电路与电子技术 第4章:交流电路分析(新)
《电路与电子技术》课后习题参考答案
《电路与电子技术》课后习题参考答案《电路与电子技术》课后习题参考答案填空1.电压 2.都(发生)变化 3.iA=53sin(314t+30°)A 4.220V 5.增大 6.单向导电性单选题11.C 12.A 13.D 14.B 15.B 16.C 17.D 18.D 19.C 20.D21. 变压器绕组在流过电流的时候,由于其自身存在电阻的原因,将消耗一部分电能,并转换成热量。
因为大部分变压器绕组都采用铜线绕制而成,所以将绕组的损耗成为变压器铜损,也叫空载损耗。
铁损包括磁性材料的磁滞损耗和涡流损耗以及剩余损耗. 当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体(由硅钢片制成),在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡流”。
这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。
由“涡流”所产生的损耗我们称为“铁损”。
22. 集成运算放大器(简称运放)实际上是一个具有高增益、低漂移,带有深度负反馈并直接耦合的直流放大器,因为它最初主要用作模拟计算机的运算放大器,故称为集成运算放大器。
其性能优良,广泛地应用于运算、测量、控制以及信号的产生、处理和变换等领域。
运算放大器本身不具备计算功能,只有在外部网络配合下才能实现各种运算。
23. 反馈又称回馈,指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程。
反馈可分为负反馈和正反馈。
负反馈使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;24.射极输出器的输入阻抗高,输出阻抗低,常用来当做多级放大器输入级和低电压、高电流的输出级,或者叫做隔离级。
由于射极输出器的电压动态范围较小,且电压放大倍数略小于1,这是其固有的缺点,但因其有较高的输入阻抗,可有效减轻信号源的负担。
在大电流输出电路中,比如功率放大器中,由于它的高的电流放大倍数,所以其功率放大倍数还是较高的,通常被直接用来推动负载。
电力电子技术第4章 交流-交流变换电路习题和答案K
一、选择题4-1、( C )变流电路是把一种形式的交流变换成另一种形式交流电的电路。
A、交流-直流B、直流-交流C、交流-交流D、直流-直流4-2、只改变电压、电流大小或对电路的通断进行控制,而不改变频率的电路称为( A)电路。
A、交流电力控制B、变频C、交流调压电路D、交流调功电路4-3、在单相交-交变频电路中,要改变输出频率,必须改变两组变流器的( A);要改变输出电压的幅值,就要改变变流电路工作时的( D )。
A、切换频率B、幅值C、电压D、控制角4-4、交-交变频电路是把电网频率的交流电直接变换成(C)频率的交流电的变流电路。
属于(A)变频电路。
A、直接B、间接C、可调D、不可调4-5、电网频率为50Hz时,对6脉波三相桥式电路而言,交-交变频电路的输出上限频率约为( B )。
A、10HzB、20HzC、50HzD、100Hz二、填空题4-1、变频电路有()变频电路和()变频电路等形式。
交-交;交-直-交4-2、单相交流调压电路中,由于波形正负半波(),所以不含直流分量和()谐波。
对称;偶次4-3、交流调功电路和交流调压电路的电路形式( ),控制方式( )。
相同;不同4-4、两组变流电路在工作时采取直流可逆调速系统中的()工作方式,即一组变流电路工作时,封锁另一组变流电路的触发脉冲。
无环流4-5、三相交-交变频电路的接线方式有公共交流母线进线方式和()联结方式。
输出星形三、问答题4-1、交流调压电路和交流调功电路有什么区别?二者各运用于什么样的负载?为什么?答:交流调压电路和交流调功电路的电路形式完全相同,二者的区别在于控制方式不同。
交流调压电路是在交流电源的每个周期对输出电压波形进行控制。
而交流调功电路是将负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数与断开周波数的比值来调节负载所消耗的平均功率。
交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。
《电力电子技术》第四章习题解答
(THD)给出了电流Ud的畸变率:THD=112.28%。
说明:因为输出电流电压直流成分极大,所以谐波含量极高。
(3)交流侧电流Is傅里叶分析如下:
从图中可知:
(THD)给出了电流Ud的畸变率:THD=42.95%。
说明:因为输入电流电压漏感影响不大,所以谐波含量较低。
各次谐波列表如下:
(1) 做出uC1,uC2和ud的波形;
(2) 做出△Ud (p-p)与Ud的比值;
(3) 如果单相全控桥式整流电路参数如下:Us= 240V,Ls= 1mH,Cd= 500F,负载用10A的直流电源表示,计算第(2)问,并与之前的计算结果相比较。
解:
图4.27双重电压整流电路
由FFT分析谐波列表可知,电流的基波分量相位θi=-27.1°、θv=0°。故其相位差为
Φ=-27.1˚(滞后),所以DPF=cosΦ=0.89。
傅里叶分析可知电流的基波分量Is1=120.6A
由谐波畸变率公式
可求得:Is=131.25A,故
4-15.图4.20所示的单相整流电路中,Us= 120V,频率50Hz,Ls= 2mH,Rs= 0.4,负载的瞬时功率pd(t) = 1kW。利用Pspice软件,做出Cd分别为:200、500、1000和1500F时,THD、DPF、PF以及换相压降△Ud(p-p)的函数曲线,并分析直流侧滤波电容的作用。
∴
(4)
∴ 的值与上问相同。
4-6.图4.6(b)是简化的单相整流电路,其中Ls= 0,直流侧电流恒为Id,计算出每个二极管所通过电流的平均值和有效值,以及与Id的比值。
解:如下图所示,
∵Ls= 0时,每个二极管换流是瞬时完成的
∴每个二极管导通时间为一半的周期,而且是上下桥臂有且只有一个导通。
电力电子技术-第4章逆变电路讲解
4.3.1 单相电流型逆变电路
(1)电路结构
①用④阻载② 载来③ 联 确4并抗电个采 电限应C谐联,压桥和用 压制称振谐谐波臂L负 (晶之式振波形、,载 呈闸为逆回在接R每换 容管容变构路负近桥相性开性电成对载正臂方)通小路并基上弦晶式。时失(联波产波闸,的谐但谐呈生。管要d负最振高的i各/求载d终电阻压t串负)负路抗降联载载,,很一电仍故对小个流略此谐,电略显电波因抗超容路呈此器前性称低负L于T,为,负并准
4.2.1 单相电压型逆变电路
1、 半桥逆变电路 •(1)电路图
+
Ud 2
Ud
Ud 2
-
V1 io R L
u o V 2
a)
VD 1
VD 2
*导电方式:
V1,V2信号互补,
各导通180゜。
•半桥逆变电路有两个桥臂, 每个桥臂有一个可控器件和一 个反并联二极管组成。 •在直流侧接有两个相互串联 的足够大的电容,两个电容的 联结点是直流电源的中点。 •负载联结在直流电源中点和 两个桥臂联结点之间。
能否不改变直 流电压,直接进行 调制呢?为此提出 了导电方式二:
移相导电方式。
*导电方式二:移相调压 调节输出电压脉冲的宽度
采用移相方式调节逆变电路的输出电压
• 各IGBT栅极信号为180°正偏, 180°反偏,且V1和V2栅极信号互补, V3和V4栅极信号互补; • V3的基极信号不是比V1落后180°,
而是只落后q ( 0< q <180°);
• 也就是:V3、V4的栅极信号分别比
V2、V1的前移180°-q 。
工作过程
•t1时刻以前V1,V4通,u0=ud, io 从 0 增加; •t1时刻V4断,V1,VD3续流,u0=0,io 下降; • t2时刻V1也关断,io 还未下降到0,于是VD2,VD3续流,u0=-ud。 •直到io过0变负,V2,V3通,u0=-ud, io从0负增加; •t3时刻V3断,V2,VD4续流,u0=0,io 负减小; • t4时刻V2也关断,io 还未减小到0,于是VD1,VD4续流,u0=ud。
第4章 三相交流电路
第4章 三相交流电路
4.3 三相功率的计算
4.3.2 无功功率
三相电路的无功功率为
由于每相负载可能是感性,也可能是容性,即每相的无功功率 可正可负,所以无功功率为各项无功功率的代数和。在对称三 相电路中,无论是星形联结还是三角形联结,总无功功率为
第4章 三相交流电路
4.3 三相功率的计算
3.3 视在功率
每相电流间的相位差仍为120°,由KCL可知,中线电流为零。
第4章 三相交流电路
4.2 三相负载的联结
三相四线制接线方式的特点如下。 (1)相电流等于线电流,即
(2)加在负载上的相电压和线电压之间的关系为
(3)流过中性线N的电流IN为
第4章 三相交流电路
4.2 三相负载的联结
当三相电路中的负载完全对称时,在任意一个瞬间,三个 相电流中,总有一相电流与其余两相电流之和大小相等, 方向相反,正好互相抵消。所以,流过中性线的电流等于 零。在三相对称电路中,当负载采用星形联结时,因为流 过中性线的电流为零,所以三相四线制就可以变成三相三 线制供电。如三相异步电动机及三相电炉等负载,当采用 星形联结时,电源对该类负载就不需接中性线。通常在高 压输电时,由于三相负载都是对称的三相变压器,所以都 采用三相三线制供电。
第4章 三相交流电路
4.2 三相负载的联结
如图4-8所示是只有三根相线而 没有中性线的电路,即三相三 线制;而接线方式除了三根相 线外,在中性点还接有中性线, 这样的接法即为三相四线制, 如图4-9所示,三相四线制除可 供电给三相负载外,还可供电 给单相负载,故凡有照明、单 相电动机、电扇、各种家用电 器的场合,也就是说一般低压 用电场所,大多采用三相四线 制。
总之,当三相电流对称时,线电流的有效值是相电流 有效值的√3倍,线电流滞后对应的相电流30°,即
电力电子应用技术最新版精品课件-第四章交流-交流变换电路
t
不通io过零后, VT2开通, VT2导通角小于π; iG1
➢ 原有的io表达式仍适用,只是α ≤ωt <∞;
O iG2
➢
过渡过程和带R-L负载的单相交流电路在ωt = α (α
O io
iT1
t t
< φ)时合闸的过渡过程相同;
O iT2
t
➢ io由两个分量组成:正弦稳态分量、指数衰减分量; <时阻感负载图交4-流5 调压电路工作波形
交流调功电路:以交流电周期为单位控制晶闸管的通断,改变通态周期数和断态 周期数的比,调节输出功率平均值的电路。
交流斩波调压电路:改变占空比,调节输出电压有效值。 交流电力电子开关:串入电路中根据需要接通或断开电路的晶闸管。
■ 应用 灯光控制(如调光台灯和舞台灯光控制)
异步电动机软起动
异步电动机调速
VD1 V1
i1
斩波控制
u1
V2 VD2
斩波控制
V3
VD4
R
uo
VD3 V4 L
续流通道 续流通道
图4-9 交图流4斩-波7 调压电路图
■ 特性
4.3 交流斩波电压电路
➢ 电源电流的基波分量和电源电压同相位, 即位移因数为1;
➢ 电源电流不含低次谐波,只含和开关周期 T有关的高次谐波;
➢ 功率因数接近1。
图4-7 三相交流调压电路基本形式及输出波形
4.2 交流调功电路
■ 交流调功电路——以交流电源周波数为控制单位 ■ 交流调功电路 VS 交流调压电路
➢ 相同点:电路形式完全相同
➢ 不同点:控制方式不同——将负载与电源接通几个周波,再断开几个周波, 改变通断周波数的比值来调节负载所消耗的平均
电子电子技术第4章 DC-AC变换电路
控制方式:开关器件T1和T2在一个输出电压基波周期 T0内互补地施加触发驱动信号,且两管驱动信号时间 都相等
当T1导通T2关断时 ,当T2导通T1关断时 ,所以电压波形为占空 比为50%的方波。改变T1和T2的驱动信号的频率,即可以改变 输出电压的频率,输出电压的基波频率
输出电压:
开T20 关t 管T0 时T2、,T开3,关当管负T载2、电T3被流触由发a流,向当b负时载,电电流流由经过b流D2向、aD时 3续,流电流流经
瞬时负载电流 :
iL
n 1,3,5...
4VD n Zn
sin
(nt
n )
– 其中n次谐波阻抗 Zn R2 (nL)2
且直流侧需要两个电容器串联,工作时还要控制两个电容 器电压的平衡 半桥电路常用于几kw以下的小功率逆变电源
2.电压型单相全桥式逆变电路
电路特点:全桥电路可看作由两个半桥电路组成,有四个桥臂, 包括四个可控开关器件及反并联二极管,在直流母线上通常还 并联有滤波电容。
控制方式:T1和T4同时开通和关断,T2和T3同时开通和关断(存
b) 电流型逆变器:在直流测串联有大电感,可以抑制输出直流电
流纹波,使得直流测可以近似看作一个理想电流源。
按交流输出类型分类:
a) 当变换装置交流侧接在电网上,把直流电逆变成同频率的 交流电回馈到电网上去,称为有源逆变。
b) 当变换装置交流侧和负载连接时,将由变换装置直接给电 机等负载提供频率可变的交流电,这种工作模式被称为无 源逆变。
b) 负载换流:由负载提供换流电压称为负载换流,通常采用 的是负载谐振换流。
c) 强迫换流:通过附加的换流装置,给欲关断的器件强迫施 加反向电压或反向电流的换流方式称为强迫换流。
电工电子技术 ppt课件
2020/11/24
11
实际电路器件品种繁多,其电磁特性多元而复杂,采取 模型化处理可获得有意义的分析效果
白炽灯电路
消耗电能的电 特性可用电阻 元件表征
由于白炽灯中耗能 的因素大大于产生 磁场的因素,因此
R L 可以忽略。
i
产生磁场的电 特性可用电感 元件表征
白炽灯的电
L 路模型可表
示为:
R
理想电路元件是实际电路器件的理想化和近似,其电特性惟 一、精确,可定量分析和计算。
当外界电场的作用力超过原子核对外层 电子的束缚力时,绝缘体的外层电子同样 也会挣脱原子核的束缚成为自由电子,这 种现象我们称为“绝缘击穿”。绝缘体一 旦被击穿,就会永久丧失其绝缘性能而成 为导体。
半导体的导电性虽然介于导体和绝缘体之间,但半 导体在外界条件发生变化时,其导电能力将大大增强 ;若在纯净的半导体中掺入某些微量杂质后,其导电 能力甚至会增加上万乃至几十万倍,半导体的上述特 殊性,使它在电子技术中得到了极其广泛地应用。
2020/11/24
15
(2)电压
高中物理学中对电压的定义:电场力把单位正电荷从电 场中的一点移到另一点所做的功。表达式为:
u ab
dw ab dq
直流情况下
U ab
W ab Q
注意:物理量用小字表示变量,用大写表示恒量。
从工程应用的角度来讲,电路中的电压是产生电流的根 本原因;在数值上,电压等于电路中两点电位的差值。
2.对于集总参数元件,任何时刻,从元件一端流入的电 流,恒等于从元件另一端流出的电流,并且元件两端的 电压值是完全确定的。
2020/11/24
14
4. 电路中的电压、电流及其参考方向
(1)电流
《电工电子技术与技能》教案
《电工电子技术与技能》教案第一章:电工电子技术基础1.1 电流、电压和电阻的概念1.2 欧姆定律的应用1.3 电路的基本元件1.4 电路的基本连接方式1.5 电路的基本测量工具及使用方法第二章:直流电路分析2.1 直流电路的基本概念2.2 电压源和电流源的等效变换2.3 基尔霍夫定律的应用2.4 电路的简化方法2.5 电路的故障检测与排除第三章:交流电路分析3.1 交流电路的基本概念3.2 交流电的相位和频率3.3 交流电路的电阻、电抗和容抗3.4 交流电路的功率计算3.5 交流电路的谐振现象第四章:电子元器件4.1 电阻、电容和电感的作用及应用4.2 半导体器件的二极管和三极管4.3 晶体管放大电路的基本原理4.4 场效应晶体管和功率晶体管4.5 集成电路的基本概念与应用第五章:基本放大电路5.1 放大电路的基本原理5.2 放大电路的分类及特点5.3 放大电路的设计与调试5.4 放大电路的应用实例5.5 放大电路的故障检测与排除第六章:电源和稳压电路6.1 电源的分类及工作原理6.2 稳压电源的设计与应用6.3 电源滤波电路的作用与设计6.4 电源保护电路的设计与实现6.5 电源电路的故障检测与排除第七章:电动机及其控制7.1 电动机的分类和工作原理7.2 电动机的启动和制动方法7.3 电动机的保护与维修7.4 常用电动机控制电路的设计与实现7.5 电动机控制电路的故障检测与排除第八章:继电接触器控制系统8.1 继电器和接触器的原理与结构8.2 继电器和接触器控制系统的设计与实现8.3 常用继电器和接触器控制电路的应用实例8.4 继电器和接触器控制系统的故障检测与排除8.5 继电器和接触器控制系统的优化与改进第九章:数字电路基础9.1 数字电路的基本概念9.2 逻辑门电路的设计与实现9.3 逻辑电路的设计与分析9.4 数字电路的仿真与实验9.5 数字电路在电工电子技术中的应用第十章:数字电路应用实例10.1 数字电路在通信技术中的应用10.2 数字电路在计算机技术中的应用10.3 数字电路在测量技术中的应用10.4 数字电路在自动控制系统中的应用10.5 数字电路应用实例的故障检测与排除第十一章:传感器与信号处理11.1 传感器的分类与工作原理11.2 传感器的选用与安装11.3 信号处理电路的设计与实现11.4 信号调理电路的应用实例11.5 传感器与信号处理电路的故障检测与排除第十二章:电气控制与PLC编程12.1 电气控制系统的基本组成与原理12.2 继电器控制系统的设计与实现12.3 可编程逻辑控制器(PLC)的基本原理与应用12.4 PLC编程软件的使用与编程实践12.5 电气控制与PLC编程的故障检测与排除第十三章:变频器与调速控制13.1 变频器的工作原理与选用13.2 变频器控制电路的设计与实现13.3 电动机的变频调速技术13.4 变频器在工业应用中的案例分析13.5 变频器与调速控制系统的故障检测与排除第十四章:电力电子技术14.1 电力电子器件的原理与应用14.2 电力电子变换器的设计与实现14.3 电力电子技术在电力系统中的应用14.4 电力电子设备的故障与保护14.5 电力电子技术的未来发展趋势第十五章:电工电子项目的实践与创新15.1 电工电子项目的设计与实施流程15.2 项目实践中的安全注意事项15.3 创新性项目的选题与设计思路15.5 项目实践与创新的经验分享重点和难点解析第一章:电工电子技术基础重点:电流、电压和电阻的概念,欧姆定律的应用,电路的基本元件和基本连接方式。
《电工电子技术基础》第4章 三相交流电路
第4章 三相交流电路——三相负载的联结
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相负载的联结
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相负载的联结
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相负载的联结
[例题] 图中所示的对称三相电路中,端线阻抗 ZL 1 j1 ,负载
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相负载的联结
中性线电流
I&N I&A I&B I&C
(44 0 22 12011 120)A
[解] ⑴各相负载中流过的电流
IU
UU RU
220 0 5 0
A
44
0A
29 19 A
IV
UV RV
220 120 A 10 0
22
120 A
IW IU 120 IP 120
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相负载的联结
b.负载三相三线制联结
+
U NN
-
相电流 流过每相负载的电流
线电流 流过端线的电流
IU、IV、IW
特点 线电流=相电流
章目录 节首页 上一页 下一页
第4章 三相交流电路——三相负载的联结
(1)负载三相三线制联结三相电路计算 等效电路图
(2)不对称负载三相四线制联接三相电路计算
三相电源对称,三相负载不对称, 各相负载中电流表达式:
IN IU IV IW 0
I
U
UU ZU
UP 0
ZU U
UP ZU
0 U
I
V
《电工电子技术》习题 第4章
第4章三相电路【基本要求】掌握三相四线制中三相负载的正确联接。
了解中线的作用;掌握对称星形和三角形联接时相线电压、相线电流在对称三相电路中的相互关系;掌握对称三相电路电压、电流和功率的计算。
了解安全用电常识,触电方式及其防护、接地和接零保护以及静电防护与电气防火防爆。
【重点】对称三相负载星形、三角形联接的三相对称电路分析,相线电压、相线电流的关系以及三相电路功率的计算。
【难点】各电压、电流相位的确定以及非对称三相电路分析。
4.1 基本理论1. 三相正弦交流电由三相交流发电机产生,经升压变压器输送至电网,再输送到各地变电所,经降压后到用户。
由发电厂到电网将交流电压升高是为了降低电网传输时的功率损耗;由电网到用户的降压则是为了保障人身和设备的安全。
2. 由三条相线和一条中性线向用户供电的电源称三相四线制电源。
三相四线制电源可提供相、线电压两种电压,且U L=√3U P,线电压相位比对应相电压超前30º。
3. 负载接于三相电源时必须遵循两个原则:一是加于负载的电压必须等于负载的额定电压;二是尽可能使电源的三相负载对称。
根据此两项原则,三相负载可接成星形或三角形。
当负载的额定相电压等于电源相电压时,负载接成星形;当负载的额定相电压等于电源线电压时,负载接成三角形。
4. 负载作星形连接时,I L=I P,当负载对称或负载不对称作Y O(三相四线制)连接时,负载的相电压即电源的相电压,与电源的线电压U L间保持U L=√3U P、相位超前30º关系。
若负载不对称作Y形(三相三相制,无中线)连接时,则以上关系不存在。
可见,中线的作用是不论负载是否对称,可使三相负载的相电压保持对称。
5. 负载作三角形连接时,负载的相电压为电源的线电压,即U P=U L,当负载对称时,I L=√3I P、线电流相位滞后对应的相电流30º。
当负载不对称时,不存在上述关系。
6. 三相负载的有功功率和无功功率分别等于每相负载的有功功率和无功功率之和,即P=P A+P B+P CQ=Q A+Q B+Q CS=√P2+Q2C若负载对称时,则有如下计算公式P=3U P I P cosϕ=√3U L I L cosϕQ=3U P I P sinϕ=√3U L I L sinϕS=√P2+Q2=3U P I P=√3U L I L上式对星形联接和三角形联接的三相负载均适用。
电工与电子技术课后答案习题4(上篇第四章)
习题44-1 在题4-1图所示的电路中,电容元件原未储能。
① 求开关S 闭合后瞬间各元件上的电压、电流的初始值;② 求开关S 闭合后电路达到稳定状态各元件上的电压、电流的值。
解:①由于开关闭合前,电容元件未储能,故由换路定律可知,0)0()0(==-+C C u u 。
开关闭合后,电容元件相当短路,其等效电路如题4-1图(a )所示,则在+=0t 时各电压、电流为A 66//312//)0(21===+R R E i A 46636)0()0(2121=⨯+=+=++i R R R iA 26633)0()0(2112=⨯+=+=++i R R R iV 12)0()0(21===++Eu u② 开关S 闭合后电路达到稳定状态时,电容元件相当于断路,其等效电路如题4-1图(b )所示。
则当S 闭合后∞=t 时各电压、电流为 A 4312)()(11===∞=∞R E i i 0)(2=∞i V 12)(1==∞E u 0)(2=∞uE 题4-1图(a)+)0(2+题4-1图(b))(2∞)(∞CV 12)(==∞E u C4-2 求题4-2图所示电路中标明的各电流、电压的初始值及稳态值。
解: ① 求初始值:在开关S 断开之前电路处于稳定状态,电容相当于断路,电感相当于短路,其等效电路如题4-2图(a )所示。
则-=0t 时电容两端的电压及电感中的电流为V 410406040)0(=⨯+=-C uA 101406010)0(=+=-L i由换路定律可知:V 4)0()0(==-+C C u u,A 101)0()0(==-+L L i i 那么开关S 断开的瞬间即+=0t 时,电容元件相当于恒压源,电感元件相当于恒流源,其等效电路如题4-2(b)所示。
根据节点电压法,A 和B 两点之间的电压为201601)0(20)0(6010+-+=++i u u C ABV 42016011012056010=+-+=则 0204420)0()0(=-=-=++C AB C u u i 题4-2图题4-2图(a)-=0题4-2图(b)+0+BV 2601014)2040()0()0(-=⨯-=+⨯-=++L AB L i u u ② 求稳态值:在开关S 断开后电路达到稳定状态时,电容相当于断路,电感相当于短路,等效电路如题4-2图(c)所示。
电工电子技术第4章三相异步电动机
T
临界转差率sm
讨论
Tmax
(1)Tmax与电源电压U1的平方成正比,但sm(临界转 速nm )与U1无关 n a 过载系数
U K 2 X 20
Tmax
2 1
R2 sm X 20
TN
nm
0.8U1
U1
b
过载系数是表示电动机稳定运 行的重要数据,同时也表示了 电动机容许的短时过载运行能 0 力
U U1 U
iU
U1
V W
W1
iV iW
V1
V W
iV W1
iW
V1
相序U-V-W
相序U-W-V
改变电动机的旋转方向
12
(三)旋转磁场的转速 同步转速n1---r/min(每分钟的转数)
以上分析的是二极旋转磁场(磁极对数 p=1),交流电 变化一个周期,旋转磁场在空间旋转一周
交流电频率f1=50Hz,则 同步转速 n1 =50×60=3000r/min。
36
3.最大电磁转矩Tmax 最大电磁转矩Tmax 机械特性临界点所对应的电磁转矩, 又称临界转矩,所对应的转差率称为临界转差率sm Tmax是在一定的电源电压U1 下电动机能够提供的最大电 磁转矩 最大电磁转矩Tmax
n a
nm
b
Tmax
U K 2 X 20ห้องสมุดไป่ตู้
R2 sm X 20
2 1
0
c
Tm
n=n1 Sm
0
S
理想空载 ①以最大电磁转矩Tm对应的转差率Sm为界,分为具有不 同特性的两段 稳定运行区 0b段 非稳定运行区 ba段
( 0<S<Sm ) ( S>Sm ) 特性 T ∝S 特性 S↑→T↓
电力电子技术-第四章习题解析
直流-交流变换器(7)
第4章 习题(2)
第2部分:简答题 1.试说明PWM控制的基本原理。(略)
2.单极性和双极性PWM调制有什么区别?三相桥式PWM型逆变电路中,输
出相电压(输出端相对于直流电源中点的电压)和线电压SPWM波形各有几种
电平?
答:单极性PWM调制在调制信号的半个周期内载波只在正或负一种极性范围
分段同步调制优点:在输出频率高的频段采用较低的载波比,以使载 波频率不致过高,限制在功率开关器件允许的范围内。在输出频率低的频 段采用较高的载波比,以使载波频率不致过低而对负载产生不利影响。 7.什么是SPWM波形的规则化采样法?和自然采样法比规则采样法有什么 优点? 答:规则采样法是取三角波两个正峰值之间为一个采样周期,使每个脉冲 的中点都以相应的三角波中点为对称,在三角波的负峰值时刻对正弦信号 波采样得到一点,过该点作一水平直线和三角波交与两点,在这两个时刻 控制器件通断。规则采样法生成的SPWM波形与自然采样法接近,优点是 计算量大大减少。
刻(不含0和Л时刻)可以控制,可以消去的谐波有几种?
答:这是计算法中一种较有代表性的方法,为了减少谐波并简化控制,应 尽量使波形对称:首先,为消除偶次谐波,应使波形正负两半周期镜对称 ;其次,为消除谐波中余弦项,应使波形在半周期内前后1/4周期以π/2为 轴线对称。满足使波形四分之一周期对称后,再设法消去几种种特定频率 的谐波。 如果半个信号波周期内有10个开关时刻(不含0和Л时刻)可以控制,则可 以消去9种频率的谐波。
直流-交流变换器(7)
第4章 习题(2)
第1部分:填空题
1.PWM控制的理论基础是面积等效 原理,即冲量相等而形状不同的窄脉冲 加在具有惯性的环节上时,其效果基本相同。 2.根据“面积等效原理”,SPWM控制用一组等幅不等宽的脉冲(宽度按正弦 规律变化)来等效一个正弦波。 3.PWM控制就是对脉冲的宽度进行调制的技术;直流斩波电路得到的PWM 波是等效直流波形,SPWM控制得到的是等效正弦波形。 4.PWM波形只在单个极性范围内变化的控制方式称单极性控制方式,PWM 波形在正负极性间变化的控制方式称双极性控制方式,三相桥式PWM型逆 变电路采用双极性控制方式。 5.SPWM波形的控制方法:改变调制信号ur的幅值可改变基波幅值;改变调 制信号 ur 的频率可改变基波频率; 6.得到PWM波形的方法一般有两种,即计算法和调制法,实际中主要采用 调制法。 7.根据载波和信号波是否同步及载波比的变化情况,PWM调制方式可分为 同步调制和异步调制。一般为综合两种方法的优点,在低频输出时采用异步 调制方法,在高频输出时采用同步调制方法。
电工学I——电路与电子技术(第二版)
3、适应性原则。考虑到“电工学”课程的教学对象包括各类理工专业的学生,则存在“授课对象的专业不同、 人才培养目标不同”等实际情况,以及多数院校都对“电工学”课程的教学学时进行了压缩,课程教学面临“内 容多,学时少”的矛盾,该教材涵盖了基本内容基础上,在各章节中部分选修内容以“*"标示,对不同的需求进 行教学内容选择。
该教材共十二章,由电路的基本概念和基本分析方法、电路的基本概念和基本分析方法、三相交流电路、电 路的暂态分析、电路的暂态分析、放大电路分析、集成运算放大器及其应用、直流稳压电源、直流稳压电源、触 发器和时序逻辑电路、可编程逻辑器件、数模和模数转换组成。
成书过程
在重庆市精品课程建设和重庆大学平台课程建设项目的支持下,该课程组提出“强化实验教学,精品化理论 教学”的课程教学改革思路,并把该改革理论贯彻于教材建设中,对原有教材进行了修订,从而编写了该教材。
该教具体修订及分工如下:
该教材内容共12章,第1~4章(孙韬、侯世英执笔)为电路分析基础部分内容;第5~8章(周静执笔)为模拟 电子技术基础部分内容;第9~12章(熊兰执笔)为数字电子技术基础部分内容。与第一版本的教材相比,电路分 析基础部分在保持原有知识结构体系的基础上,将三相电路单列为一章,增加了安全用电的内容;在行文中引入 了“小故事”,介绍元件、理论的来龙去脉或实际生产、生活中的应用等,使该教材在理论分析中增添色彩。模 拟电子技术基础部分以器件的外特性为基础、以基本电路为中心,介绍各种常见的应用电子电路,并把模拟电子 电路的基本分析方法贯穿其中;弱化了器件内部的工作原理及理论分析,降低了对分立元件电路的理论要求,强 调了集成运放的特性及其各种运用电路,包括运算电路、信号转换电路、有源滤波电路、比较电路、信号发生电 路等。数字电子技术基础部分,考虑到与工程实践的结合,补充了关于常见集成块及其应用的内容,在组合逻辑 电路的设计中增加了关于竞争一冒险现象的阐述。在数模和模数转换部分,不仅介绍了DAC和ADC的基本原理,还 增加了集成DAC和ADC及其应用的内容。
电工与电子技术基础(第四版)习题册答案
三、选择题
1.B 2.C
四、简答题
1.(1)通电长直导线的磁场方向确定:用右手握住导线,让伸直的拇指所指的方向跟电流的方向
一致,则弯曲的四指所指的方向就是磁感线的环绕方向.
(2)通电通电螺线管的磁场方向确定:用右手握住通电螺线管,让弯曲的四指所指的方向跟电流
的方向一致,则拇指所指的方向就是螺线管内部磁感线的方向,也就是通电螺线管的磁场 N 极的方向.
一个月节约 816×0.8=652.8 元
§1—4 复杂电路的分析
4
一、填空题 1. 基尔霍夫第一定律 节点电流定律 流入节点的电流之和 流出节点的电流之和 2.电流连续性原理 3.基尔霍夫第二定律 回路电压定律 闭合回路 各段电阻上的电压降的代数和 电动势的代 数和 4.升高或降低 5.正号 负号 6.电桥对臂电阻的乘积相等 7.热线式空气流量 压敏电阻式进气压力 二、判断题 1.× 2.√ 3.√ 4.√ 5.× 6.√ 7.√ 三、选择题 1.B 2.A 3.B 四、简答题 1.(1)合理选取节点,这样可以简化对复杂电路的分析和计算. (2)电流的参考方向可以任意规定,如果计算的结果为负值,则表明实际电流的方向与电流的参 考方向相反. 2.(1)沿选定的回路绕行方向所经过的电路电位升高,反之,则电路电位下降. (2)回路的“绕行方向”是任意选定的,一般以虚线表示. (3)基尔霍夫电压定律不仅适用于电路中的具体回路,还可以推广应用于电路中的任一假想回 路. 五、综合题 1.解:设流进节点的方向为正方向 I+3-4-3=0 I=4A 2.解:设绕行方向为逆时针 -E1+IR1+IR2+IR3+E2+IR4=0 -12+0.2×10+0.2×5+0.2×10+ E2+0.2×5=0 E2=12-0.2×30=6V
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U m 220e j45 V
或
220 e j45 V U 2
章目录 节首页 上一页
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦量的相量表示
5.“j”的数学意义和物理意义 旋转 90 因子:
第4章
交流电路分析——正弦量的相量表示
1.正弦量用旋转有向线段表示 一个正弦量的瞬时值可以用一个旋转的有向线段在纵轴 上的投影值来表示。 设正弦量:
y
u U msin( t ψ )V
u
u0ω
0
u1
x
Um
0 ψ
ω t1
ωt
若:有向线段长度 = Um 有向线段与横轴夹角 = 初相位 有向线段以速度ω 按逆时针方向旋转
m1 1 1 m1 1
u 2 U sin( t )V
m2 2 2
1
U sin t cos U cos t sin
m2 2 2 m2 2
2
这两种表示方法不便于运算,重点介绍相量表示法。
章目录 节首页 上一页
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
o
C
章目录 节首页 上一页
+1
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦量的相量表示
正误判断
1.已知: 3.已知: 复数
u 220 sin(ω t 45)V
220 U 45V 2
•
I 4 e j30 A
4 2 sin (ω t 30 )A
T T 2 0 0
则有 P i 2 R dt I 2 RT
0
此适用于任何周期性 变化的电压和电流。
章目录 节首页 上一页
交流
直流
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
第4章
T 0
交流电路分析——正弦交流电量的基本概念
T 2 2 0
P pdt i R dt I RT
0
r
a
Re
式中:
a r cos ψ b r sin ψ
复数的模
r a 2 b2 b ψ arctan a
《电路与电子技术(电工学Ⅰ)》
复数的幅角
章目录 节首页 上一页
下一页
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦量的相量表示
2)三角式
Im
A r cos ψ j r sin ψ
瞬时值
正弦量在任一瞬间的值称为瞬时值。用小写字母表示。
即u、i、e分别 表示电压、电流和 电动势的瞬时值。 设正弦交流电流:
i
Im 0 2 T
t
i I m sin t
初相角:决定正弦量起始位置
角频率:决定正弦量变化快慢 幅值:决定正弦量的大小
幅值、角频率、初相角成为正弦量的三要素。
第4章
交流电路分析——教学目标
教 学 目 标
基本概念
基本定律
应 用
《电路与电子技术( 电工学 Ⅰ )》
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析
第一节 正弦交流电量的基本概念 第二节 正弦量的相量表示法 第三节 单一元件参数的正弦响应
第四节 RLC串联电路的正弦响应 第五节 一般正弦交流电路的分析 第六节 功率因数的提高 第七节 谐振电路 第八节 交流电路的频率特性 第九节 非正弦周期信号的谐波分析
相位差可以用来表示两个正弦量以下几种不同的变化进程:
⑴ ⑵ ⑶ ⑷
注意:
当 当 当 当
0 0 0
1.两个同频率的正弦量之间的相位差为常数,与计时的 选择起点和计时时刻无关。 2.不同频率的正弦量比较无意义。
章目录 节首页 上一页
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
电压的有效值相量 或:
相量的模=正弦量的有效值 相量辐角=正弦量的初相角 相量的模=正弦量的最大值 相量辐角=正弦量的初相角
U m U me jψ U mψ
电压的幅值相量
章目录 节首页 上一页
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦量的相量表示
第4章
交流电路分析——正弦交流电量的基本概念
判断:
ψ1 ψ 2 0 电压滞后于电流
ψ1 ψ 2 90 电压超前于电流 90
u 0
i 0
ψ1 ψ 2 0 电压与电流同相
ψ1 ψ2 180 电压与电流反相
u 0 i
u
i
0
章目录 节首页 上一页
u1 U m sin( t 1 ψ )V
章目录
节首页
上一页
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦量的相量表示
2.正弦量的相量表示 Im
实质:用复数表示正弦量 (1)复数表示形式 设A为复数: 1)代数式
b
A
A = a + jb
注意:
.
相量只是表示正弦量,而不等于正弦量。
. .
i I msin(ω t ψ ) = I m e jψ I m ψ
?
I
只有正弦量才能用相量表示,
非正弦量不能用相量表示。
只有同频率的正弦量才能画在同一相量图上。
U
章目录 节首页 上一页
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦交流电量的基本概念
4.1正弦交流电量的基本概念
如果电流或电压的大小和方向都随时间改变,称交流电。 其变化为周期性重复,则称为周期性交流电流或电压。如正弦 波、方波、三角波、锯齿波等。记作: u(t) = u(t + T ) 随时间按正弦规律做周期变化的量 正弦量 。
章目录 节首页 上一页
?
下一页
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦量的相量表示
例4.2.1 已知: u1 8 2 sin(ω t 60 ) V
u2 6 2 sin(ω t 30) V
求 u u1 u2 解: 1) 用相量式求 。
U1 8 60 (4 j 6.9)V
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国家级规划教材
第4章
交流电路分析——正弦量的相量表示
A a jb r cos j r sin re j ψ rψ
相量:表示正弦量的复数称相量 设正弦量: u U msin( ω t ψ ) 相量表示:
U Ue j ψ Uψ
i I m sin( ωt ψ )
ωt
反映正弦量变化的进程。
t ψ
初相(位): 表示正弦量在 t =0时的相位角。
(t ) t 0
: 给出了观察正弦波的起点或参考点。
相位差:两个同频率的正弦量之间的初相位之差。
章目录 节首页 上一页
下一页
《电路与电子技术(电工学Ⅰ)》
b
A
r (cos ψ j sin ψ )
0 由欧拉公式:
e j ψ ej ψ sin ψ 2j
r
a
Re
e j ψ ej ψ cos ψ , 2
可得:
3)指数式
e j ψ cos ψ j sin ψ
A r ej ψ
4)极坐标式
A rψ
章目录 节首页 上一页
第4章
交流电路分析——正弦量的相量表示
3.相量的两种表示形式: 相量式:
U Ue jψ Uψ U ( cos ψ jsin ψ )
相量图: 把相量表示在复平面的图形
可不画坐标轴
I
4.相量的书写方式
U
模用最大值表示 ,则用符号: U m 、 m I
实际应用中,模多采用有效值,符号: 、 U I
章目录 节首页 上一页
下一页
《电路与电子技术(电工学Ⅰ)》
普通高等教育“十一五”国u i
0
i
i
+
R
正弦交流电的优越性: 便于传输;易于变换 便于运算; 有利于电器设备的运行; . . . . .
《电路与电子技术(电工学Ⅰ)》
正半周
章目录 节首页
普通高等教育“十一五”国家级规划教材
_
_
t
+ u _ _
+ u _
负半周
上一页
R
下一页
第4章
交流电路分析——正弦交流电量的基本概念
I 1 T
1 0 i dt T
T 2
T 0
T
0
2 I msin2 ω t dt
I
m
I
m
1 1 - cos2t dt I T 2 Im 1 1 ( T 0) 2 T 2