterogeneous multiplex01.429统计复用statistical multiplexing01.430时分语音插空time-division speech interpolation01.431数字语音内插digital-speech interpolation DSI 01.432逆复用inverse multiplexing01.433数字复用体系digital multiplex hierarchy01.434代码code01.435码字code word01.436码块block01.437归零return to zero RZ 01.438不归零non-return to zero NRZ 01.439传号mark01.440空号space01.441编码coding encoding01.442解码decoding01.443编码率encoding law01.444 A 律A-law01.445μ 律μ-law01.446编码变换transcoding coding transform 01.447编码增益coding gain01.448信源编码source coding01.449信道编码channel coding01.450相关编码correlative coding01.451图像编码image coding01.452游程长度编码run-length coding RLC01.453差错控制编码error control coding ECC01.454差分编码differential encoding01.455均匀编码uniform encoding01.456非均匀编码non-uniform encoding01.457赫夫曼编码Huffman coding01.458群编码group coding01.459极性码polar code01.460双极性码bipolar coding01.461双相编码biphase coding01.462通用编码universal coding01.463预测编码predictive coding01.464线性预测编码linear prediction coding LPC 01.465BCH码BCH code01.466n元码n-ary code01.467部分响应编码partial response coding01.468成对不等性码paired-disparity code01.469定比码constant ratio code01.470二进制码binary codebinary coded decimal BCD 01.471二进制编码的十进01.472双二进码duobinary code01.473汉明码Hamming code01.474曼彻斯特码Manchester code01.475交织码interleaved code01.476检错码error-detection code01.477防错码error-protection code01.478纠错码error-correcting code01.479块码block code01.480平衡码balanced code01.481扰码scramble01.482冗余码redundant code01.483循环码cyclic code01.484调制modulation01.485解调demodulation01.486调制因数modulation factor01.487调制速率modulation rate01.488调制指数modulation index01.489调频frequency modulation FM01.490调幅amplitude modulation AM01.491调相phase modulation PM01.492鉴相phase discrimination01.493数字调制digital modulation01.494幅移调制amplitude-shift modulation01.495脉冲编码调制pulse-code modulation PCM 01.496差分调制differential modulation01.497差分脉码调制differential pulse-code modulation DPCMadaptive differential pulse-code modul ADPCM 01.498自适应差分脉码调01.499无载波幅相调制carrierless amplitude-and-phase modula CAPM 01.500网格编码调制trellis-coded modulation TCM 01.501波长调制wavelength modulation WM01.502换频调制frequency-exchange modulation01.503相干调制coherent modulation01.504增量调制delta modulation DM01.505倒相调制phase-inversion modulation01.506正交调制quadrature modulation01.507正交调幅quadrature amplitude modulation QAM 01.508正交频分复用orthogonal frequency-division multiple OFDM 01.509脉冲调制pulse modulation PM01.510脉幅调制pulse-amplitude modulation PAMPDM,PWM 01.511脉宽调制pulse-duration modulation pulse-width m01.512脉冲位置调制pulse-position modulation PPM 01.513脉冲相位调制pulse-phase modulation PPM 01.514频移键控frequency-shift keying FSK 01.515幅移键控amplitude-shift keying ASK01.516相移键控phase-shift keying PSK 01.517四相移相键控quaternary PSK QPSKminimum frequency-shift keying MSK 01.518最小相位频移键控01.519高斯频移键控Gaussian FSK GFSKGaussian MSK GMSK 01.520高斯最小频移键控01.521欠调制under modulation01.522过调制over modulation01.523互调intermodulation IM 01.524交叉调制cross modulation01.525相干解调coherent demodulation01.526包络解调envelop demodulation01.527包络检波envelop detection01.528平方律检波square-law detection01.529发送机transmitter01.530接收机receiver01.531调制器modulator01.532解调器demodulator01.533倍频器frequency multiplier01.534分频器frequency divider01.535放大器amplifier01.536参量放大器parametric amplifier01.537低噪声放大器low-noise amplifier01.538功率放大器power amplifier01.539选频放大器frequency-selective amplifier01.540带通滤波器bandpass filter01.541带阻滤波器bandstop filter01.542高通滤波器high-pass filter01.543低通滤波器low-pass filter01.544数字滤波器digital filter01.545电路circuit01.546二线电路two-wire circuit01.547四线电路four-wire circuit01.548汇接电路tandem circuit01.549触发电路trigger circuit01.550单稳态电路monostable circuit01.551判决电路decision circuit01.552时序电路sequential circuit01.553平衡电路balanced circuit01.554数字电路倍增digital circuit multiplication DCM 01.555多谐振荡器multivibrator01.556振荡器oscillator01.557缓冲存储器buffer memory01.558弹性缓冲器elastic buffer01.559高速缓冲存储器cache01.560回波抵消器echo canceller01.561回波抑制器echo suppressor01.562混合耦合器hybrid coupler01.563混合线圈hybrid transformer hybrid coil01.564混合网络hybrid network01.565混频器mixer converter01.566检波器detector01.567鉴幅器amplitude discriminator01.568鉴频器frequency discriminator01.569检相器phase detector01.570复用器multiplexer MUX 01.571异步复用器asynchronous multiplexer01.572分用器demultiplexer deMUX 01.573复用分用器muldex01.574编码器coder encoder01.575解码器decoder01.576编解码器codec01.577解扰码器descrambler01.578声码器voice coder vocoder01.579均衡器equalizer01.580耦合器coupler01.581环行器circulator01.582数字配线架digital distribution frame DDF 01.583衰减器attenuator01.584背板backplate01.585波导waveguide01.586带状线strip line01.587散射scattering01.588瑞利散射Rayleigh scattering01.589射束beam01.590分集diversity01.591主瓣main lobe01.592旁瓣side lobe01.593天线antenna01.594天馈线antenna feeder01.595天线方向图antenna pattern01.596天线合路器antenna combiner ACOM 01.597无源天线passive antenna01.598有源天线active antenna01.599捕获acquisition01.600有效辐射功率effective radiated power02.001电信网telecommunication network02.002信息网information network02.003信息基础设施information infrastructure02.004信息高速公路information superhighway02.005业务网service network02.006传输网transmission network02.007城市传输网metropolitan transmission network02.008电视传输网television transmission network02.009宽带网boradband network02.010城市宽带网metropolitan broadband network02.011传送网transport network02.012光同步传送网optical synchronous transport network 02.013中继网trunk network02.014转接网transmit network02.015终接网terminating network02.016核心网core network02.017主干网backbone network02.018分配网distribution network02.019公用网public network02.020专用网private network02.021虚拟专用网virtual private network VPN 02.022企业网enterprise network02.023电路交换网circuit-switched network02.024分组交换网packet-switched network02.025分级选路网hierarchical routing network02.026无级选路网nonhierarchical routing network02.027下一代网络next-generation network NGN 02.028电话网telephone network02.029本地电话网local telephone network02.030市内电话网urban telephone network02.031长途电话网toll telephone network02.032农村电话网rural telephone network02.033公用电话交换网public switched telephone network PSTN 02.034专用电话网private telephone network02.035移动电话网mobile telephone network02.036电话交换局telephone exchange02.037本地电话交换局local telephone exchange02.038长途电话交换局toll telephone exchange02.039汇接局tandem office02.040端局end office02.041电话网编号计划telephone network numbering plan02.042数据网data network02.043公用数据网public data network02.044专用数据网private data network02.045电路交换数据网circuit-switched data network CSDN02.046分组交换数据网packet-switched data network PSDNX.25 packet-switched data network02.047X.25分组交换数据02.048虚电路virtual circuit02.049永久虚电路permanent virtual circuit PVC02.050交换虚电路switched virtual circuit SVC02.051数据站data stationdata circuit terminal equipment DCE02.052数据电路终端设备02.053吞吐量throughput02.054数字数据网digital data network DDN02.055数据业务单元data service unit02.056帧中继网frame relay network02.057介入速率access rate AR02.058承诺信息速率committed information rate CIR02.059承诺突发量committed burst size BC02.060超额突发量excess burst size02.061计算机通信网computer communication network02.062人体域网body area network02.063个人域网personal area network02.064特别联网ad hoc networking02.065局域网local area network LAN02.066城域网metropolitan area network MAN02.067广域网wide area network WAN02.068存储(器)域网storage area network SAN02.069互联网internet02.070IP 网IP network02.071因特网Internet02.072内联网Intranet02.073外联网extranet02.074万维网world wide web WWW02.075泛在网ubiquitous network02.076以太网Ethernet02.077吉比特以太网gigabit Ethernet02.078面向连接网connection-oriented network CO network 02.079无连接网connectionless network CL network 02.080网络服务接入点network service access point NSAP02.081网间互通internetworkingdistributed queue dual bus DQDB02.082分布队列双重总线02.083弹性分组环resilient packet ring RPR02.084光纤分布式数据接fiber-distributed data interface FDDI02.085网桥bridge02.086网关gateway GW02.087核心路由器core router02.088边缘路由器edge router02.089边界路由器border router02.090网守gatekeeper GK02.091多点控制单元multipoint control unit MCU02.092网络运行中心network operation center NOC02.093网络信息中心network information center NIC02.094下一代因特网next-generation Internet NGI02.095网格grid02.096域domain02.097域名系统domain-name system DNS02.098自治系统autonomous system AS02.099因特网接入点point of presence POP02.100网络接入点network access point NAP02.101镜像站点mirror site02.102计算机电话集成computer telephony integration CTI02.103综合数字业务网integrated services digital network ISDN02.104综合数字网integrated digital network IDN02.105用户-网络接口user-network interface UNI02.106参考点reference point02.107参考配置reference configuration02.108基本速率接口basic rate interface BRI02.109基群速率接口primary rate interface PRI02.110 B 信道B-channel02.111 D 信道D-channelbroadband ISDN B-ISDN02.112宽带综合业务数字02.113异步转移模式网asynchronous transfer mode network ATM network02.114同步转移模式网synchronous transfer mode network02.115ATM 信元ATM cell02.116ATM 适配层ATM adaption layer AAL02.117虚信道virtual channel VC02.118虚通道virtual path VP02.119数据交换接口data exchange interface DXI02.120局域网仿真LAN emulation LANE02.121仿真局域网emulated LAN ELAN02.122专用的网间接口private network-to-network interface PNNI02.123有线电视网cable television network CATV network02.124头端head-end02.125用户驻地网customer premise network CPN02.126用户驻地设备customer premise equipment CPE02.127家庭网home network02.128家庭联网home networking02.129接入网access network AN02.130光纤接入网fiber-access network02.131混合光纤同轴电缆hybrid fiber/coax access network HFC access network 02.132无线接入网wireless access network02.133业务节点service node SN 02.134用户节点user node02.135业务节点接口service node interface SNI 02.136业务端口service port02.137用户端口user port02.138用户配线网subscriber distribution network02.139业务接入复用器service access multiplexer02.140远端机remote terminal RT 02.141局端机central office terminal02.142远程接入remote access02.143综合接入设备integrated access device IAD 02.144全业务网full-service network FSN 02.145网络适配器network adapter NA 02.146智能网intelligent network IN 02.147高级智能网advanced intelligent network AIN 02.148业务特征service feature SF 02.149能力集capability set CS 02.150业务逻辑service logic SL 02.151业务交换点service-switching point SSP 02.152业务控制点service-control point SCP 02.153业务数据点service data point SDP 02.154业务管理点service management point SMP 02.155业务管理接入点service management access point SMAP 02.156业务生成环境点service-creation environment point SCEP 02.157智能外设intelligent peripheral IP02.158功能实体functional entity FE03.001支撑网support network03.002信令signaling03.003信令网signaling network03.004信令系统signaling system03.005七号信令系统signaling system No.7SS7 03.006随路信令channel-associated signaling CAS 03.007共路信令common channel signaling CCS 03.008直联信令(方式)associated signalingnon-associated signaling03.009非直联信令(方式quasi-associated signaling03.010准直联信令(方式03.011信令点signaling point03.012信令转接点signaling transfer point03.013信令点编码signaling point coding03.014信令路由signaling route03.015信令链路signaling link03.016信令信息signaling information03.017同步网synchronization network synchronized network,synchronous network 03.018准同步网plesiochronous network03.019混合同步网hybrid synchronization network03.020非同步网non-synchronized network non-synchronous network03.021互同步网mutually synchronized network03.022主从同步master-slave03.023单端同步single-ended synchronization03.024时钟clock CK03.025基准时钟reference clock03.026主时钟master clock03.027本地时钟local clockbuilding-integrated timing supply BITS03.028大楼综合定时供给03.029时钟控制信号clock control signal03.030时钟频率clock frequency03.031世界时universal time UT03.032世界协调时universal tie coordinated UTC03.033同步信息synchronization information03.034同步节点synchronization node03.035同步链路synchronization link03.036网络管理network management03.037电信管理网telecommunication management network TMN03.038网元管理network element management03.039用户网络管理customer network management CNM03.040业务管理service management03.041事务管理business management03.042管理树management tree03.043管理对象managed object MO03.044管理应用功能management application function MAFtelecommunication information network TINA03.045电信信息网络体系common object request broker architect CORBA03.046公共对象请求代理03.047Q3协议Q3 Protocol04.001交换switching04.002模拟交换analog switching04.003数字交换digital switching04.004电路交换circuit switching04.005分组交换packet switching04.006报文交换message switching04.007空分交换space-division switching04.008时分交换time-division switching04.009频分交换frequency-division switching04.010时隙交换time-slot interchange TSI04.011波长交换wavelength switching04.012光交换photonic switching04.013软交换softswitching04.014光分组交换optical packet switching OPS 04.015光突发交换optical burst switching04.016异步数据交换机asynchronous data switch04.017多协议标签交换multi-protocol label switching MPLSgeneral multi-protocol label switching GMPLS 04.018通用多协议标签交04.019虚信道交换单元VC switch04.020虚通道交换单元VP switch04.021数字视频交互digital video interactive DVI 04.022帧中继frame relay04.023集中控制centralized control04.024分布(式)控制distributed control04.025存储程序控制stored-program control SPC 04.026分组装拆器packet assembler/disassembler PAD 04.027聚合器aggregatordigital crossconnected system DCS 04.028数字交叉连接系统04.029交换机switch04.030自动交换设备automatic switching equipment04.031专用小交换机private branch exchange PBX 04.032数字交换机digital exchange digital switch 04.033程控数字交换机SPC digital switch04.034汇接交换机tandem switch04.035局域网交换机LAN switch04.036路由器router04.037网桥路由器brouter04.038主干路由器backbone router04.039远端用户模块remote subscriber module04.040交换网(络)switching network04.041交换局exchange switching office 04.042交换中心switching center04.043数字交换局digital exchange04.044本地交换局local exchange local centralLE, LCO 04.045交换矩阵switching matrix04.046中央处理机central processor04.047交换级switching stage04.048集中器concentrator04.049集线器hub04.050信令网关signaling gateway04.051媒体网关media gateway04.052媒体网关控制器media gateway controller04.053总配线架main distribution frame04.054路由route04.055直达路由direct route04.056溢呼路由overflow route04.057逐段路由hop-by-hop route04.058选路策略routing policy04.059迂回路由alternative routing04.060多点接入multipoint access04.061半永久连接semi-permanent connection04.062交换连接switched connection04.063对称连接symmetric connection04.064信元cell04.065信元交换cell switching04.066业务量描述语traffic descriptor04.067峰值信元速率peak cell rate04.068持续信元速率sustained cell rate SRC 04.069允许信元速率allowed cell rate ACR 04.070恒定比特率constant bit rate CBR 04.071可变比特率variable bit rate VBR 04.072可用比特率available bit rate ABR 04.073未定比特率unspecified bit rate UBR 04.074信元时延变化cell delay variation CDV 04.075信元差错比cell error ratio CER 04.076信元丢失比cell loss ratio CLR 04.077信元误插率cell misinsertion rate CMR 04.078信元头cell header04.079逻辑数据链路logical data link04.080逻辑节点logical node04.081用户线(路)subscriber's line04.082用户引入线subscriber's drop line04.083本地环路local loop04.084呼叫跟踪call tracing04.085呼叫单音calling tone04.086拨号dialing04.087拨号连接dial-up connection04.088拨号因特网接入dial-up Internet access04.089国际前缀international prefix04.090国际号码international number04.091个人号码personal number04.092地址address04.093双音多频dual-tone multifrequency DTMF 04.094占线occupation04.095接入时延access delay04.096接入争用access contention04.097试呼call attempt04.098忙时busy hour04.099忙时试呼busy hour call attempts BHCA 04.100业务电路traffic circuit04.101出(局)outgoing04.102入(局)incoming04.103始发originating04.104终接terminating04.105转接transit。
具有非线性时滞项的分数阶混沌系统ADM求解与动力学分析
第60卷 第2期吉林大学学报(理学版)V o l .60 N o .2 2022年3月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )M a r 2022d o i :10.13413/j .c n k i .jd x b l x b .2021131具有非线性时滞项的分数阶混沌系统A D M 求解与动力学分析付海燕1,雷腾飞1,贺金满2,臧红岩1(1.齐鲁理工学院机电工程学院,济南250200;2.中原工学院理学院,郑州450007)摘要:根据分数阶L ü混沌系统,提出具有非线性时滞项的分数阶L ü混沌系统.首先,用A d o m i a n 分解算法(A D M )对分数阶L ü混沌系统进行数值求解;其次,用MA T L AB 软件绘制系统相轨迹图;最后,用仿真技术及分岔图㊁复杂度和相轨迹等动力学分析工具,分析系统参数对系统的影响.数值仿真结果表明,该系统具有丰富的动力学特性.关键词:分数阶;时滞;混沌;复杂度中图分类号:O 411 文献标志码:A 文章编号:1671-5489(2022)02-0432-07A D MS o l u t i o na n dD y n a m i cA n a l y s i s o f F r a c t i o n a l -O r d e r C h a o t i c S y s t e m w i t hN o n l i n e a rD e l a yF U H a i y a n 1,L E IT e n g f e i 1,H EJ i n m a n 2,Z A NGH o n g ya n 1(1.S c h o o l o f M e c h a n i c a l a n dE l e c t r i c a lE n g i n e e r i n g ,Q i l u I n s t i t u t e o f T e c h n o l o g y ,J i n a n 250200,C h i n a ;2.S c h o o l o f S c i e n c e ,Z h o n g y u a nU n i v e r s i t y o f T e c h n o l o g y ,Z h e n g z h o u 450007,C h i n a )Ab s t r ac t :W e p r o p o s ed a f r a c t i o n a l -o r de r L üc h a o t i c s y s t e m w i t hn o n l i n e a r d e l a y t e r ma c c o r d i n g t o t h ef r a c t i o n a l -o r d e rL üc h a o t i cs y s t e m.F i r s t l y ,t h e f r a c t i o n a l -o r d e rL üc h a o t i cs y s t e m w a sn u m e r i c a l l y s o l v e db y A d o m i a n -d e c o m p o s i t i o -m e t h o d (A D M ).S e c o n d l y ,t h e p h a s et r a j e c t o r y d i a g r a m o ft h e s y s t e m w a sd r a w n b y MA T L A Bs o f t w a r e .F i n a l l y ,b y u s i n g s i m u l a t i o nt e c h n o l o g y a n dd yn a m i c a n a l y s i s t o o l ss u c ha sb i f u r c a t i o nd i a g r a m ,c o m p l e x i t y a n d p h a s et r a j e c t o r y ,t h ee f f e c to fs y s t e m p a r a m e t e r s o n t h e s y s t e m w a s a n a l y z e d .T h en u m e r i c a l s i m u l a t i o nr e s u l t s s h o wt h a t t h es y s t e m h a s r i c hd y n a m i c c h a r a c t e r i s t i c s .K e y w o r d s :f r a c t i o n a l -o r d e r ;d e l a y ;c h a o s ;c o m p l e x i t y 收稿日期:2021-03-31.第一作者简介:付海燕(1982 ),女,汉族,硕士,副教授,从事忆阻计算和分数阶混沌系统的研究,E -m a i l :f u h y 413@126.c o m.通信作者简介:雷腾飞(1988 ),男,汉族,博士研究生,副教授,从事忆阻计算和分数阶系统的研究,E -m a i l :l e i t e n gf e i c a n h e @126.c o m.基金项目:国家自然科学基金青年基金(批准号:12102492)㊁山东省重大科技创新工程项目(批准号:2019J Z Z Y 010111)㊁山东省重点研发计划项目(批准号:2019G G X 104092)和山东省自然科学基金(批准号:Z R 2020K A 007;Z R 2017P A 008).自M a n d e l b r o t [1]在自然界中发现分维现象后,分数阶微积分已引起人们广泛关注.分数阶在量子力学㊁电磁学振荡㊁系统控制和材料力学等领域应用广泛[2],其中分数阶小波变换㊁分数阶F o u r i e r 变换与分数阶图像处理等技术可用于信号处理.对分数阶混沌系统的研究已取得较多成果[3-9].目前,分数阶算子主要有G r u n w a l d -L e t n o k o v (G -L )定义[10]㊁C a p u t o 定义和R i e m a n n -L i o u v i l l e (R -L )定义[11],其中C a pu t o 定义应用范围更广.L i 等[12]基于频域算法设计了分数阶混沌系统的动力学分析及L y a p u n o v 指数谱算法,由于频域算法通过阶数的L a p l a c e 变换得到,因此存在阶数无法更改的缺点;文献[13]用A d o m i a n 分解法(A D M )对非线性项进行迭代数值逼近,并通过MA T L A B 软件进行了仿真分析,A D M 运算速度较块,误差小,数值求解仿真可节省计算机资源;文献[14]基于同伦算法设计了分数阶混沌系统,并分析了分数阶混沌系统随参数和阶数变化的动力学特性,但均未考虑系统时滞特点;文献[15]用L Q G -P a d e 逼近合拍对汽车悬架时滞系统进行了分析和优化;文献[16]提出了基于时滞代换的自适应分散容错控制;文献[17]在分数阶混沌系统基础上增加了时滞项,并设计了系统的同步控制器,但未分析系统特性;文献[18]对整数阶时滞系统进行了同步控制,并将同步控制方法运用到通信加密中,实现了发送端与接收端的同步,但未研究分数阶系统.本文以具有非线性时滞项分数阶L ü混沌系统为研究对象,采用A D M 对系统非线性项进行分解,时滞项对应的分解项均为时滞项,分解后的结果用MA T L A B 软件仿真,并利用分岔图㊁复杂度和相轨迹等动力学工具分析系统参数对系统的影响.1 非线性时滞项分数阶L ü混沌系统文献[19]在L ü混沌系统的x y 项上添加了时滞,并将整数阶算子改为分数阶算子,提出了含有非线性时滞项分数阶L ü混沌系统的动力学方程d q x d t q =a (y -x ),d q y d t q =c y -x z ,d q z d t q =x (t -τ)y -b z ìîíïïïïïïï,(1)其中x ,y ,z 为系统的状态变量,a ,b ,c 为系统参数.令初始状态为x 0=x (t 0)=c 01,y 0=y (t 0)=c 02,z 0=z (t 0)=c 03ìîíïïïï,(2)根据A D M 和分数阶微积分基本性质可得c 11=a (c 02-c 01),c 12=c c 02-c 01c 03,c 13=c 01τc 02-b c 03ìîíïïïï,(3)c 21=a (c 12-c 11),c 22=c c 12-c 11c 03-c 01c 13,c 23=c 11τc 02+c 01τc 12-b c 13ìîíïïïï,(4)c 31=a (c 22-c 21),c 32=c c 22-c 21c 03-c 01c 23-2c 11c 13,c 33=c 21τc 02+c 01τc 22+2c 11τc 12-b c 23ìîíïïïï,(5)c 41=a (c 32-c 31),c 42=c c 32-c 31c 03-c 01c 33-3(c 11c 23+c 21c 13),c 43=c 31τc 02+c 01τc 32+3(c 11τc 22+c 21τc 12)-b c 33ìîíïïï,(6)c 51=a (c 42-c 41),c 52=c c 42-c 41c 03-c 01c 43-4(c 11c 33+c 31c 13)-6c 21c 23,c 53=c 41τc 02+c 01τc 42+4(c 11τc 32+c 31c 12)+6c 21τc 22-b c 43ìîíïïï,(7)c 61=a (c 52-c 51),c 62=c c 52-c 51c 03-c 01c 53-5(c 21c 33+c 31c 23)-10(c 11c 43+c 41c 13),c 63=c 51τc 02+c 01τc 52+5(c 21τc 32+c 31τc 32)+10(c 11τc 42+c 41τc 12)-b c 43ìîíïïï,(8)334 第2期 付海燕,等:具有非线性时滞项的分数阶混沌系统A D M 求解与动力学分析其中c j1τ=c j1(t-τ),若m=τh,则c j1τ=1-m+τæèçöø÷h c j1(t i-1-m)+m-τæèçöø÷h c j1(t i-m),t iɤm h,1-m+τæèçöø÷h c j1(t i-m)+m-τæèçöø÷h c j1(t i-m-1),t i>m hìîíïïïï.(9)由A D M可得系统(1)的数值解为x j(n)=ð6i=0c j i(t-t0)i q i!q i.(10)用MA T L A B软件对式(10)进行数值仿真,当a=30,b=2.93,c=22.2,q1=q2=q3=q=0.95,τ=0.02,步长h=0.01时,系统(1)的相轨迹如图1所示.由图1可见,系统(1)存在混沌吸引子.采用0-1测试验证x,y两个序列的混沌特性,结果如图2所示.图1系统(1)的相轨迹F i g.1P h a s e t r a j e c t o r y o f s y s t e m(1)图2系统(1)的0-1测试结果F i g.20-1t e s t r e s u l t s o f s y s t e m(1)2单参数变化系统的分岔图和复杂度为研究系统(1)的非线性动力学行为,用A D M分析系统(1)的时间序列.先用最大值法获取系统分岔图,再用时间序列的复杂度和熵分析系统的复杂度[20-21].由于系统仿真延时必须为步长的整数倍,因此延时为0.01~0.03即可出现混沌.434吉林大学学报(理学版)第60卷2.1 参数q 的变化当参数a =30,b =2.93,c =22.2,τ=0.02,q ɪ[0.7,1],步长为0.005时,分数阶阶数变化下系统(1)的分岔图与谱熵复杂度(S E )和C 0复杂度如图3所示.由图3可见:当q =0.7时,系统(1)出现混沌现象,即最小阶数;当q ɪ(0.7,0.73]时,非线性项分数阶时滞L ü系统分岔图为空白,这是由于该区间系统处于发散状态所致,由于系统处于发散状态时的数值解无限变大,因此无法计算该区间系统的复杂度,系统复杂度与分岔图一致;当q ɪ(0.73,1]时,该区间系统处于混沌状态,对应的系统复杂度S E /C 0数值较大;在系统进入混沌区域后,随着系统分数阶阶数q 变大,系统复杂度减小.在图像加密㊁通信保密㊁化工搅拌以及混沌理疗中,系统复杂度越高效果越好,在系统处于混沌下,通过图3(B )可得到复杂度最大时对应分数阶数的q 值.图3 参数q 变化时系统(1)的分岔图(A )与复杂度(B )F i g .3 B i f u r c a t i o nd i a g r a m (A )a n d c o m p l e x i t y (B )o f s y s t e m (1)w h e n p a r a m e t e r q c h a n g e s 2.2 参数a 的变化当参数b =2.93,c =22.2,q =0.95,τ=0.02,a ɪ[25,50]时,系统(1)的分岔图与复杂度如图4所示.由图4(A )可见:系统(1)是倍周期(P D B )分岔方式,由周期状态进入混沌状态;当a ɪ[25,27.9)ɣ(43,50]时,系统(1)处于周期状态,该区间对应的系统S E /C 0复杂度较小;当a ɪ[27.9,43]时,该区间系统(1)处于混沌状态,对应的系统S E 复杂度约为0.65,C 0复杂度约为0.45,复杂度数值相对较大.参数a 变化时系统(1)的相图如图5所示.由图5可见,当a 分别为28,28.7,27.5,44时,系统(1)分别为一周期㊁二周期㊁四周期和一周期.图4 参数a 变化时系统(1)的分岔图(A )与复杂度(B )F i g .4 B i f u r c a t i o nd i a g r a m (A )a n d c o m p l e x i t y (B )o f s y s t e m (1)w h e n p a r a m e t e r a c h a n g e s 2.3 参数b 的变化当参数a =30,c =22.2,τ=0.02,b ɪ[0,5]时,系统(1)的分岔图与复杂度如图6所示.由图6(A )可见:系统通过鞍结点分岔由周期状态进入混沌状态;当b ɪ(3.5,4]时,系统(1)处于周期状态,该区间对应系统S E 复杂度约为0.1,C 0复杂度约为0.02,复杂度数值相对较小;当b ɪ(0,3.5]时,系统处于混沌状态,系统的S E 复杂度约为0.6~0.7,C 0复杂度约为0.3~0.4,系统复杂度度数值相对较大.参数b 变化时系统(1)的相图如图7所示.由图7可见,当b 分别为4和4.5时,系统(1)分别为二周期和一周期.534 第2期 付海燕,等:具有非线性时滞项的分数阶混沌系统A D M 求解与动力学分析图5 参数a 变化时系统(1)的相图F i g .5 P h a s e d i a g r a m s o f s y s t e m (1)w h e n p a r a m e t e r a c h a n g e s 图6 参数b 变化时系统(1)的分岔图(A )与复杂度(B )F i g .6 B i f u r c a t i o nd i a g r a m (A )a n d c o m p l e x i t y (B )o f s y s t e m (1)w h e n p a r a m e t e r b c h a n g e s 图7 参数b 变化时系统(1)的相图F i g .7 P h a s e d i a g r a m s o f s y s t e m (1)w h e n p a r a m e t e r b c h a n g e s 3 双参数变化下的复杂度当参数a =30,b =2.93,τ=0.02,c ɪ[5,25]和q ɪ[0.6,1]时,系统(1)的复杂度如图8所示.由图8可见:复杂度高(颜色深)的区域集中于参数c 大且q 小的区域,若q 太小,则系统处于发散区域即空白处;在复杂度较高的区域,系统受阶数q 影响较大,参数c 和a 对系统的影响具有相似性,当634 吉林大学学报(理学版) 第60卷c ʈ20,q ʈ0.75时,系统出现最大复杂度,为系统应用于图像㊁声音以及视频等多媒体领域的保密通信提供了重要的参数选择依据.图8 参数c 和q 变化时系统(1)的复杂度F i g .8 C o m p l e x i t y o f s y s t e m (1)w h e n p a r a m e t e r c a n d q c h a n g e 综上,本文基于A D M ,通过系统的相轨迹图㊁分岔图和复杂度等数值仿真工具,分析了含有非线性时滞项L ü混沌系统的非线性特性,并在分数阶系统中增加了参数q ,采用MA T L A B 软件对参数q 进行仿真.结果表明,在一定范围内,系统的复杂度随分数阶的增大而减小,分数阶系统出现混沌现象的概率大于整数阶系统.参考文献[1] MA N D E L B R O T B B .T h e F r a c t a l G e o m e t r y o f N a t u r e [M ].N e w Y o r k :W H F r e e m a n a n d C o m p a n y,1982:1-460.[2] S U N H G ,Z HA N GY ,B A L E A N UD ,e t a l .A N e wC o l l e c t i o n o fR e a lW o r l dA p pl i c a t i o n s o f F r a c t i o n a l C a l c u l u s i nS c i e n c e a n d E n g i n e e r i n g [J ].C o mm u n i c a t i o n si n N o n l i n e a r S c i e n c e a n d N u m e r i c a l S i m u l a t i o n ,2018,64:213-231.[3] L UJG.N o n l i n e a rO b s e r v e rD e s i g nt oS y n c h r o n i z eF r a c t i o n a l -O r d e rC h a o t i cS y s t e m v i aaS c a l a rT r a n s m i t t e d S i g n a l [J ].P h ys i c aA ,2006,359:107-118.[4] 王震,孙卫.分数阶C h e n 混沌系统同步及M u l t i s i m 电路仿真[J ].计算机工程与科学,2012,34(1):187-192.(WA N GZ ,S U N W.T h eM u l t i s i m C i r c u i t S i m u l a t i o n a n d t h e S y n c h r o n i z a t i o n f o rF r a c t i o n a lO r d e rC h e nC h a o t i c S y s t e m s [J ].C o m p u t e rE n g i n e e r i n g a n dS c i e n c e ,2012,34(1):187-192.)[5] WU XJ .C h a o s i nt h eF r a c t i o n a lO r d e rU n i f i e dS y s t e m a n dI t sS y n c h r o n i z a t i o n [J ].C h i n e s eP h ys i c s ,2007,16(7):392-401.[6] 崔力,欧青立,徐兰霞.分数阶L o r e n z 超混沌系统及其电路仿真[J ].电子测量技术,2010,33(5):13-16.(C U IL ,O U Q L ,X U L X.F r a c t i o n a l o fH y p e r c h a o t i cL o r e n zS y s t e ma n dC i r c u i tS i m u l a t i o n [J ].E l e c t r o n i c M e a s u r e m e n tT e c h n o l o g y ,2010,33(5):13-16.)[7] 闵富红,余杨,葛曹君.超混沌分数阶L ü系统电路实验与追踪控制[J ].物理学报,2009,58(3):1456-1461.(M I NF H ,Y U Y ,G ECJ .C i r c u i t I m p l e m e n t a t i o n a n dT r a c k i n g C o n t r o l o f t h eF r a c t i o n a l -O r d e rH y p e r -C h a o t i c L üS y s t e m [J ].A c t aP h y s i c aS i n i c a ,2009,58(3):1456-1461.)[8] 刘崇新.一个超混沌系统及其分数阶电路仿真实验[J ].物理学报,2007,56(12):6865-6873.(L I U C X.AH y p e r c h a o t i c S y s t e m a n d I t s F r a c t i o n a l O r d e r C i r c u i t S i m u l a t i o n [J ].A c t a P h ys i c a S i n i c a ,2007,56(12):6865-6873.)[9] 赵品栋,张晓丹.一类分数阶混沌系统的研究[J ].物理学报,2008,57(5):2791-2798.(Z HA O P D ,Z HA N G XD.S t u d y o na C l a s so fC h a o t i cS y s t e m s w i t h F r a c t i o n a lO r d e r [J ].A c t a P h ys i c aS i n i c a ,2008,57(5):2791-2798.)[10] P O D L U B N YI .F r a c t i o n a lD i f f e r e n t i a l E qu a t i o n s [M ].N e w Y o r k :A c a d e m i cP r e s s ,1999:1-340.[11] L ICP ,D E N G W H.R e m a r k s o nF r a c t i o n sD e r i v a t i v e s [J ].A p p l i e dM a t h e m a t i c s a n dC o m pu t a t i o n ,2007,187:777-784.734 第2期 付海燕,等:具有非线性时滞项的分数阶混沌系统A D M 求解与动力学分析834吉林大学学报(理学版)第60卷[12] L ICP,G O N GZQ,Q I A N DL,e t a l.O n t h eB o u n do f t h eL y a p u n o vE x p o n e n t s f o r t h eF r a c t i o n a lD i f f e r e n t i a lS y s t e m s[J].C h a o s,2010,20(1):261-300.[13]陈恒,雷腾飞,尹劲松.基于A d o m i a n分解法的分数阶Lü混沌系统的动力学分析与数字实现[J].河南师范大学学报(自然科学版),2016,44(6):78-83.(C H E N H,L E IT F,Y I NJS.D y n a m i c sA n a l y s i sa n d D i g i t a lI m p l e m e n t a t i o no fF r a c t i o n-O r d e rLüC h a o t i cS y s t e m sB a s e do nA d o m i a nD e c o m p o s i t i o n[J].J o u r n a l o fH e n a nN o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n),2016,44(6):78-83.)[14] H ESB,S U N K H,WA N G H H.D y n a m i c s a n dS y n c h r o n i z a t i o no f C o n f o r m a b l eF r a c t i o n a l-O r d e rH y p e r c h a o t i cS y s t e m sU s i n g t h e H o m o t o p y A n a l y s i s M e t h o d[J].C o mm u n i c a t i o n si n N o n l i n e a r S c i e n c e a n d N u m e r i c a l S i m u l a t i o n,2019,73:146-164.[15]陈士安,祖广浩,姚明,等.磁流变半主动悬架时滞的L Q G-P a d e逼近合拍控制[J].机械设计与制造,2017(7):14-18.(C H E NSA,Z U G H,Y A O M,e t a l.L Q G-P a d eA p p r o x i m a t i o nR h y t h m i cC o n t r o l f o rT i m eD e l a y o fM a g n e t o-R h e o l o g i c a l S e m i-a c t i v eS u s p e n s i o n[J].M a c h i n e r y D e s i g n&M a n u f a c t u r e,2017(7):14-18.)[16]郭涛,梁燕军.不确定非线性时滞关联大系统自适应分散容错控制[J].自动化学报,2017,43(3):486-492.(G U O T,L I A N G YJ.A d a p t i v eD e c e n t r a l i z e dF a u l t-T o l e r a n tC o n t r o l f o rU n c e r t a i nN o n l i n e a rT i m e-D e l a y L a r g eS c a l eS y s t e m s[J].A c t aA u t o m a t i c aS i n i c a,2017,43(3):486-492.)[17]梁松,张云雷,吴然超.分数阶多时滞混沌系统的同步[J].河南师范大学学报(自然科学版),2015,43(2):25-29.(L I A N GS,Z HA N G YL,WU RC.S y n c h r o n i z a t i o no fF r a c t i o n a lO r d e rC h a o t i cS y s t e m sw i t h M u l t i p l e T i m eD e l a y s[J].J o u r n a l o fH e n a nN o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n),2015,43(2):25-29.) [18]谢英慧,孙增圻.时滞C h e n混沌系统的指数同步及在保密通信中的应用[J].控制理论与应用,2010,27(2):133-137.(X I EY H,S U NZQ.E x p o n e n t i a l S y n c h r o n i z a t i o n f o rD e l a y e dC h e nC h a o t i cS y s t e m s a n dA p p l i c a t i o n s t oS e c u r eC o mm u n i c a t i o n s[J].C o n t r o lT h e o r y&A p p l i c a t i o n s,2010,27(2):133-137.)[19] LÜJH,C H E NGR.A N e wC h a o t i cA t t r a c t o r C o i n e d[J].I n t e r n a t i o n a l J o u r n a l o f B i f u r c a t i o n a n dC h a o s,2002,12(3):659-661.[20] S T A N I C Z E N K OPPA,L E ECF,J O N E SNS.R a p i d l y D e t e c t i n g D i s o r d e r i nR h y t h m i cB i o l o g i c a l S i g n a l s:AS p e c t r a l E n t r o p y M e a s u r et oI d e n t i f y C a r d i a c A r r h y t h m i a s[J].P h y s i c a lR e v i e w E,2009,79(1):011915-1-011915-10.[21] S H E N E H,C A I Z J,G U F J.M a t h e m a t i c a l F o u n d a t i o n o fa N e w C o m p l e x i t y M e a s u r e[J].A p p l i e dM a t h e m a t i c s a n d M e c h a n i c s,2005,26(9):1188-1196.(责任编辑:王健)。
EEG和fNIRS同步研究揭示年龄和神经反馈对运动想象信号的影响
EEG和fNIRS同步研究揭示年龄和神经反馈对运动想象信号的影响来自德国奥尔登堡大学心理学部的Catharina Zich等人在Neurobiology of Aging杂志上发表了一项基于EEG和fNIRS同步采集的研究,旨在探究年龄和神经反馈这两种因素对运动想象信号的影响。
结果发现:在运动想象时,年轻人的ERD变化和HbR变化相对于老年人表现出更明显的单侧化;神经反馈可以增强运动想象期间的EEG和fNIRS信号。
摘要众所周知,中风会造成较为严重的运动损伤。
运动想象(MI)被认为是治疗中风的一种有效手段,尤其是将其与神经反馈(NF)相结合,效果会更喜人。
但是先前的研究大多以年轻被试作为研究对象,鲜有研究关注两种方法在老年人身上结合使用的效果。
近日,德国奥尔登堡大学的神经心理学实验室研究团队在Neurobiology of Aging上发表了一篇对于年轻群体和老年群体的对照研究,该研究旨在探讨年龄是否会对MI过程中同时进行基于EEG的NF的神经关联、运动执行功能过程中的神经关联产生影响。
本研究使用多模态成像的研究方法,同时采用EEG的事件相关去同步化指标(ERD%)和fNIRS的脱氧血红蛋白(HbR)浓度变化与含氧血红蛋白(HbO)浓度变化指标,比较年轻组(平均年龄24.4years)和老年组(平均年龄62.6岁)的在这三个观测值上的差异。
结果发现在MI阶段,年轻组的ERD%和HbR变化值比老年组表现出更明显的单侧化。
但是年龄的单侧化作用对运动执行功能影响不显著。
结果还发现,不论是在年轻组还是老年组,实验任务中信号在有基于EEG的NF比没有NF的条件下出现更显著的增强。
运动想象(MI)指的是对特定运动的心理表征而没有可观察到的外显运动行为,它被视为中风患者运动康复的一种有效的物理辅助治疗手段。
MI依赖于动作理论的神经刺激,该理论认为对同一种运动的想象和执行会激活相同的神经网络。
神经网络的激活程度随着MI类型的不同而具有差异。
基于神经网络的多特征轻度认知功能障碍检测模型
第 62 卷第 6 期2023 年11 月Vol.62 No.6Nov.2023中山大学学报(自然科学版)(中英文)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI基于神经网络的多特征轻度认知功能障碍检测模型*王欣1,陈泽森21. 中山大学外国语学院,广东广州 5102752. 中山大学航空航天学院,广东深圳 518107摘要:轻度认知功能障是介于正常衰老和老年痴呆之间的一种中间状态,是老年痴呆诊疗的关键阶段。
因此,针对潜在MCI老年人群进行早期检测和干预,有望延缓语言认知障碍及老年痴呆的发生。
本文利用患者在语言学表现变化明显的特点,提出了一种基于神经网络的多特征轻度认知障碍检测模型。
在提取自然会话中的语言学特征的基础上,融合LDA模型的T-W矩阵与受试者资料等多特征信息,形成TextCNN网络的输入张量,构建基于语言学特征的神经网络检测模型。
该模型在DementiaBank数据集上达到了0.93的准确率、1.00的灵敏度、0.8的特异度和0.9的精度,有效提高了利用自然会话对老年语言认知障碍检测的准确率。
关键词:轻度认知功能障碍;自然会话;神经网络模型;多特征分析;会话分析中图分类号:H030 文献标志码:A 文章编号:2097 - 0137(2023)06 - 0107 - 09A neural network-based multi-feature detection model formild cognitive impairmentWANG Xin1, CHEN Zesen21. School of Foreign Languages, Sun Yat-sen University, Guangzhou 510275, China2. School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, ChinaAbstract:Mild cognitive impairment (MCI) is both an intermediate state between normal aging and Alzheimer's disease and the key stage in the diagnosis of Alzheimer's disease. Therefore, early detec‐tion and treatment for potential elderly can delay the occurrence of dementia. In this study, a neural net‐work-based multi-feature detection model for mild cognitive impairment was proposed, which exploits the characteristics of patients with obvious changes in linguistic performance. The model is based on ex‐tracting the linguistic features in natural speech and integrating the T-W matrix of the LDA model with the subject data and other multi-feature information as the input tensor of the TextCNN network. It achieved an accuracy of 0.93, a sensitivity of 1.00, a specificity of 0.8, and a precision of 0.9 on the DementiaBank dataset, which effectively improved the accuracy of cognitive impairment detection in the elderly by using natural speech.Key words:mild cognitive impairment; natural speech; neural network model; multi-feature detec‐tion; speech analysisDOI:10.13471/ki.acta.snus.2023B049*收稿日期:2023 − 07 − 18 录用日期:2023 − 07 − 30 网络首发日期:2023 − 09 − 21基金项目:教育部人文社会科学基金(22YJCZH179);中国科协科技智库青年人才计划(20220615ZZ07110400);中央高校基本科研业务费重点培育项目(23ptpy32)作者简介:王欣(1991年生),女;研究方向:应用语言学;E-mail:******************第 62 卷中山大学学报(自然科学版)(中英文)轻度认知障碍(MCI,mild cognitive impair‐ment)是一种神经系统慢性退行性疾病,也是阿尔茨海默病(AD,Alzheimer's disease)的早期关键阶段。
脑信号分析算法与非侵入式脑机接口研究
证明材料:代表性论文2、3、7,8
曾获得国家科技奖情况:无
第
(三)
完成人
姓名
吴畏
完成单位
华南理工大学
工作单位
华南理工大学
项目的主要实施者之一,负责研究方案和数据分析。对创新性成果2、4做出重要贡献,提出了脑电分类的迭代空域频域模式学习算法,提出了脑电节律信号分析的分层贝叶斯模型,提出了事件相关电位分析的混合效应贝叶斯模型,是代表性论文7的第一作者和通讯作者。
发表SCI期刊论文78篇,其中IEEE汇刊长文30篇,其发表论文的权威期刊包括Proc. of the IEEE,IEEE Trans. PAMI,美国科学院院刊(IF: 9.7),Cerebral Cortex (IF:8.3),IEEE Sig. Proc. Magazine, NeuroImage等,被授权6个发明专利。8篇代表性论文被SCI和ISTP他引约1000次,Google学术网引用约2000次。得到了众多IEEE Fellows、IEEE 汇刊主编或副主编、院士(美国科学院/工程院、德国科学院等)等国际权威学者的正面引用。项目成果丰富了脑机接口理论与关键技术,促进了其应用。第一完成人获得了教育部长江学者特聘教授等称号。
针刺对意识障碍患者皮质作用的脑电非线性分析
定 程度 上 反 映针 刺 对 皮 质 的 即 刻 作 用 针刺 ; 电描记术 ; 线性动力学析 : 脑 非 意识 障 碍 文 献标 识码 :A 文 章 编 号 :0 l l4 ( 0 ) l— 9 l 0 l0 — 2 22 7一 10 7 一 3 0
关键词
中图 分 类 号 :2 66R 4 ,4 3 R 4 . 7 1 9 , R
p t n sYUAN Yig W U Do g u DU J b o,t a JChn s J u n l f a e t/ i n, ny , u a e l/ ie e o r a o Re a mt t n h b a o M e iie 2 0 , 2 i dcn , 0 7 2
( 1:9 1 9 3 1 ) 7 — 7
A s a t Obet e o ivsgt te e eto c p ntr o rt c r jci :T net a h f c fau u c e n ban ot fu cnc u ai t y osrig v i e f u e o e
p t ns w r k p a a ii g t n . Co c u i n Ac p n t r mih p o ie s me a a i g f c o t e ai t e e e e t t rsn r d e nl o : s u u cu e g t r vd o w k n e f t n h e u c n c o s a in s b t h e fc o c p n t r o t e e e e r i ta ma r sr k mih b l t d E n o s i u p t t e , u t e f t f a u u cu e n h s v r b an r u o t e e o g t e i e , EG mi ma ip a o mme it f c f a u u cu e o r i o e . y d s ly s me i d a e e f t o c p n t r n b an c r x e t
211167161_儿童失神性癫痫的静息态fMRI_指标一致性分析
[ 中图分类号] R 445 2 [ 文献标识码] A [ 文章编号] 1674 - 3806(2023)04 - 0322 - 08
doi:10. 3969 / j. issn. 1674 - 3806. 2023. 04. 04
prefrontal lobe, compared with the normal control group, the CAE child patient group had the increased coupling degrees
in CAE including GCD_in⁃GCD_int, RSLA⁃GCD_in and GCD_int⁃RSLA,and the decreased coupling degrees inclu⁃
who underwent resting⁃state fMRI examinations were collected as the normal control group. The 11 resting⁃state fMRI
indices for each subject were calculated, including ALFF, fALFF, ReHo, FCD, Long FCD, Local FCD, GCD_in,
Copyright©博看网. All Rights Reserved.
· 323·
中国临床新医学 2023 年 4 月 第 16 卷 第 4 期
Concordance among resting⁃state fMRI indices in childhood absence epilepsy YU Qian⁃qian, LIU Gao⁃ping, XU
长期颅内EEG记录的同步变化可用于癫痫发作前期的识别
长期颅内EEG记录的同步变化可用于癫痫发作前期的识别Le Van Quyen M.;Soss J.;Navarro V.;夏峰【期刊名称】《世界核心医学期刊文摘:神经病学分册》【年(卷),期】2005(000)007【摘要】Objective: There is accumulated evidence that mesial temporallobe seizures are preceded by a preictal transition that evolves over minutes to hours. In the pr esent study, we investigated these possible preictal changes in long-term intra cranial recordings of five patients by a measure of phase synchronization.In ord er to clearly distinguish preictal changes from all the other interictal states, we developed an automatic extraction of representative patterns of interictal s ynchronization activity.This reference library was used to classify the successi ve synchronization patterns of long-term recordings into groups of similar patt erns. Altered states of brain synchronization were identified as deviating from patterns in the reference library and were evaluated relative to the times of se izure onset in terms of sensitivity and specificity. Methods: A phase-locking m easure was estimated using a sliding window analysis on 15 frequency bands (2 Hz steps between 0 and 30 Hz), for all pairs of EEG channels in the epileptogenic temporal lobe (14-20 channels), over the entire data sets (total analyzed durat ion 305 h). The preictal identification encompasses three basic stages: (1) a pr eprocessing stage involving the determination of a reference library of characte risticinterictal synchronization patterns using a K-means algorithm, and the identification of discriminant variables different iating interictal from preictal states, (2) a classification stage of the synchr onization pattern via a minimum Mahalanobis distance to the reference patterns,a s well as detection of outliers, (3) an evaluation stage of the sensitivity and specificity of the detection by receiver-operating characteristic curves. Resul ts: In most of the cases (36 of 52 seizures, i.e. 70%), a specific state of bra in synchronization can be observed several hours before the actual seizure. The changes involved both increases and decreases of the synchronization levels, occ urring mostly within the 4-15 Hz frequency band, and were often localized near the primary epileptogenic zone. Conclusions: The analysis of phase synchronizati on offers a way to distinguish between a preictal state and normal interictal ac tivity. These findings suggest that brain synchronizations are preictally altere d in the epileptogenic temporal lobe, inducing a pathological state of higher su sceptibility for seizure activity. Significance: Phase synchronization is capabl e of extracting information from the EEG that allow the definition of a preictal state. Although the proposed analysis does not constitute genuine seizure antic ipation, these changes in neuronal synchronization may provide helpful informati on for prospective seizure warning.【总页数】2页(P15-16)【作者】Le Van Quyen M.;Soss J.;Navarro V.;夏峰【作者单位】Lab. Neurosci. Cognitives I. LENA Hop. de laPitie-Salpetriere 75651 Paris France【正文语种】中文【中图分类】R742.1【相关文献】1.发作期同步视频EEG与EMG联合监测在鉴别点头癫痫发作类型中的意义 [J], 吴英;李晶;崔志堂;贾红娟;滕晔;曹丽华;刘兴洲;2.脑皮层及深部EEG监测下手术治疗颅内占位继发性癫痫 [J], 王宏;李浒;陈国志;冒海燕;袁文林3.儿童皮层性局灶性癫痫发作的定量可视化发作性硬膜下EEG变化 [J], AsanoE.;Muzik O.;Shah A.;王英鹏4.颅内记录癫痫发作时EEG的不稳定性:统计学和动态分析 [J], Dikanev T.;Smirnov D.;Wennberg R.;袁海峰5.颞叶癫痫颅内EEG记录定位与海马病理变化的关系 [J], 汤国太;佴玉;潘树茂因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nonlinear synchronization in EEG and whole-head MEGrecordings of healthy subjectsCornelis J.Stam1,Michael.Breakspear2,Anne-Marie van Cappellen van Walsum3,Bob W. van Dijk31Department of clinical neurophysiology,VU University Medical Centre2Brain Dynamics centre,Westmead Hospital,Sydney,Australia and School of Physics, University of Sydney,Australia.3MEG centre,VU University Medical CentreAddress for correspondence:C.J.Stam,Department of Clinical Neurophysiology,VU University Medical Centre,P.O.Box7057 1007MB Amsterdamphone:+31(20)4440727fax:+31(20)4444816e-mail:cj.stam@Vumc.nlshort title:nonlinear synchronization in EEG/MEGAbstractObjectiveAccording to Friston,brain dynamics can be modelled as a large ensemble of coupled nonlinear dynamical subsystems with unstable and transient dynamics.In the present study two predictions from this model(the existence of nonlinear synchronization between macroscopic field potentials and itinerant nonlinear dynamics)were investigated.The dependence of nonlinearity on the method of measuring brain activity(EEG versus MEG) was also investigated.MethodsDataset I consisted of10MEG recordings in10healthy subjects.Dataset II consisted of simultaneously recorded MEG(126channels)and EEG(19channels)in5healthy subjects. Nonlinear coupling was assessed with the synchronization likelihood and dynamic itinerancy with the synchronization entropy.Significance was assessed with surrogate data testing (ensembles of20surrogates).ResultsSignificant nonlinear synchronization was detected in14out of15subjects.The nonlinear dynamics were associated with a high index of itinerant behaviour.Nonlinear interdependence was significantly more apparent in MEG data than EEG.ConclusionSynchronous oscillations in MEG and EEG recordings contain a significant nonlinear component which exhibits characteristics of unstable and itinerant behaviour.These findings are in line with Friston’s proposal that the brain can be conceived as a large ensemble of coupled nonlinear dynamical subsystems with labile and unstable dynamics.The spatial scale and physical properties of MEG acquisition may increase the sensitivity of the data to underlying nonlinear structure.Key wordsMEG EEG synchronization non-linear oscillations dynamics entropy1.IntroductionSynchronization of activity within and between neuronal networks in the brain is currently the focus of intense research efforts(Fries et al.,1997;Bhattacharya2001;Tallon-Baudry et al., 2001;Varela et al.,2001).This interest is due to the idea that synchronous oscillations may be an important mechanism by which specialized cortical and subcortical regions integrate their activity into a functional whole(Singer,2001).Thus they are an important candidate solution for the so called“binding problem”.Synchronous oscillations in different frequency bands may correspond to different functions and different spatial scales of integration(Basar et al., 2001).By and large,low frequencies in particular in the theta band,are hypothesized to play a role in coupling between distant brain regions(for instance prefrontal and post rolandic association cortices)whereas high frequencies are thought to be more important for short ranges interactions(von Stein and Sarnthein,2000).The importance of synchronous gamma band activity for object representation was first reported in animal studies in the early nineties(Eckhorn et al.,1988;Gray et al.,1989;Engel et al.,1991).This basic result has now been replicated many times,also in awake human subjects using EEG(Rodriguez et al.,1999;Tallon Baudry et al.,2001).Synchronous gamma oscillations may provide a mechanism whereby complex objects are temporarily represented in working memory(Bertrand and Tallon-Baudry,2000)or a way to bind brain regions involved in associative learning into Hebbian cell assemblies(Miltner et al.,1999).Local synchronization in the theta band has been associated with encoding and retrieval of information in episodic memory(Klimesch et al.,1994;Klimesch1996;1999;Burgess and Gruzelier1997;2000).Theta band coupling between frontal and post rolandic cortical regions has been reported during the retention interval of visual working memory tasks(Anokhin et al.,1999;Sarnthein et al.,1998;Stam2000)as well as during an N-back working memory task(Ross and Segalowitz,2000).According to Anokhin et al.stronger theta band coherence is associated with a higher intelligence(Anokhin et al.,1999).Local desynchronization in the lower alpha band has been associated with attentional processes and upper alpha band desynchronization with semantic memory in a number of studies by Klimesch and coworkers (reviewed in Klimesch1996;1999).The functional meaning of long distance coupling in the alpha band is less clear.Despite the fact that the importance of synchronous oscillations at different spatial scales and in different frequency bands for integrating brain activity is increasingly accepted,several questions need to be addressed.These questions relate to the origin and nature of synchronous oscillations and their relationship to optimal information processing in the brain.We discuss two ambitious models of brain dynamics that have attempted to deal with these issues.In a series of papers,Edelman and co workers stressed that optimal information processing in the brain requires a delicate balance between local specialization and global integration/ synchronization of brain activity(Tononi et al.,1994;1998a,b).They introduced a measure, the neural complexity or C N,which quantifies how optimal the balance between local specialization and global integration is(Tononi et al.,1994).This measure was applied to fMRI data in Friston et al.(1995).According to the model of Tononi et al the neural complexity is expected to decrease during states of lower consciousness and impaired brain function.However increased rather than decreased neural complexity has been reported during epileptic seizures and in Alzheimer’s dementia,which is in disagreement with the predictions of the model(Van Putten and Stam,2001;Van Cappellen van Walsum et al., submitted).A different concept of integrative brain dynamics has been put forward by Friston(2000a,b, c).Friston models the brain as a large number of interacting nonlinear dynamical systems. The elementary states of such a system are designated“neural transients”,which can bethought of as brief spatiotemporal patterns of synchronous brain activity.Friston stresses the ’labile’nature of normal brain dynamics,which consists of a rapid succession of neural transients and itinerant jumping between different marginally stable dynamical states(The terms‘nonstationary’,‘transient,’unstable’and‘itinerant’may have different meanings in different contexts.To clarify the present use of these terms,we include a short list of definitions in Appendix I.).In this model interactions between subsystems can be linear(as in the case of synchronous oscillations)as well as nonlinear.Nonlinear interactions between brain regions may reflect the unstable nature of brain dynamics including the changing modulatory influences of one frequency band on another(‘asynchronous coupling’).In a modeling and experimental study Breakspear(2002)demonstrated how interactions between coupled nonlinear dynamical systems can give rise to some of the phenomena described by Friston,and how such activity may contribute to the varying waveform of the alpha rhythm. In the model of Friston optimal information processing is not obtained by a static balance between specialization and integration,but rather by unstable,nonlinear dynamics with rapidly fluctuating interactions(Friston2000b).The model of Friston thus predicts that at least some of the interactions between brain regions will be nonlinear and transient.In contrast,the theory of Tononi et al.is compatable with linear and stationary dynamics. There is some empirical evidence for(nonlinear)coupling between theta and gamma frequencies in EEG(Schack et al.,2001;2002)and MEG recordings(Friston,2000a). Several studies have attempted to demonstrate nonlinear dynamics in normal EEG recordings. In most cases nonlinearity was studied with measures that characterize local dynamics (Pritchard et al.,1995;Stam et al.,1999)or global dynamics(Rombouts et al.,1995).The convergent finding of these studies is that nonlinear activity is present in scalp EEG data,at strong levels of significance,albeit only weakly and/or intermittently.Recent investigations of nonlinear interdependence between scalp EEG channels similarly report robust statistical evidence for nonlinear effects in approximately5%of windowed epochs(Breakspear and Terry2002).There is some evidence for nonlinear structure in MEG data(Kowalik et al., 2001)but nonlinear interactions between channels have not been studied.To test the predictions of Friston a measure is needed that is sensitive to nonlinear interdependencies between time series and can deal with transient dynamics.Measures based upon the concept of generalized synchronization seem to be suited for this goal(Rulkov et al., 1995;Schiff et al.,1996;Le van Quyen et al.,1998).In the pathological case of epileptic seizure activity nonlinear coupling between EEG signals has been demonstrated with this class of synchronization measures(Le van Quyen et al.,1998).Recently we introduced the synchronization likelihood,which is also based upon the concept of generalized synchronization but avoids some of the shortcoming of the other methods(Stam and van Dijk, 2002).The synchronization likelihood characterizes linear as well as nonlinear synchronization between time series and can be computed with a high temporal resolution. From the synchronization likelihood a second measure,the synchronization entropy,can be computed.This measures the spatio-temporal variability of synchronization,and thus reflects the presence of unstable dynamics.The present study was undertaken to further explore the nature of synchronous activity in the brain and to test some of the predictions of the model proposed by Friston(2000a,b,c).Three questions were addressed:(1)Is there evidence for nonlinear interactions between different neural networks in the brain?(2)If there is evidence for nonlinearity,to what extent is this related to transient or itinerant brain dynamics with rapidly fluctuating synchronization levels?3.Are MEG recordings better able to detect nonlinear interactions than EEG recordings?To examine these questions MEGs and EEGs recorded in10elderly and5young healthy subjects during a no–task,eyes–closed condition were studied with the synchronization likelihood and the synchronization entropy.The presence of nonlinearstructure was tested statistically with phase randomised,multichannel surrogate data(Prichard and Theiler,1994;Rombouts et al.,1995).2.Methods2.1.SubjectsIn this study recordings of two groups of healthy subjects were investigated.The first group (dataset I)consisted of ten healthy subjects(control subjects taken from a study on MEG changes in Alzheimer’s disease).Mean age was64.5year(range:53-74year);3subjects were male.Three subjects were left handed(1male).All subjects disavowed a history of cognitive dysfunction,and were screened for signs of cognitive decline/dementia.The protocol of this study was approved by the medical ethical Review Board of the Vrije Universiteit Medical Centre.All subjects or their relatives gave written informed consent after the nature of the procedure was explained..The second group(dataset II)consisted of five healthy subjects,all co workers of the MEG centre at the VU University medical centre(2females;mean age30.5 year,range25–38year;all right-handed).2.2.MEG and EEG recordingsMagnetic fields were recorded while subjects were seated inside a magnetically shielded room (Vacuumschmelze GmbH,Germany)using a151channel whole-head MEG system(CTF Systems Inc.,Canada).A third order software gradient(Vrba,1996)was used with a recording passband of0.25-125Hz.Fields were measured during a no-task,eyes-closed condition.At the beginning and conclusion of each recording the head position relative to the co-ordinate system of the helmet was recorded by leading small AC currents through3head position coils attached to the left and right pre-auricular points and the nasion on the subjects head.Head position changes during a recording condition up to approximately1.5cm were accepted.In the case of dataset I,16second artefact-free epochs(sample frequency250Hz;4096 samples)of MEG data were chosen for analysis.Of the original151channels34were excluded either because their locations were too inferior for the registration of neural activity or because they contained significant artefact in at least one of the subjects.This exclusion criteria permitted analysis of the same117channels in all subjects.The MEG data were band-pass filtered off line between0.5and40Hz.For dataset II,the MEG was recorded with the same system and the same settings as dataset I,except for a higher sample frequency of625Hz.These recordings were down-sampled to 313Hz and artefact-free epochs of13seconds(4096samples)were selected.In the case of dataset II a larger number of channels(126)were artefact free in all subjects and hence were included in the analysis.For this dataset,EEG data were acquired simultaneously with the MEG.The EEG was recorded with Ag/AgCl electrodes from the following19positions of the international10-20system:Fp1,F7,F3,T7,C3,P7,P3,)P1,Fz,Cz,Pz,Fp2,F8,F4,T8,C4, P8,P4,O2.The EEG was re-referenced off line against an average reference electrode and digitally filtered between0.5and40Hz.The EEG epoch used for analysis coincided exactly with the MEG epoch.For both datasets a subset of19MEG channels corresponding roughly with the location of the19EEG electrodes was also analysed.2.3.Synchronization likelihoodThe synchronization likelihood is a measure of the degree of synchronization or coupling between two or more time series(Stam and van Dijk,2002).The measure is based upon the concept of generalized synchronization as introduced by Rulkov et al.(1995).Generalized synchronization is said to exist between two dynamical systems X and Y if there exists acontinuous one-to-one function F such that the state of one of the systems (the response system)is mapped onto the state of the other system (the driver system):Y =F(X)(Rulkov et al,1995,Kocarev and Parlitz 1996,Abarbanel et al.1996).To make this concept operational we assume time series of measurements x i and y i (i =1…N)recorded from X and Y.From these time series we reconstruct vectors in the state space of X and Y with the method of time-delay embedding (Takens,1981):X i =(x i ,x i+l ,x i+2l ,…,x i+(m-1)l )[1]Here l is the time lag and m the embedding dimension.In a similar way vectors Y i are reconstructed from the time series y i .Now if the state of Y is a function of the state of X,each X i will be associated with a unique Y i .Also if two vectors X i and X j are almost identical (the distance between X i and X j is very small)then,because of the continuity of F,Y i and Y j will also be almost identical.The synchronization likelihood expresses the chance that this will be the case.For this we need a small critical distance εx ,such that when the distance between X i and X j is smaller than εx ,X will be considered to be in the same state at times i and j.εx is chosen such that the likelihood of two randomly chosen vectors from X (or Y)will be closer than εx (or εy )equals a small fixed number p ref .It is important to note that p ref is the same for X and Y,but εx need not be equal to εy .Now the synchronization likelihood S between X and Y at time i is defined as follows:∑−−=j j i y i Y Y N S )('1εϑ[2]Here we only sum over those j satisfying w1<│i-j │<w2,and │X i -X j │<εx .N’is number of j fulfilling these conditions.The value of w1is the Theiler correction for autocorrelation and w2is used to create a window (w1<w2<N)to sharpen the time resolution of S i (Theiler 1986).When no synchronization exists between X and Y,S i will be equal to the likelihood that random vectors Y i and Y j are closer than εy ;thus S i =p ref .In the case of complete synchronization S i =1.Intermediate coupling is reflected by p ref <S i <1.Because p ref is the same for X and Y,the synchronization likelihood is the same considering either X or Y as the driver system.Choosing p ref the same for X and Y is necessary to ensure that thesynchronization likelihood is not biased by the degrees of freedom or dimension of either X or Y (Stam and van Dijk,2002).From the basic definition of S i as given in [2]we can derive several variations by averaging over time,space or both.First,we can consider the average synchronization likelihood between X and two or more other systems.If we denote the index channel by k,S ki is the average synchronization between channel k and all other channel at time i.By averaging over all time points i we obtain S k .Averaging over all channels k gives S,the overall level of synchronization in a multi channel epoch.In the present study the synchronization likelihood was computed with the followingparameter settings:l =10;m =10;w1=100(product of lag and embedding dimension);w2=400;p ref =0.05.The length of w1and w2is expressed in samples.There is no unique way to choose these parameters;however the present parameter choices proved to be effective in distinguishing between MEG recordings of healthy controls and Alzheimer patients.2.4.Synchronization entropyThe strength of synchronization in an array of coupled nonlinear oscillators may be highly heterogeneous in both temporal and spatial domains,even if the coupling strength is constant.For example,in the setting of weakly coupled chaotic oscillators,the presence of intermittent bursts of desynchronization due to unstable periodic orbits has been the focus of much research (Pikovsky and Grassberger 1991,Rulkov and Suschik 1997,Heagy et al.1998,Pecora 1998).This phenomenon results in an irregular pattern of phase synchrony over a wide range of temporal scales (Breakspear 2002).To characterize the variability of thesynchronization likelihood S k,i as a function of space as well as time we introduce the synchronization entropy H s .The synchronization entropy is computed in a similar way as the Shannon information entropy.First the interval between p ref and 1is equipartitioned into N bins (in the present study we used N =100).Then we define p i as the likelihood that the value of S k,i will fall in the i th bin.The entropy H s is then obtained as,∑=−=N i ii s p p H 1log [3]When a logarithm with a base of 2is used,the unit of H s is bits.If there is no spatial and temporal variability in S k,i then p i will equal 1for one value of i,and 0for all other i.In this case the entropy H s will be zero.If there is maximal variability S k,i can take all values in the interval between p ref and 1with equal probability and p i will equal 1/N for all i .The entropy H s will then take its maximal value of log(N).2.5.Multivariate surrogate data testingThe basic idea of surrogate data testing is to compute a nonlinear statistic Q from the original data,as well as from an ensemble of surrogate data (Theiler et al.1992).The surrogate data have the same linear properties (in particular power spectrum and coherence)as the original data,but are otherwise random.This permits testing of the null hypothesis H 0that the original data are linearly filtered gaussian noise.This hypothesis is tested by computing a z-score:surrogates surrogates D S Q Q z ..)(−=[4]The z-score expresses the number of standard deviations Q is away from the mean Qs of the surrogate data.Assuming that Q is approximately normally distributed in the surrogate data ensemble,the null hypothesis can be rejected at the p<0.05level when z >1.96.In the present study we used two different nonlinear test statistics:the synchronization likelihood S(averaged over time and over all channels)and the synchronization entropy Hs.In both cases an ensemble of 20surrogate data was constructed from each original epoch.The surrogate data were constructed by applying a Fourier transform to all MEG channels,adding a random number to the phase of each frequency,and then applying an inverse Fourier transform.For each frequency the same random number was added to the phases of the different channels,thereby preserving exactly the coherence between the channels (Prichard and Theiler,1994;Rombouts et al.,1995).3.ResultsThe results of surrogate data testing using either the averaged synchronization likelihood S or the synchronization entropy Hs as a test statistic are shown in table I for dataset I and in table II for dataset II.In all ten subjects of dataset I the mean synchronization of the surrogate data was lower then the synchronization of the original data.The corresponding z-scores show that the null hypothesis could be rejected in all subjects,with z-scores ranging from2.770to9.163for the analysis with117channels and from2.794to9.404for the analysis with a subset of19 channels.Consequently,there is strong statistical evidence in all subjects that the interdependence in the MEG data cannot be fully described by a stationary linear/stochastic model,and hence may contain nonlinear parable results were obtained with the synchronization entropy Hs as test statistic:the mean entropy of the surrogate data was lower than the entropy of the original data in nine of the ten subjects for the analysis with117 channels,and in all subjects for the analysis with19channels.The null hypothesis could be rejected in seven out of the ten subjects for the analysis with117channels and in four out of ten for the analysis with19channels.Results of a more detailed analysis of a single representative subject(C98-16EC)are shown in figures1and2.In both figures,surrogate data testing was done using the S k(average synchronization likelihood between channel k and all other channels)of all117channels as test statistics.Figure1shows S k of the original MEG data(upper curve)and S k of each of the 20surrogate data sets.It is clear that for most channels S k of the original data lies outside and above the range of S k of the surrogate data.Note that this graphical comparison allows direct (non-parametric)testing of the null hypothesis.The parametric test(based on estimation of the Z-scores)is only necessary when adjusting for repeated comparisons.Figure2shows the significance of the difference between S k of the original data and S k of the surrogate data, expressed as z-scores.For a significance level of p<0.05the null hypothesis could be rejected in22out of117channels,which is much higher than expected by chance(6out of117).In the five subjects of dataset II the mean synchronization of the surrogate data was also lower than the synchronization of the original data,although the difference was only marginal in the case of subject JD.This pattern was obvious for the126channel and19channel MEG data as well as for the EEG data.In each subject the absolute synchronization likelihood was always higher in the EEG data than the MEG data,and higher for the126channel than for the 19channel analysis.However,the opposite is true of the z-scores.In the case of the126 channel MEG data the z-scores ranged from1.22to7.59(mean5.19)and the null hypothesis could be rejected in four of the five subjects.For the19channel MEG data z-scores ranged from0.317to6.195and the null hypothesis could be rejected in the same four subjects as for the126channel analysis.In the case of the EEG z-scores ranged from1.19to4.27(mean 3.15),and the null hypothesis could be rejected in the same four subjects who showed significant results with MEG.In these four subjects the z-scores for the126channel MEG data were always much higher than the z-scores for the corresponding EEG data;for the19 channel MEG this was the case in three of the four subjects(Fig.3).The apparent contradiction(between the synchronization strengths and the z-scores)is a result of the synchronization measures for the surrogate data sets,which were on average much higher in the EEG data.In all subjects of dataset II the synchronization entropy was lower for surrogate data compared to original data,and for MEG(for126as well as19channel analysis)compared to EEG.For MEG z-scores ranged from1.377to5.083for the126channels analysis,and from 1.339to3.043for the19channels analysis.The null hypothesis could be rejected in three out of five subjects at the95%confidence level for the126channel analysis and in four out offive subjects for the19channels analysis.For EEG the z-scores ranged from0.718to3.014, and the null hypothesis could be rejected in two of the five subjects.Mean results for MEG recordings in dataset I(bottom row of table I)and dataset II(second last row in table II)were generally in good agreement.The younger subjects of dataset II had a slightly higher synchronization and synchronization entropy,and slightly lower mean z-scores.For the subjects in dataset I the z-scores for the117and the19channel analysis were strongly correlated,although the19channel z-scores were slightly lower.This is illustrated in figure4.4.DiscussionThe present study was performed to answer the following three questions:(1)Is there evidence for significant nonlinear synchronization between brain regions in healthy subjects during a no-task eyes-closed state?(2)Does this nonlinearity have a stable or an unstable, itinerant character?(3)Are MEG recordings more suitable to detect nonlinear synchronization than EEG recordings?We will consider the results of the present study in relation to these three questions.The results obtained with both data sets strongly suggest the presence of nonlinear synchronization in multichannel MEG data ing the averaged synchronization S as a test statistic the null hypothesis that all couplings can be described with a linear model could be rejected in all ten subjects of dataset I,and in four of five subjects in data set II.The level of significance was usually very high,with z-scores>4(corresponding with p<0.00005)in 12of15subjects.We interpret these results as supporting the presence of nonlinear coupling across multiple cortical regions in healthy human subjects.However,to assess the validity of these results,three issues deserve mentioning:(1)the use of a parametric statistical test to reject the null hypothesis;(2)the possibility of type I statistical errors;(3)the reliability of phase-randomized surrogate data.First,we compared the S of the original MEG data with the mean S obtained from an ensemble of20surrogate data(S-surr)for each subject by computing a z-score;the z-score quantifies the distance between S and S-surr in terms of the standard deviations of S-surr.The tacit assumption is that S-surr is approximately normally distributed,which may not be true. In theory it is possible that a non gaussian distribution of S in the surrogate data ensemble will bias the test of the null hypothesis.To avoid this bias the null hypothesis can also be tested in a non-parametric manner(Rapp et al.,1994).When S of the original data is larger then S of each of the20surrogate data,then for a one-sided test the null hypothesis can be rejected at the p<0.05level.In figure1we show that this is the case for one representative subject:S k of the original data is always higher then S k of the surrogate data.In conclusion we think it is unlikely that our results are due to non gaussian distribution of S in the surrogate data sets. Also,assessment of very high significances with non parametric tests is problematic because it would require ensembles of hundreds to thousands of surrogate data for each subject which is computationally prohibitive.Second,to test the null hypothesis we used an alpha level of p<0.05in each individual subject.Because15subjects were investigated there is a chance of type I statistical error (spurious rejections of the null hypothesis due to multiple independent tests).However,if we apply a rigorous Bonferroni correction,and use an adjusted significance level of p<0.05/15or p<0.0033(z>2.12)the conclusions remain the same and we can still reject the null hypothesis in14of15subjects.Finally,the reliability of the procedure to generate surrogate data needs to be considered. Ideally surrogate data preserve only but exactly the linear properties(power spectrum; coherence)of the original data.Any differences between original and surrogate data can then be ascribed to nonlinear properties of the original data.Problems can arise in two circumstances:(1)When the amplitude distribution of the original data is non-gaussian;(2) When the basic frequencies of the original data do not match exactly with the frequencies of the discrete Fourier transform.The latter problem typically arises with(nearly)periodic time series In the case of univariate time series these problems are well known,and procedures to avoid them have been proposed(Theiler et al.,1992;Stam et al.,1998).Whether the same problems also affect surrogate data testing for nonlinear couplings between time series in multivariate data sets is unknown.To address this problem we considered a simple model system,consisting of two identical time series(4096samples).Each time series was the。