新编整理高三数学内部专题 抽样方法

合集下载

高考数学复习:随 机 抽 样

高考数学复习:随 机 抽 样

2.抽签法与随机数法的适用情况 (1)抽签法适用于总体中个体数较少的情况,随机数法 适用于总体中个体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点: 一是抽签是否方便;二是号签是否易搅匀.
考点二 系统抽样 【典例】(1)某班有学生52人,先用系统抽样的方法,抽 取一个容量为4的样本,已知座位是6号,32号,45号的同 学都在样本中那么样本中还有一位同学的座位号是 ________.
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49
A.12
B.32
C.06
D.16
【解析】选B.第15列和第16列的数字为90,从左到右依 次选取两个数字,依次为12,33,06,32,则第四个被选中 的红色球号码为32.
(2)某中学采用系统抽样方法,从该校高一年级全体800 名学生中抽取50名学生做牙齿健康检查,现将800名学 生从1到800进行编号,已知从33~48这16个数中取的数 是39,则在第1小组1~16中随机抽到的数是________.
世纪金榜导学号
【解析】(1)用系统抽样抽出的四个学生的号码从小到 大成等差数列,设样本中还有一位同学的座位号是x,将 号码从小到大排列:6,x,32,45,它们构成公差为13的等 差数列,因此,另一学生的座位号为6+13=19. 答案:19
【对点训练】
1.某班有学生60人,现将所有学生按1,2,3,…60随机编
号,若采用系统抽样的方法抽取一个容量为4的样本(等
距抽样),已知编号为3,33,48号学生在样本中,则样本
中另一个学生的编号为 ( )
A.28
B.23
C.18

三种抽样方法(全)

三种抽样方法(全)
(3)系统抽样比简单随机抽样的应用范围更广.
8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

数学:2.1.1《抽样方法》课件(苏教必修3)

数学:2.1.1《抽样方法》课件(苏教必修3)

如果问题6中,学生人数是1003,如何进行系统抽样?
解:(1)随机将这1003个个体进行编号1,2,3,……1003; (2)利用简单随机抽样,先从总体中剔除3个个体(可以随 机数表法),将剩下的个体重新编号然后按系统抽样的方法进 行.
系统抽样的步骤:
(1)采用随机的方式将总体中的个体编号。为简便起见,
全面、准确,但可行性差;
抽样调查
样本要具有代表性、广泛性等特点.
所要解决的问题是如何根据样本来推断总体-样本估计 总体的思想.
总体:所要考察对象的全体.
个体:总体中的每一个考察对象.
样本:从总体中抽取的一部分个体叫做这个总体的一个样本.
样本容量:样本中个体的数目.
问题3:对本班同学对看足球比赛的喜爱程度(很喜爱、喜爱、 一般、不喜爱、很不喜爱)进行调查.
练习:用随机表法,求解问题3.
问题3:对本班同学对看足球比赛的喜爱程度(很喜爱、喜爱、 一般、不喜爱、很不喜爱)进行调查.
一般地,设一个总体的个体数为N,如果通过逐个抽 取的方法从中抽取一个样本,且每次抽取时各个个体被 抽到的概率相等,就称这样的抽样为简单随机抽样.
注意以下四点: (1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等概率抽样.
有时可直接采用个体所带有的号码,如考生的准考证号、 街道上各户的门牌号,等等; (2)整个的编号分段(即分成几个部分),要确定分段的 间隔k.当N/n(N为总体中的个体的个数,n为样本容量) 是整数时,k=N/n;当N/n不是整数时,通过从总体中剔除 一些个体使剩下的总体中个体的个数N'能被n整除,这时 k=N'/n; (3)在第一段用简单随机抽样确定起始的个体编号; (4)按照事先确定的规则抽取样本(通常是将l加上间隔k, 得到第2个编号l+k,第3个编号l+2k,这样继续下去,直到 获取整个样本).

高中数学必修3 抽样方法(学案)

高中数学必修3 抽样方法(学案)

2.1随机抽样(学案)学习目标:1.理解简单随机抽样,会用简单随机抽样从总体中抽取样本; 2.理解系统抽样,会用系统抽样从总体中抽取样本; 3.理解分层抽样,会用分层抽样从总体中抽取样本; 学法指导:自学课本50页—53页,通过对课本例题的分析研究,弄清楚简单随机抽样、系统抽..........样、分层抽样......的概念和抽样方法,并完成以下检测题,时间15分钟。

检测题:1.下列抽样试验中,用抽签法方便的是( )A .从某厂生产的5000件产品中抽取500件进行质量检验B .从某厂生产的1箱(15件)产品中抽取3件进行质量检验C .从某厂生产的1000件产品中抽取12件进行质量检验D .从某厂的生产线上每隔10分钟抽取一件产品进行检验 2.用随机数表法进行抽样有以下几个步骤①将总体中的个体编号;②获取样本号码;③决定开始的数字和方向; 这些步骤先后顺序应为( )A .①②③ B. ①③② C.③②① D. ③①② 3. 在含有30个个体的总体中,抽取一个容量为5的样本,则个体A 被抽到的概率为( )A301 B 61 C 51 D 654.为了了解参加一次知识竞赛的1252名学生的学习成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么(1)总体中应随机剔除的个体的数目是( )A. 2B. 4C. 5D. 6(2)剔除的方法可以采用( )A.抽签法B.随机数表法C.去掉部分差成绩和部分优秀成绩D.去掉部分中间成绩(3)分段的间隔k 为( )A.20B.25C.35D.50(4)在第一段抽取起始数采用的抽样方法是 ;(5)每个个体被抽到的可能性为( )A501 B 62625 C 12521 D 2515.某单位有老年人21人,中年人50人,青年人80人,为了调查他们的身体状况,从他们中抽取容量为15的样本(1)最适合抽取样本的方法是( )A .简单随机抽样-抽签法 B. 简单随机抽样-随机数表法 C.系统抽样 D.分层抽样(2)若采用分层抽样的方法,应该先从 人中剔除 人;(3)若采用分层抽样的方法,抽取的比例为 ,每层抽取的人数为 , , ;(4)若采用分层抽样的方法,在每一层中采用的抽样方法是 ;(5) 每个老年人被抽到的可能性为( );每个青年人被抽到的可能性为( )A.211 B. 15115 C. 801 D. 151806.请选出简单随机抽样、系统抽样、分层抽样各属于哪种类型抽样?简单随机抽样( ),系统抽样( ),分层抽样( ) A .有放回抽样 B. 不放回抽样课堂总结:2.简单随机抽样的两种方法:3.系统抽样的步骤:4.分层抽样的步骤:班级:姓名:学号:当堂训练:(15分钟)1.说出下列抽样比较适宜采用的方法。

专题6.1 抽样的基本方法(4类必考点)-2024-2025学年高一数学必考点分类集训系列(北师大版

专题6.1 抽样的基本方法(4类必考点)-2024-2025学年高一数学必考点分类集训系列(北师大版

专题6.1 抽样的基本方法【考点1:简单随机抽样】 (1)【考点2:分层随机抽样】 (4)【考点3:抽样方法的选择】 (5)【考点4:数据的获取与调查方案的设计】 (8)【考点1:简单随机抽样】【知识点:简单随机抽样】(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.①抽签法的步骤第一步,将总体中的N个个体编号;第二步,将这N个号码写在形状、大小相同的号签上;第三步,将号签放在同一不透明的箱中,并搅拌均匀;第四步,从箱中每次抽取1个号签,连续抽取k次;第五步,将总体中与抽取的号签的编号一致的k个个体取出.②随机数法的步骤第一步,将个体编号;第二步,在随机数表中任选一个数开始;第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.1.(2022·广东·珠海市实验中学高二阶段练习)要考察某公司生产的500克袋装牛奶的质量是否达标,现从500袋牛奶中抽取50袋进行检验,将它们编号为000,001,002,…499,利用随机数表抽取样本,从第8行第5列的数开始,按3位数依次向右读取,到行末后接着从下一行第一个数继续.则第四袋牛奶的标号是()(下面摘取了某随机数表的第7行至第9行)844217553157245506887704744767217633502583921206766301647859169555671998301071851286735807443952387933211A.358B.301C.071D.2062.(2023·全国·高三专题练习)下列抽取样本的方式属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本.②从20件玩具中一次性抽取3件进行质量检验.③某班有56个同学,指定个子最高的5名同学参加学校组织的篮球赛.④盒子中共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.A.0B.1C.2D.33.(2022·全国·高三专题练习)FRM(FinancialRiskManager)——金融风险管理师,是全球金融风险管理领域的一种资格认证.某研究机构用随机数表法抽取了2017年参加FRM考试的某市50名考生的成绩进行分析,先将50名考生按01,02,03,…,50进行编号,然后从随机数表第8行第11列的数开始向右读,则选出的第12个个体是()(注:下面为随机数表的第8行和第9行)第8行:63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79第9行:33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54A.12B.21C.29D.344.(2023·全国·高三专题练习)下列抽样方法是简单随机抽样的是()A.质检员从50个零件中一次性抽取5个做质量检验B.“隔空不隔爱,停课不停学”,网课上,李老师对全班45名学生中点名表扬了3名发言积极的C.老师要求学生从实数集中逐个抽取10个分析奇偶性D.某运动员从8条跑道中随机抽取一条跑道试跑5.(2022·全国·高三专题练习)下列抽样方法是简单随机抽样的是()A.某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B.用抽签的方法产生随机数C.福利彩票用摇奖机摇奖D.规定凡买到明信片最后四位号码是“6637”的人获三等奖6.(2007·全国·高考真题(文))一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为_________.7.(2022·四川省绵阳江油中学高二期中(文))中国福利彩票“双色球”中的红色球号码区的33个号码分别为01,02,…,33.一位彩民用随机数法从红色球号码区的33个号码中选取6个号码.选取方法是从下面的随机数表中第1行第6列开始,从左向右读数,则依次选出来的第4个号码为________. 4954435482173793237887352096438426349164 84421753315724550688770474476721763350258.(2022·全国·高一课时练习)如果我们研究的总体是某校高一年级学生偏好的运动方式,可以采用什么抽样方法?样本是什么?总体的分布是什么?9.(2022·全国·高一课时练习)已知样本容量为20,总体中每个个体被简单随机抽样抽到的可能性为25%,求总体容量.10.(2022·全国·高一课时练习)简述以下抽样方法不是简单随机抽样的理由:(1)从袋子里抽出小球,记录上面的编号.记录后将小球放回袋子;(2)在一条射线上任意抽出5个点,测量点到射线端点的距离.11.(2022·全国·高一课时练习)以下抽取样本的方法是简单随机抽样吗? (1)在城市市中心某一街道上,随机抽取10名市民,询问年收入是多少;(2)实验室内,在50瓶标注为90%含量的酒精溶液中,随机抽出3瓶,测试真实浓度.【考点2:分层随机抽样】 【知识点:分层随机抽样】在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层随机抽样.进行分层随机抽样的相关计算时,常利用以下关系式巧解: (1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比. [方法技巧]分层随机抽样的解题策略(1)分层随机抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量各层个体数量.1.(2022·全国·高三专题练习)2019年某高校有2400名毕业生参加国家公务员考试,其中专科生有200人,本科生1000人,研究生有1200人,现用分层抽样的方法调查这些学生利用因特网查找学习资料的情况,从中抽取一个容量为n 的样本,已知从专科生中抽取的人数为10人,则n 等于( ) A .100B .200C .120D .4002.(2022·广东·高三阶段练习)“太空教师”的神舟十三号航天员翟志刚、王亚平、叶光富出现在画面中,“天宫课堂”第一课在中国空间站正式开讲.此次太空授课通过为同学们呈现多种精彩的实验和现象,激发了同学们的好奇心,促使他们去观察这些现象,进而去思考、去探索,把科学思维的种子种进心里.某校为了解同学们对“天宫课堂”这种授课模式的兴趣,决定利用分层抽样的方法从高二、高三学生中选取90人进行调查,已知该校高二年级学生有1200人,高三年级学生有1500人,则抽取的学生中,高三年级有()A.20人B.30人C.40人D.50人3.(2022·全国·高三专题练习)2022年7月24日,搭载问天实验舱的长征五号B遥三运载火箭,在我国文昌航天发射场成功发射,我国的航天事业又上了一个新的台阶.某市长虹中学现有高一学生440人,高二学生400人,高三学生420人,为了调查该校学生对我国航天事业的了解程度,现从三个年级中采用分层抽样的方式抽取63人填写调查问卷,则高二年级被抽中的人数为()A.20B.21C.22D.234.(2022·陕西·镇巴中学高二期中(文))某校1000名学生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O型血、A型血、B型血、AB型血的人要分别抽的人数为()A.16、10、10、4B.14、10、10、6C.13、12、12、3D.15、8、8、95.(2022·上海·华东师范大学附属周浦中学高一期末)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人,为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为40的样本,应抽取不超过45岁的职工______人.6.(2022·山东·济南市长清中学高一阶段练习)《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出____________钱.(所得结果四舍五入,保留整数)7.(2022·全国·高三专题练习)2021年7月24日,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,要求各地区各部门结合实际认真贯彻落实.为了解某地区对“双减”政策的落实情况,现采用分层随机抽样的方法从该地区24所小学,18所初中,12所校外培训机构中抽取9所进行调查,则应抽取初中__________所.【考点3:抽样方法的选择】【知识点:抽样方法的对比】1.(2022·全国·高一单元测试)某学校为了了解七年级、八年级、九年级这三个年级学生的阅读时间是否存在显著差异,拟从这三个年级中抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.按性别分层抽样C.按年级分层抽样D.随机数法2.(2020·广西·南宁十中高二期中)为了了解高一学生的身体发育情况,打算在高一年级10个班中某两个班按男女生比例抽取样本,正确的是()A.简单随机抽样B.先用分层抽样,再用随机数表法C.分层抽样D.先用抽签法,再用分层抽样3.(2021·广西·高三开学考试(理))为了解学生数学能力水平,某市A、B、C、D四所初中分别有200,180,100,120名初三学生参加此次数学调研考试,现制定以下两种卷面分析方案:方案①:C校参加调研考试的学生中有30名数学培优生,从这些培优生的试卷中抽取10份试卷进行分析;方案②:从这600名学生的试卷中抽取一个容量为200的样本进行分析.完成这两种方案宜采用的抽样方法依次是()A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法4.(2021·广东广州·高一期末)现有以下两项调查:①从10台冰箱中抽取3台进行质量检查;②某社区有600户家庭,其中高收入家庭180户,中等收入家庭360户,低收入家庭60户,为了调查家庭购买力的某项指标,拟抽取一个容量为30的样本,则完成这两项调查最适宜采用的抽样方法分别是()A.①②都采用简单随机抽样B.①②都采用分层随机抽样C.①采用简单随机抽样,②采用分层随机抽样D.①采用分层随机抽样,②采,简单随机抽样5.(2022·全国·高一课时练习)选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个;(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.6.(2020·全国·高一课时练习)下列问题中,采用怎样的抽样方法较为合理?(1)从10台电冰箱中抽取3台进行质量检查;(2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.7.(2022·全国·高二课时练习)一单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,从中抽取一个容量为20的样本.按下述方法抽取:①将160人从1至160编上号,再用白纸做成1~160号的签160个放入箱内拌匀,然后从中抽20个签与签号相同的20个人被选出.②按20:160=1:8的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人.(1)上述两种方法中,总体、个体、样本分别是什么?(2)上述两种方法中各自采取何种抽取样本的方法?(3)你认为哪种抽样方法较为合理?并说明理由.【考点4:数据的获取与调查方案的设计】【知识点:数据的获取与调查方案的设计】1.(2022·湖南·高一课时练习)对本年级同学每天完成作业的时间进行一次抽样调查,规定样本量n=100,试设计一个合理的调查方案和一份调查问卷(参见“多知道一点”),并具体实施一次抽样调查工作.2.(2018·全国·高二课时练习)某校有500名高三应届毕业生,在一次模拟考试之后,学校为了了解数学复习中存在的问题,计划抽取一个容量为20的样本,详细进行试卷分析,问使用哪一种抽样方法为宜,并设计出具体操作步骤.3.(2022·全国·高一课时练习)选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个;(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.。

高三数学分层抽样2(201911)

高三数学分层抽样2(201911)
练习:将全班同学按学号编号,制作相应的卡片号签,放入同 一个箱子里均匀搅拌,从中抽出15个号签,就相应的15名学 生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜 爱、很不喜爱)进行调查。分析并说明整个抽签过程中每 个同学被抽到的概率是相等的。
; https:// 都市妖孽高手 都市妖孽高手安山狐狸
简单随机抽样是在特定总体中抽取样本,总体中每一 个体被抽取的可能性是等同的,而且任何个体之间彼此 被抽取的机会是独立的。如果用从个体数为N的总体中抽 取一个容量为n的样本,那么每个个体被抽取的概卒等n于
N
随机抽样的方法: 抽签法 随机数表法
1、抽签法
先将总体中的所有个体(共N个)编号(号码可以从1到 N),并把号码写在形状、大小相同的号签上(号签可以用 小球、卡片、纸条等制作),然后将这些号签放在同一个箱 子里,进行均匀搅拌。抽签时,每次从中抽出1个号签,连续 抽取n次,就得到一个容量为n的样本。对个体编号时,也可 以利用已有的编号。例如学生的学号,座位号等。
数学必修3
分层抽样
珠海市实验中学高一数学组
数理统计是研究如何有效地收集,整理,分析 受随机影响的数据,并对所考虑的问题作出推断或 预测,直至为采取决策和行动提供依据和建议的一 门学科。它是一门应用性很强的学科,凡是有大量 数据出现的地方,都要用到数理统计。现在,数理 统计的内容已异常丰富,成为数学中最活跃的学科 之一。教科书选择了数理统计中最基本问题来介绍 这门学科的思想与方法。
数理统计所要解决的问题是如何根据样本来推 断总体,第一个问题就是采集样本,然后才能作统 计推断。
1、简单ቤተ መጻሕፍቲ ባይዱ机抽样
一般地,设一个总体的个体数为N,如果通过逐个 不放回地抽取的方法从中抽取一个样本,且每次抽取时 各个个体被抽到的概率相等,就称这样的抽样为简单随 机抽样。

(部编版)2020学年高中数学第2章统计2.1抽样方法2.1..1.3系统抽样分层抽样教学案苏教版必修19

(部编版)2020学年高中数学第2章统计2.1抽样方法2.1..1.3系统抽样分层抽样教学案苏教版必修19

2.1.2 & 2.1.3 系统抽样 分层抽样[新知初探]1.系统抽样 (1)系统抽样的概念将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样.(2)系统抽样的步骤假设从容量为N 的总体中抽取容量为n 的样本,其步骤为: ①采用随机的方式将总体中的N 个个体编号;②将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号; ③在第一段中用简单随机抽样确定起始的个体编号l ;④按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. (3)系统抽样的特征①系统抽样也称为“等距抽样”. ②适用于总体容量较大的情况.③将总体分成几个部分,各部分必须是均衡的,间隔是相等的.④剔除多余个体及第一段抽样都用简单随机抽样,因而系统抽样与简单随机抽样有密切联系. ⑤它是等可能抽样,每个个体被抽到的可能性都是n N. 2.分层抽样 (1)分层抽样的概念当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体的情况,常将总体中的个体按不同的特点分成层次比较明显的几个部分,然后按照各部分在总体中所占的比实施抽样,这种抽样方法称为分层抽样,其中所分成的各个部分称为“层”.(2)分层抽样的步骤:①将总体按一定标准进行分层;②计算各层的个体数与总体的个体数的比;③按各层个体数占总体的个体数的比确定各层应抽取的样本容量;④在每一层进行抽样(可用简单随机抽样或系统抽样).(3)分层抽样的特征:总体由差异比较明显的几个部分组成.3.三种抽样方法的比较[小试身手]1.简单随机抽样、系统抽样、分层抽样之间的共同点是________.①都是从总体中逐个抽取.②将总体分成几部分,按事先确定的规则在各部分抽取.③抽样过程中每个个体被抽到的可能性是相等的. ④将总体分成几层,然后分层按比例抽取. 答案:③2.采用系统抽样的方法,从个体数为1 004的总体中抽取一个容量为50的样本,则在抽样过程中,抽样间隔为________.答案:203.某学院的A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取________名学生.答案:40[典例] 某工厂有工人1 003名,现从中抽取100人进行体检,试写出抽样方案.[解] 样本容量为100,总体容量为1 003,不能被100整除,因此需要剔除3个个体,然后确定抽样间隔为1 000100=10,利用系统抽样即可.第一步,编号,将1 003名工人编号,号码为0001,0002,…,1 003. 第二步,利用随机数表法抽取3个号码,将对应编号的工人剔除. 第三步,将剩余的1 000名工人重新编号,号码为0001,0002,…,1 000. 第四步,确定分段间隔k =1 000100=10,将总体分成100段,每段10名工人. 第五步,在第1段中,利用抽签法或者随机数表法抽取一个号码m .第六步,利用抽样间隔,将m ,m +10,m +20,…,m +990共100个号码抽出. 第七步,将与号码对应的工人抽出,组成样本.[活学活用]1.高三某班有学生56人,学生编号依次为1,2,3,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为6,34,48的同学都在样本中,那么样本中另一位同学的编号应该是________.解析:由于系统抽样的样本中个体编号是等距的,且间距为56/4=14,所以样本编号应为6,20,34,48. 答案:202.从某厂生产的883辆同一型号的家用轿车中随机抽取40辆测试某项性能.现在用系统抽样的方法进行抽样,请写出抽样过程.解:采用系统抽样法的步骤如下:系统抽样的应用第一步,将883辆轿车随机编号:001,002, (883)第二步,用随机数表法从总体中随机抽取3个编号,剔除这3个个体,将剩下的880个个体重新随机编号,分别为001,002,…,880,并分成40段,每段22个编号;第三步,在第一段001,002,…,022中用简单随机抽样法随机抽取一个个体编号作为起始号(例如008); 第四步,把起始号依次加上22,即可获得抽取的样本的个体编号(例如008,030,…,866); 第五步,由以上编号的个体即可组成抽取的样本.[典例] 一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,请用分层抽样的方法抽取样本,并写出过程.[解] 分层抽样中的抽样比为20160=18.由112×18=14,16×18=2,32×18=4,可得业务人员、管理人员、后勤服务人员应分别抽取14人,2人和4人.确定样本的组成部分之后,下面进行层内抽样,用系统抽样法完成.若将112名业务人员依次编号为1,2,3,…,112,管理人员编号为113,114,…,128,后勤服务人员编号为129,130,…,160.在1~112号业务人员中第一部分的个体编号为1~8中随机抽取一个号码.如它是4号,那么可以从4号起,按系统抽样法每隔8个号码抽取1个号码,这样得到112名业务人员被抽出的14个号码依次为4,12,20,28,36,44,52,60,68,76,84,92,100,108.同样可抽出管理人员和后勤服务人员的号码分别为116,124和132,140,148,156.将以上各层抽出的个体合并起来,就得到容量为20的样本.[活学活用]1.某地区的高中分三类,A 类学校共有学生4 000人,B 类学校共有学生2 000人,C 类学校共有学生3 000人.现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从A 类学校抽取的试卷份数应为________份.解析:试卷份数应为900× 4 0004 000+2 000+3 000=400(份).答案:400分层抽样的应2.某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作. 解:由于机构改革关系到各人的不同利益,故采用分层抽样的方法为妥. ∵10020=5,105=2,705=14,205=4, ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.由于副处级以上干部与工人人数都较少,他们分别按1~10编号与1~20编号,然后采用签法分别抽取2人和4分;对一般干部70人采用00,01,…,69编号,然后用随机数表法抽取14人.[典例] 在下列问题中,各采用什么抽样方法抽取样本较为合适? (1)从8台彩电中抽取2台进行质量检验.(2)一个礼堂有32排座位,每排有40个座位(座位号为1~40),一次报告会坐满了听众,会后为听取意见留下32名听众进行座谈.(3)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本.[解] (1)总体容量为8,样本容量为2,因此选择抽签法进行样本的抽取.(2)总体容量为32×40=1 280,样本容量为32.由于座位数已经分为32排,因此用系统抽样更合适. (3)总体由差异明显的四部分组成,因此可采用分层抽样方法.[活学活用]在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为 样本.方法一:采用简单随机抽样的方法,将零件编号为00,01,…,99,用抽签法抽取 20个;方法二:采用系统抽样的方法,将所有零件分为20组,每组5个,然后从每组中随机抽取1个;方法三:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法中正确的有________.①不论采用哪种抽样方法,这100个零件中每个零件被抽到的可能性都是15②采用上述三种抽样方法,这100个零件中每个零件被抽到的可能性各不相同③在上述三种抽样方法中,方法三抽到的样本比方法一和方法二抽到的样本更能反映总体的特征 ④在上述三种抽样方法中,方法二抽到的样本比方法一和方法三抽到的样本更能反映总体的特征抽样方法的选取解析:根据三种抽样方法的定义可知,三种方法都是等可能抽样.对于明显分层的总体,方法三抽到的样本更能准确地反映总体特征,故①③正确. 答案:①③层级一 学业水平达标1.下列抽样是系统抽样的是________.(填序号)①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0,以后i 0+5,i 0+10(超过15则从1再数起)号入样;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔5 min 抽一件产品进行检验; ③搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的人数为止; ④电影院调查观众的某一指标,通知每排(每排人数相同)座位号为14的观众留下座谈. 答案:①②④2.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:为等距抽样,即为系统抽样. 答案:系统抽样3.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为________.解析:分层抽样中抽样比一定相同,设样本容量为n ,由题意得,n120=2790,解得n =36. 答案:364.在学生人数比例为2∶3∶5的A ,B ,C 三所学校中,用分层抽样方法招募n 名志愿者,若在A 学校恰好选出了6名志愿者,那么n =________.解析:由22+3+5=6n ,得n =30.答案:305.某企业共有3 200名职工,其中中、青、老年职工的比例为5∶3∶2.(1)若从所有职工中抽取一个容量为400的样本,应采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?(2)若从青年职工中抽取120人,试求所抽取的样本容量.解:(1)由于中、青、老年职工有明显的差异,采用分层抽样更合理. 按照比例抽取中、青、老年职工的人数分别为: 510×400=200,310×400=120,210×400=80, 因此应抽取的中、青、老年职工分别为200人、120人、80人. (2)由题设可知青年职工共有310×3 200=960人.设抽取的样本容量为n ,则有n3 200×960=120.∴n =400, 因此所抽取的样本容量为400.层级二 应试能力达标1.从2 016个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的分段间隔为________. 解析:先从2 016个个体中剔除16个,则分段间隔为2 00020=100.答案:1002.将参加数学竞赛的1 000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为________.解析:由题意系统抽样的组距为20, 则15+39×20=795,故第40个号码为0795. 答案:07953.某校共有2 000名学生参加跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a ∶b ∶c =2∶5∶3,全校参加登山的人数占总人数的14.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个容量为200的样本进行调查,则高三年级参加跑步的学生中应抽取________人.解析:由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取110×450=45(人).答案:454.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是________.解析:了解学生的健康情况,男、女生抽取比例应该相同,因此应用分层抽样法.由题意,25500=20400,∴本题采用的抽样方法是分层抽样法. 答案:分层抽样5.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度.其中执“一般”态度的比“不喜欢”的多12人.按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学,1位“不喜欢”摄影的同学和3位执“一般”态度的同学.那么全班学生中“喜欢”摄影的比全班学生人数的一半还多________人.解析:本班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度的人数比例为5∶1∶3,可设三种态度的人数分别是5x ,x,3x ,则3x -x =12,∴x =6.即人数分别为30,6,18.∴30-30+6+182=3.故结果是3人.答案:36.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同,若m =6,则在第7组中抽取的号码是________.解析:m +k =6+7=13,由规定知抽取号码的个位数字为3,第7组中号码的十位数字为6.所以抽取号码为63.答案:637.一工厂生产了某种产品16 800件,它们来自甲、乙、丙三条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲、丙二条生产线抽取的个体数和为乙生产线抽取的个体数的两倍,则乙生产线生产了________件产品.解析:甲、乙、丙抽取的个体数为x ,y ,z ,由题意x +z =2y ,即乙占总体的13,故乙生产线生产了16 800×13=5 600.答案:5 6008.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表:由于不小心,表格中A ,C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是______件.解析:设C 产品的数量为x ,则A 产品的数量为1 700-x ,C 产品的样本容量为a ,则A 产品的样本容量为10+a ,由分层抽样的定义可知1 700-x a +10=x a =1 300130,解得x =800.答案:8009.下面给出某村委会调查本村各户收入情况所作的抽样过程,阅读并回答问题. 本村人口:1 200人,户数:300,每户平均人口数4人; 应抽户数:30户; 抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码为12的户为第一样本户;确定第二样本户:12+40=52,编号为52的户为第二样本户; ……(1)该村委会采用了何种抽样方法? (2)说明抽样过程中存在哪些问题,并修改. (3)抽样过程中何处应用了简单随机抽样? 解:(1)系统抽样.(2)本题是对该村各户收入情况进行抽样而不是对该村个人收入情况抽样,故抽样间隔应为30030=10.其他步骤相应改为:确定随机数字:任取一张人民币,编号的最后一位为2; 确定第一样本户:编号为002的户为第一样本户;确定第二样本户:2+10=12,编号为012号的户为第二样本户; ……(3)在确定随机数字时,应用的是简单随机抽样,即任取一张人民币,记下编号的最后一位.10.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36·6=n6,技术员人数为n 36·12=n3,技工人数为n 36·18=n2, 所以n 应是6的倍数,36的约数,即n =6,12,18. 当样本容量为(n +1)时,总体容量是35,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。

高中数学最新课件-高三数学抽样方法 精品

高中数学最新课件-高三数学抽样方法 精品

点的 横坐标 .
(4)作频率分布直方图的步骤 ①求极差(即一组数据中 最大值 与 最小值 的差).
②决定 组距 与 组数 .
③将数据 分组 .
④列 频率分布表

⑤画 频率分布直方图 .
(5)频率分布折线图和总体密度曲线 ①频率分布折线图:连接频率分布直方图中各小长方形上端的 中点
,就得频率分布折线图.
第四节
抽样方法、用样本估计总体
1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本. 3.了解分层抽样和系统抽样方法. 4.了解分布的意义和作用,会列频率分布表, 考纲 会画频率分布直方图、频率折线图、茎叶图, 点击 理解它们各自的特点. 5.理解样本数据标准差的意义和作用,会计算
(2)最常用的简单随机抽样的方法: 抽签法 和 随机数表法

3.分层抽样 (1)定义:在抽样时,将总体 照 分成互不交叉 的层,然后按
一定的比例
,从各层独立地抽取一定数量的个体,将各层
取出的个体合在一起作为样本,这种抽样方法是一种分层抽样. (2)分层抽样的应用范围: 当总体是由 差异明显的几个部分 组成时,往往选用分层抽 样. 4.系统抽样的步骤 假设要从容量为N的总体中抽取容量为n的样本.
7.会用样本的频率分布估计总体分布,会用样本的 基本数字特征估计总体的基本数字特征,理解用 样本估计总体的思想. 8.会用随机抽样的基本方法和样本估计总体的思想 解决一些简单的实际问题. 1.本节主要考查学生在应用问题中构造抽样模型、 识别模型、收集数据等能力方法,是统计学中最 热 基础的知识.对于用样本估计总体以考查频率分 点 布直方图、茎叶图、平均数、方差、标准差为主, 提 同时考查对样本估计总体的思想的理解. 示 2.本部分在高考试题中主要以选择题或填空题的形

高考数学真题 抽样方法与总体分布的估计

高考数学真题 抽样方法与总体分布的估计

11.4抽样方法与总体分布的估计考点一随机抽样1.(2015湖南文,2,5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6答案B从35人中用系统抽样方法抽取7人,则可将这35人分成7组,每组5人,从每一组中抽取1人,而成绩在[139,151]上的有4组,所以抽取4人,故选B.2.(2015北京文,4,5分)某校老年、中年和青年教师的人数见下表.采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师 1 800青年教师 1 600合计 4 300A.90B.100C.180D.300答案C本题考查分层抽样,根据样本中的青年教师有320人,且青年教师与老年教师人数的比为1600∶900=16∶9,可以得到样本中的老年教师的人数为916×320=180,故选C.3.(2014重庆文,3,5分)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250答案A由分层抽样的特点可知703 500=n3 500+1 500,解之得n=100.4.(2014湖南文,3,5分)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案D在简单随机抽样、系统抽样和分层抽样中,每个个体被抽中的概率均为nN,所以p1=p2=p3,故选D. 评析随机抽样的要求是每个个体被抽中的概率相等,与具体的方法无关.5.(2014广东文,6,5分)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20答案C由系统抽样的定义知,分段间隔为1 00040=25.故答案为C.6.(2013课标Ⅰ理,3,5分)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样答案C因为男女生视力情况差异不大,而各学段学生的视力情况有较大差异,所以应按学段分层抽样,故选C.评析本题考查了分层抽样,准确理解分层抽样的意义是解题关键.7.(2013江西理,4,5分)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01答案D由题意知依次选取的编号为08,02,14,07,01,…(第2个02需剔除),所以选出来的第5个个体的编号为01,选D.8.(2013陕西理,4,5分)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11B.12C.13D.14答案B因为840∶42=20∶1,故编号在[481,720]内的人数为240÷20=12.9.(2018课标Ⅲ文,14,5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是 . 答案 分层抽样解析 本题考查抽样方法.因为不同年龄段客户对其服务的评价有较大差异,所以根据三种抽样方法的特点可知最合适的抽样方法是分层抽样.10.(2015福建文,13,4分)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为 . 答案 25解析 男生人数为900-400=500.设应抽取男生x 人,则由45900=x500得x=25.即应抽取男生25人. 11.(2014天津理,9,5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取 名学生. 答案 60 解析420×300=60(名). 12.(2012天津理,9,5分)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取 所学校,中学中抽取 所学校. 答案 18;9解析 应从小学中抽取150150+75+25×30=18(所).应从中学中抽取75150+75+25×30=9(所).评析 本题考查分层抽样及数据处理能力.13.(2012福建文,14,4分)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是 . 答案 12解析 男女运动员人数比例为5698-56=43, 分层抽样中男女人数比例不变,则女运动员人数为 28×37=12.故应抽取女运动员人数是12.评析本题考查分层抽样方法.考查学生运算求解能力.考点二用样本估计总体1.(2017课标Ⅲ理,3,5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.()根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案A本题考查统计,数据分析.观察2014年的折线图,发现从8月至9月,以及10月开始的三个月接待游客量都是减少的,故A选项是错误的.2.(2017山东文,8,5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7答案A由茎叶图,可得甲组数据的中位数为65,从而乙组数据的中位数也是65,所以y=5.由乙组数据59,61,67,65,78,可得乙组数据的平均值为66,故甲组数据的平均值也为66,从而有56+62+65+74+70+x5=66,解得x=3.故选A.3.(2016山东理,3文3,5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140答案D由频率分布直方图知这200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140,故选D.4.(2016课标Ⅲ理,4,5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案D由雷达图易知A、C正确;七月的平均最高气温超过20 ℃,平均最低气温约为12 ℃,一月的平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月的平均温差大,故B正确;由雷达图知平均最高气温超过20 ℃的月份有3个月.故选D.5.(2015课标Ⅱ理,3,5分)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案 D 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,∴D 不正确.6.(2020课标Ⅲ文,3,5分)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A.0.01B.0.1C.1D.10答案 C 由已知条件可知样本数据x 1,x 2,…,x n 的平均数x =x 1+x 2+…+x nn,方差s 12=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=0.01,则数据10x 1,10x 2,…,10x n 的平均数为10x 1+10x 2+…+10x nn=10x .所以这组数据的方差s 22=1n [(10x 1-10x )2+(10x 2-10x )2+…+(10x n -10x )2]=100n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=100s 12=100×0.01=1,故选C.7.(2015安徽理,6,5分)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A.8B.15C.16D.32答案 C 设样本数据x 1,x 2,…,x 10的标准差为s,则s=8,可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s=16. 8.(2014陕西文,9,5分)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A.x ,s 2+1002B.x +100,s 2+1002C.x ,s 2D.x +100,s 2答案 D 设增加工资后10位员工下月工资均值为x ',方差为s'2,则x '=110[(x 1+100)+(x 2+100)+…+(x 10+100)]=110(x 1+x 2+…+x 10)+100=x +100;方差s'2=110[(x 1+100-x ')2+(x 2+100-x ')2+…+(x 10+100-x ')2]=110[(x 1-x )2+(x 2-x )2+…+(x 10-x )2]=s 2.故选D. 9.(2011江苏,6,5分)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2= . 答案165解析 记星期一到星期五收到的信件数分别为x 1,x 2,x 3,x 4,x 5,则x =x 1+x 2+x 3+x 4+x 55=10+6+8+5+65=7.∴s 2=15[(x 1-x )2+(x 2-x )2+(x 3-x )2+(x 4-x )2+(x 5-x )2]=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165. 评析 本题主要考查方差的公式,考查学生的运算求解能力.公式记忆准确,运算无误是解答本题的关键,属中等难度题.10.(2018江苏,3,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .8 9 9 90 1 1答案 90解析 本题考查茎叶图、平均数.5位裁判打出的分数分别为89,89,90,91,91,则这5位裁判打出的分数的平均数为15×(89+89+90+91+91)=90.方法总结 要明确“茎”处数字是十位数字,“叶”处数字是个位数字,正确写出所有数据,再根据平均数的概念进行计算.11.(2015湖北文,14,5分)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (1)直方图中的a= ;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为 .答案(1)3(2)6 000解析(1)由频率分布直方图可知:0.1×(0.2+0.8+1.5+2.0+2.5+a)=1,解得a=3.(2)消费金额在区间[0.5,0.9]内的购物者的频率为0.1×(3.0+2.0+0.8+0.2)=0.6,所以所求购物者的人数为0.6×10 000=6 000.12.(2014江苏,文6,5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100 cm.答案24解析60×(0.015+0.025)×10=24(株).13.(2019课标Ⅱ文,19,12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[-0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:√74≈8.602.解析本题考查了统计的基础知识、基本思想和方法,考查学生对频数分布表的理解与应用,考查样本的平均数,标准差等数字特征的计算方法,以及对现实社会中实际数据的分析处理能力.(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21. 产值负增长的企业频率为2100=0.02. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)y =1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100∑i=15n i (y i-y )2=1100[2×(-0.40)2+24×(-0.20)2+53×02+14×0.202+7×0.402]=0.029 6, s=√0.029 6=0.02×√74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.方法总结 利用频数分布表求平均数估计值的方法:各组区间中点值乘该组频数,并求和,再除以样本容量.利用频数分布表求标准差估计值的方法:用各组区间中点值代表该组,代入标准差公式即可.14.(2018课标Ⅰ文,19,12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数13249265使用了节水龙头50天的日用水量频数分布表日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 频数151310165(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解析(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=150×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x2=150×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).易错警示利用频率分布直方图求众数、中位数与平均数时,应注意区分这三者,在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和.15.(2016北京文,17,13分)某市居民用水拟实行阶梯水价.每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解析(1)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.(3分)所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.(5分)依题意,w至少定为3.(6分)(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:组号12345678分组[2,4](4,6](6,8](8,10](10,12](12,17](17,22](22,27]频率0.10.150.20.250.150.050.050.05(10分) 根据题意,该市居民该月的人均水费估计为:4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).(13分)思路分析第(1)问,需要计算该市居民月用水量在各区间上的频率,根据样本的频率分布直方图即可获解.第(2)问,由月用水量的频率分布直方图和w=3可计算居民该月用水费用的数据的分组与频率分布表,由此可估计该市居民该月的人均水费.评析本题考查了频率分布直方图及用样本估计总体,属中档题.16.(2015课标Ⅱ理,18,12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B地区456789(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解析(1)两地区用户满意度评分的茎叶图如下:A地区B地区4 683 5 136 46 4 26 2 4 5 5 6 8 8 6 4 37 3 3 4 6 9 9 28 6 5 18 3 2 1 7 5 5 29 1 3通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件:“A 地区用户的满意度等级为非常满意”; C B1表示事件:“B 地区用户的满意度等级为不满意”; C B2表示事件:“B 地区用户的满意度等级为满意”, 则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2. P(C)=P(C B1C A1∪C B2C A2) =P(C B1C A1)+P(C B2C A2) =P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48. 17.(2015课标Ⅱ文,18,12分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.B 地区用户满意度评分的频数分布表满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(1)作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大,说明理由.解析(1)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”. 由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.18.(2015广东文,17,12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解析(1)由已知得,20×(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)=1,解得x=0.007 5.(2)由题图可知,面积最大的矩形对应的月平均用电量区间为[220,240),所以月平均用电量的众数的估计值为230;因为20×(0.002+0.009 5+0.011)=0.45<0.5,20×(0.002+0.009 5+0.011+0.012 5)=0.7>0.5,所以中位数在区间[220,240)内.设中位数为m,则20×(0.002+0.009 5+0.011)+0.012 5×(m-220)=0.5,解得m=224.所以月平均用电量的中位数为224.(3)由题图知,月平均用电量为[220,240)的用户数为(240-220)×0.0125×100=25,同理可得,月平均用电量为[240,260),[260,280),[280,300]的用户数分别为15,10,5.故用分层抽样的方式抽取11户居民,月平均用电量在[220,240)的用户中应抽取11×2525+15+10+5=5(户).19.(2014课标Ⅰ文,18,12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解析(1)(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.评析本题考查绘制频率分布直方图,计算样本的数字特征,及用样本估计总体等知识,同时考查统计的思想方法.20.(2014课标Ⅱ文,19,12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门49797665332110 98877766555554443332100665520063222034567891059044812245667778901123468800113449123345011456000(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解析(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.评析本题考查利用茎叶图进行中位数,概率的相关计算,考查用样本的数字特征估计总体的数字特征,运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力及应用意识.21.(2014北京文,18,13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号 分组 频数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12) 12 7 [12,14) 6 8 [14,16) 2 9[16,18)2 合计100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)解析 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生一周课外阅读时间少于12小时的频率是1-10100=0.9. 故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)内的有17人,频率为0.17,所以a=频率组距=0.172=0.085. 课外阅读时间落在组[8,10)内的有25人,频率为0.25,所以b=频率组距=0.252=0.125. (3)样本中的100名学生该周课外阅读时间的平均数在第4组.22.(2013课标Ⅰ文,18,12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解析 (1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y ,由观测结果可得x =120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3, y =120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6. 由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.评析 本题考查数据的平均数和茎叶图,考查数据的分析处理能力和应用意识.23.(2013安徽文,17,12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1、x2,估计x1-x2的值.解析(1)设甲校高三年级学生总人数为n.由题意知,30n=0.05,即n=600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=5 6.(2)设甲、乙两校样本平均数分别为x'1、x'2,根据样本茎叶图可知,30(x'1-x'2)=30x'1-30x'2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15. 因此x'1-x'2=0.5.故x1-x2的估计值为0.5分.评析本题考查随机抽样与茎叶图等统计学的基本知识,考查学生用样本估计总体的思想以及数据分析处理能力.24.(2020课标Ⅰ文,17,12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数40 20 20 20乙分厂产品等级的频数分布表等级 A B C D频数28 17 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解析(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;。

12.5 抽样方法

12.5 抽样方法
解析:根据有关概念知,说法②、③、④是正确的。故选C。
高考总复习·数学 高考总复习 数学
简单随机抽样
某校高一年级有43名足球运动员,要从中抽出5人 调查学习负担情况.试用两种简单随机抽样方法分别取 样. 解:抽签法:以姓名制签,在容器中搅拌均匀,每次 从中抽取一个,连续抽取5次,从而得到一容量为5的 人选样本. 随机数表法:以00,01,02,…,42逐个编号, 拿出随机数表前先确定起始位置,确定读数方向(可 以向上、向下、向右或向左),读数在总体编号内的 取出,而读数不在内的和已取出的不算,依次下去, 直至得到容量为5的样本.
高考总复习·数学 高考总复习 数学
抽样方法中的有关概念
某次考试有70000名学生参加,为了了解这70000名 考生的数学成绩,从中抽取1000名考生的数学成绩进行统 计分析,在这个问题中,有以下四种说法: ①1000名考生是总体的一个样本; ②可用1000名考生数学成绩的平均数区估计总体平均数; ③70000名考生的数学成绩是总体; ④样本容量是1000, 其中正确的说法有:( ) A.1种 B.2种 C.3种 D.4种
高考总复习·数学 高考总复习 数学
思路分析:此题为抽样方法的选取问题.当总体中个 思路分析 体较多时宜采用系统抽样;当总体中的个体差异较大 时,宜采用分层抽样;当总体中个体较少时,宜采用 随机抽样. 解:依据题意,第①项调查应采用分层抽样法、第② 项调查应采用简单随机抽样法.故选B. 答案:B
高考总复习·数学 高考总复习 数学
高考总复习·数学 高考总复习 数学
12.5 抽样方法
高考总复习·数学 高考总复习 数学
常用的抽样方法: 一.常用的抽样方法: 常用的抽样方法 1.简单随机抽样 简单随机抽样:设一个总体的个体数为N.如果通过逐个抽 简单随机抽样 取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的 概率相等,就称这样的抽样为简单随机抽样 简单随机抽样。实现简单随机抽 简单随机抽样 样,常用抽签法和随机数表法。 (1)抽签法 抽签法:一般地,抽签法就是把总体中的N个个体编号, 抽签法 把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每 次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样 本,这种抽样方法称为抽签法。 (2)随机数表法 随机数表法:利用随机数表、随机数骰子或计算机产生 随机数表法 的随机数进行抽样的方法,叫做随机数表法。

高考数学专题复习:抽样的基本方法

高考数学专题复习:抽样的基本方法

高考数学专题复习:抽样的基本方法一、单选题1.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为()A.120 B.200 C.150 D.1002.采用分层随机抽样的方法抽取一个容量为45的样本,高二年级被抽取15人,高二年级共有300人,则这个学校共有高中学生的人数为()A.1350 B.675 C.900 D.4503.某校高一、高二、高三年级的学生人数之比为2:3:2,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为35的样本,则应从高二年级抽取的学生人数为()A.12 B.15 C.18 D.204.某单位有200名职工,其中女职工有60人,男职工有140人,现要从中抽取30人进行调研座谈,如果用比例分配的分层随机抽样的方法进行抽样,则应抽女职工()A.6人B.9人C.10人D.30人5.某学校有教师100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层随机抽样的方法从中抽取20人,从低到高各年龄段分别抽取的人数为()A.7,5,8 B.9,5,6 C.6,5,9 D.8,5,76.某小区约有3000人,需对小区居民身体状况进行分层抽样调查,样本中有幼龄12人,青壮龄34人,老龄14人,则该小区老龄人数的估计值为()A.750 B.1700 C.600 D.7007.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是()A.简单随机抽样法B.抽签法C.系统抽样法D.分层抽样法,,,的50个个体组成,利用随机数表从中抽取5个个体,下面8.总体由编号为010203,50提供随机数表的第5行到第7行:93124779573789184550399455739229 61116098496573509847303098373770 23104476914606792662206205229234若从表中第6行第5列开始向右依次读取,则抽取的第4个个体的编号是()A.49 B.30 C.47 D.509.某校高二年级有男学生600人,女学生500人,现用分层抽样的方法从该年级学生中抽取一个容量为n的样本,若女学生一共抽取50人,则n的值为()A.100 B.110 C.130 D.15010.某小区居民上网年龄分布图如图所示,现按照分层抽样的方法从该小区抽取一个容量为n的样本.若样本中90后比00后多52人,则n ()A.400 B.450 C.500 D.55011.如图是某校调查高一年级文理分科男女生是否喜欢理科的等高条形图,阴影部分的高表示喜欢理科的频率.假设参加调查的男生有600人,女生有400人,现从所有喜欢理科的同学中按分层抽样的方式抽取48人,则抽取的女生人数为()A.8 B.12 C.16 D.2412.在由编号为00,01,02,,39的40个个体组成的总体中,利用如下的随机数表从第1行第11列开始横向依次选取5个个体组成样本,则选取的第5个个体编号为()7816 6572 0802 6314 07023204 9243 4935 8200 36232976 3413 2481 4241 2424A.14 B.02 C.32 D.04二、填空题13.某单位有青年职工200人,中年职工120人,高级职称人员n人,为了了解单位人员的健康情况,采用分层抽样的方法共抽取30人进行调查,已知中年职工抽10人,则n=________. 14.某工厂甲、乙、丙三个车间生产同一产品,数量分别为120件,90件,60件.为了解它们的产品质量是否有显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了4件,则n=________.15.已知某校高一、高二、高三的学生志愿者人数分别为240、160、160.现采用分层抽样的方法从中抽取n名同学去某敬老院参加慈善活动,其中高一年级被抽取的人数为12,则n=________.16.某工厂有A,B,C三个车间,A车间有1000人,B车间有400人.若用分层抽样的方法得到一个样本容量为44的样本,其中B车间8人,则样本中C车间的人数为________.三、解答题17.某机械厂三个车间共有工人1000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.13,其中第三车间的男女比例为3:2.(1)求x,y,z的值.(2)现用分层抽样的方法在全厂男工人中抽取55名工人进行技术比武,则在第三车间抽取多少名男工人?18.某大学共有1000名大学生,其中男生有520名.为了解该专业大学生的身高情况,李明按男生,女生进行分层,通过分层随机抽样的方法,得到男生,女生的平均身高分别为169.3cm,160.1cm.假设李明在各层中按比例分配样本.(1)如果总样本量为200,那么李明在男生,女生中分别抽取了多少名?(2)请估计这1000名大学生的平均身高.(结果精确到0.01)19.某单位有员工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?参考答案1.A【分析】根据古典概型计算公式即可得到答案.【详解】∵每个零件被抽取的概率都相等,那么300.25N=,∴120N=.故选:A.2.C【分析】结合分层抽样的抽样比列出方程,解方程即可. 【详解】设这个学校共有高中学生的人数为x,根据分层抽样得4515300x=,解得900x=.故选:C.3.B【分析】根据抽样比,列式计算高二年级抽取的学生人数. 【详解】由条件可知,高二年级抽取的学生人数为33515232⨯=++.故选:B 4.B 【分析】设应抽女职工x名,进而根据比例关系得6020030x=,再解方程即可.【详解】解:抽样比为60200,设应抽女职工x名,则6020030x=,解得9x=.故选:B. 5.B 【分析】根据分层抽样的计算方法计算可得;【详解】 解:因为样本容量与总体的个体数比为20100, 所以在每个层次抽取的个体数依次为:201454591005⨯=⨯=,20255100⨯=,13065⨯=. 故选:B .6.D【分析】由题知样本容量为60人,进而得抽样比为150,再根据抽样比计算该小区老龄人数的估计值即可.【详解】解:根据题意,样本容量为12341460++=人, 所以样本抽样比为601300050=, 所以该小区老龄人数约为11470050÷=人. 故选:D7.D【分析】根据总体由男生和女生组成,个体有明显差异求解.【详解】总体由男生和女生组成,男生与女生个体有明显差异,且比例为500:400=5:4,所抽取的比例也是5:4,所以可以判断这种抽样方法是分层抽样法故选:D8.B【分析】结合随机数表依次读取数据即可.【详解】利用随机数表从第6行第5列开始向右读取,依次为60(去除),98(去除),49,65(去除),73(去除),50,98(去除),47,30,所以抽取的第4个个体的编号是30,故选B .9.B【分析】按分层抽样的定义,按比例计算.【详解】 解:根据分层抽样的方法得50500600500n =+,解得110n =. 故选:B10.A【分析】 由题意列方程5221%8%n =-求解即可 【详解】 根据题意可知5221%8%n =-,解得400n =. 故选:A11.B【分析】根据等高图计算出喜欢理科的男生和女生人数,然后根据喜欢理科的男生和女生人数的比确定出女生的抽样比,由此可计算出女生的抽样人数.【详解】由图得喜欢理科的男生人数为6000.6360⨯=人,喜欢理科的女生4000.3120⨯=人,男女生人数之比为3:1,所以从所有喜欢理科的同学中按分层抽样的方式抽取48人,则抽取的女生人数为148124⨯=. 故选:B.12.D【分析】根据题意,结合随机数表抽样的方法,即可求解.【详解】根据随机数表法抽样的方法,根据题意选取规则可得选取的5个样本编号为:02,14,07,32,04,所以选取的第5个个体编号为04.故选:D.13.40人【分析】按照分层抽样的特点,即按比例抽取,列式求解即可.【详解】解:因为共抽取30人,中年职工抽10人所以抽取的比例为101 303=,则有1201 2001203n=++,所以40n=.故答案为:40.14.18【分析】根据分层抽样每一层抽取的比例和总数抽取的比例相同,计算从总数中抽取的样本. 【详解】根据分层抽样的特征:按比例抽样,可得:460270n=,可解得:18n=.故答案为:1815.28【分析】根据分层抽样的特点列等式可求得n的值. 【详解】由题意可得122401602240n=+⨯,解得28n=.故答案为:28.16.16【分析】根据题意,先确定分层抽样的抽样比,求出样本中A车间的人数,进而可求出C车间的人数. 【详解】因为B 车间有400人,样本中B 车间8人,所以抽样比为8140050=, 因此A 车间抽取的人数为110002050⨯=, 所以样本中C 车间的人数为4420816--=.故答案为:1617.(1)130x =,160y =,240z =;(2)24名.【分析】(1)根据题意可得0.131000x =,可求出x ,再由第三车间的工人数是1000350250400--=,以及男女比例即可求解.(2)根据分层抽样比即可求解.【详解】解:(1)由0.131000x =,得130x =. 因为第一车间的工人数是170180350+=,第二车间的工人数是120130250+=,所以第三车间的工人数是1000350250400--=. 所以24001605y =⨯=,34002405z =⨯=. (2)设应从第三车间抽取m 名工人,共有男工人180130240550++=, 则由55240550m =,得24m =, 所以应在第三车间抽取24名男工人.18.(1)男生104名,女生96名;(2)164.88cm .【分析】(1)由分层抽样的定义求解即可;(2)用男生的平均身高乘以所占比例,再加女生的平均身高乘以所占比例即可得答案【详解】解:(1)男生被抽取了5202001041000⨯=名, 女生被抽取了20010496-=名.(2)这1000名大学生的平均身高的估计值为520520169.3160.1(1)10001000⨯+⨯-164.884164.88cm =≈.19.答案见解析【分析】根据分层抽样的特征以及分层抽样比即可求解.【详解】因为员工按年龄分为三个层,各层的身体状况有明显的差异,所以为了使样本具有代表性,需要采用分层抽样.抽样比为1∶5,即每5人中抽取一人.35岁以下:125×15=25(人), 35岁~49岁:280×15=56(人), 50岁以上:95×15=19(人).。

解决高中数学中的抽样问题的技巧与方法

解决高中数学中的抽样问题的技巧与方法

解决高中数学中的抽样问题的技巧与方法抽样是统计学中常用的一种数据收集方法,它通过从总体中选取一部分样本来推断总体的特征。

在高中数学中,抽样问题是一个重要的考察点,掌握解决抽样问题的技巧与方法,对于理解统计学的基本概念和应用具有重要意义。

本文将介绍一些解决高中数学中抽样问题的技巧与方法。

一、随机抽样一种常用的抽样方法是随机抽样。

随机抽样是指从总体中以随机的方式选取样本,以确保样本能够代表整体。

在解决高中数学中的抽样问题时,可以采用以下步骤进行随机抽样:1. 确定总体:首先确定要研究的总体,比如某个班级的学生。

2. 确定样本容量:根据总体的大小和研究的需要,确定所需的样本容量。

3. 编号:将总体中的每个个体按照一定的顺序进行编号,比如按照学号进行编号。

4. 使用随机数表或随机数发生器:使用随机数表或随机数发生器生成若干个随机数,个数与样本容量相同。

5. 抽样:按照生成的随机数,在总体中选取对应编号的个体作为样本。

二、系统抽样另一种常用的抽样方法是系统抽样。

系统抽样是指按照一定规则从总体中选取样本,以确保样本能够代表整体。

在解决高中数学中的抽样问题时,可以采用以下步骤进行系统抽样:1. 确定总体:同样需要确定要研究的总体。

2. 确定样本容量:根据总体的大小和研究的需要,确定所需的样本容量。

3. 编号:将总体中的每个个体按照一定的顺序进行编号。

4. 计算抽样间隔:通过总体大小除以样本容量,得到抽样间隔。

5. 随机选择一个起始个体:使用随机数表或随机数发生器生成一个随机数,作为起始个体的编号。

6. 抽样:从起始个体开始,按照抽样间隔选择样本。

例如,如果抽样间隔为3,则每次选择编号差为3的个体。

三、整群抽样在解决高中数学中的抽样问题时,有时候我们需要考察不同群体之间的差异,这时就可以采用整群抽样。

整群抽样是指将总体划分为若干个群体,然后随机选择若干个群体,再从每个被选中的群体中抽取样本。

整群抽样的步骤如下:1. 划分群体:将总体划分为若干个群体,确保每个群体内的个体具有相似的特征。

高考数学一轮复习讲义(提高版) 专题6.1 三种抽样方法(解析版)

高考数学一轮复习讲义(提高版) 专题6.1 三种抽样方法(解析版)

6.1 三种抽样方法一.简单随机抽样1.概念:一般地,从元素个数为N 的总体中逐个不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法:抽签法和随机数法.3.适用范围是:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小.二.系统抽样1.概念及步骤:假设要从容量为N 的总体中抽取容量为n 的样本,第一步,先将总体的N 个个体编号;第二步,确定分隔间距,对编号进行分段,当N n (n 是样本容量)是整数时,取k =N n ;当N n (n 是样本容量)不是整数时,先用简单随机抽样剔除N n -[Nn ]个个体,取k =[N n]; 第三步,在第1段用简单随机抽样确定第一个个体编号l (l ≤k );第四步,按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号,再加k 得到第3个个体编号,依次进行下去,直到获取整个样本.2.系统抽样的适用范围是:元素个数很多且均衡的总体;各个个体被抽到的机会均等.三.分层抽样1.概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样,将总体中各个个体按某种特征分成若干个互不交叉的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.2.应用范围是:总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系k l k +2l k +统抽样.考向一简单随机抽样【例1】已知下列抽取样本的方式:①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.其中,不是简单随机抽样的个数是A.1 B.2 C.3 D.4【答案】D【解析】①不是简单随机抽样,原因是简单随机抽样中总体的个数是有限的,而题中是无限的;②不是简单随机抽样,原因是简单随机抽样是不放回地抽取,而题中是放回地;③不是简单随机抽样,原因是简单随机抽样是逐个抽取,而题中是一次性抽取;④不是简单随机抽样,原因是个子最高的5名同学是56名同学中特定的,不存在随机性,不是等可能抽样.故选择D.【举一反三】1.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号A.522 B.324 C.535 D.578【答案】D【解析】第6行第6列开始的数为808(不合适),436,789(不合适),535,577,348,994(不合适),837(不合适),522,536(重复不合适),578则满足条件的6个编号为4346,535,577,348,522,578则第6个编号为578本题正确选项:D2.某工厂利用随机数表对产生的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行;若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号是()A.B.C.D.【答案】D【解析】从表中第6行第6列开始向右依次读取3个数据,开始的数为608不合适,436合适,767不合适,837不合适,535,577,348合适,994,837不合适,522合适,535与前面的数字重复,不合适,578合适.则满足条件的6个编号为436,535,577,348,522,578,则第6个编号为578故选:D3.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第5行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()84421 25331 34578 60736 25300 73286 23457 88907 23689 6080432567 80843 67895 35577 34899 48375 22535 57832 45778 92345A.328 B.623 C.457 D.072【答案】B【解析】从表中第5行第6列开始向右读取数据,得到前6个编号分别是:253,313,457,007,328,623,则得到的第6个样本编号是623,故选B.考点二系统抽样【例2】(1)下列抽样中不是系统抽样的是( )A.从编号为1~15的15个小球中任选3个作为样本,按从小到大排序,随机确定起点编号i,再把编号为i+5,i+10(超过15则从1再数起)的小球入样B.某糖果厂在用传送带将生产的糖果送入自动化包装机之前,检验人员从传送带上每隔10分钟抽一块糖果检验C.某人在一个十字路口随机发送广告纸,直到发完1000份为止D.某会议室有15排,每排20个座位,现要求每排座位号为14的参会人员留下来座谈(2)从编号为001,002,…,400的400个产品中用系统抽样的方法抽取一个容量为16样本,已知样本中最小的编号为007,则样本中最大的编号应该为( )A.382 B.483 C.482 D.483(3)某市为了了解高三学生第一次模拟考试的成绩,现采用系统抽样的方法从12000名学生中抽取一个容量为40的样本,则分段间隔为( )A.400 B.300 C.200 D.120【答案】(1)C (2)A (3)B【解析】(1)系统抽样首先将总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式.由系统抽样的概念知A,B,D都是系统抽样,C是简单随机抽样.故选:C.(2)∵样本中编号最小的编号为007,容量为16,∴样本数据组距为,则对应的最大的编号数x=7+25(16﹣1)=382,故选:A.(3)∵从12000名学生中抽取40个样本,∴样本数据间隔为12000÷40=300,故选:B.【举一反三】1.某校高三年级共有学生900人,编号为1,2,3,,900,现用系统抽样的方法抽取一个容量为45的样本,若在第一组抽取的编号是5,则抽取的45人中,编号落在区间的人数为A.10 B.11 C.12 D.13【答案】C【解析】900人中抽取样本容量为45的样本,样本组距为:;则编号落在区间的人数为,故选C。

高考数学专题48抽样的方法黄金解题模板(new)

高考数学专题48抽样的方法黄金解题模板(new)

专题48 抽样的方法【高考地位】抽样方法是高考的热点,高考在这部分内容命题趋向主要以选择题、填空题为主,重点考查基础知识、基本概念及其简单的应用。

在复习中,要理解几种抽样方法的区别于联系,应充分注意一些重要概念的实际意义,理解概率统计中处理问题的基本思想方法。

其试题难度属低档题。

【方法点评】类型一随机抽样使用情景:简单的随机抽样解题模板:第一步认真分析题意,认清考查的是哪种简单的随机抽样;第二步运用对应的简单随机抽样进行求解;第三步得出结论。

例1 从总体为的一批零件中使用简单随机抽样抽取一个容量为40的样本,若某个零件在第2次抽取时被抽到的可能性为1%,则( )A。

100 B. 4000 C。

101 D. 4001【答案】B【解析】因为从总体为的一批零件中使用简单随机抽样抽取一个容量为的样本,某个零件第次抽取的可能性为,所以,解得,故选B.例2 某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A。

8 B. 11 C。

16 D. 10【答案】A【变式演练1】将某省参加数学竞赛预赛的500名同学编号为:001,002,,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽的的号码013为一个样本,这500名学生分别在三个考点考试,从001到200在第一考点,从201到355在第二考点,从356到500在第三考点,则第二考点被抽中的人数为A。

B. C. D.【答案】B【变式演练2】高二某班共有学生56人,座号分别为1,2,3,…,56现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知4号、18号、46号同学在样本中,那么样本中还有一个同学的座号是()A. B.C. D.【答案】C【解析】试题分析:系统抽样抽取的编号构成等差数列,由4号、18号、46号同学在样本中可知剩余的号为32号考点:系统抽样【变式演练3】在一次马拉松比赛中,名运动员的成绩(单位:分钟)如下图所示;若将运动员按成绩由好到差编为—号,再用系统抽样方法从中抽取人,则其中成绩在区间上的运动员人数为( )A. B.C.D.【答案】A【解析】试题分析:观察茎叶图可知,成绩在区间的共有人,设在区间内抽取的人数为,根据分层抽样可有,解得,故选A。

高中数学抽样方法-课文知识点解析

高中数学抽样方法-课文知识点解析

抽样方法-课文知识点解析1.常用抽样方法:简单随机抽样、分层抽样和系统抽样.2.简单随机抽样一般地,从总体中抽取一定量的样本,在抽取过程中要保证每个个体被抽到的概率相同,这样的抽样方法叫简单随机抽样.通常采用抽签法和产生随机数字的方法(利用工具产生随机数). (1)抽签法抽签法的实施步骤:a.给调查对象群体(共有N个)中的每个对象编号(号码可以从1到N).b.准备“抽签”工具(签可以是纸条、卡片或小球),实施“抽签”.先把号码写在形状、大小相同的签上,然后把签放在同一个箱子里,进行均匀搅拌,每次从中抽出一个签,连续抽n次,就得到一个容量为n的样本.c.对样本中的每一个体进行测量或调查,得到数据,通过分析数据得出结论.例如:请用抽签法设计一个调查方案,调查你所在学校学生喜欢体育活动的情况.(以总体数量为N)抽取n个样本为例.第一步,给全体同学编号,号码从1到N;第二步,准备N个大小、形状相同的签,把号码(1~N)写在签上,每次抽取一个签,连续抽n次,就得到一个容量为n的样本;第三步,对样本中的每一个体进行调查.可设计一个问卷,如下. 你对体育活动的喜欢程度A.喜欢B.一般C.不喜欢说明:只准选择一个答案.然后请抽取的几个同学如实填写问卷,统计出数据,填入下表.由样本情况估计全校所有同学喜欢体育活动的情况,从而得出调查结论,写出调查报告.(2)产生随机数把总体中的N个个体依次编上0,1,2,…,N-1的号码,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,…,N-1中的随机数,产生的随机数是几,就选几号个体,直到抽到预先规定的样本数.利用转盘或摸球产生随机数,这种方法大家都比较熟悉,并且简便易行,尤其当总体容量不大时.这种方法的缺点是当总体容量很大时,制作转盘和进行摸球就比较困难了.利用随机数表产生随机数,是其中最重要、最常用的一种方法.下面举例说明如何利用随机数表来抽取样本.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查.在利用随机数表抽取这个样本时,可按下面步骤进行. 全析提示我们知道要做到绝对地随机抽取样本非常困难,因此在抽样过程中尽可能避免人为因素的影响,而抽签法和产生随机数字法恰好具备此特点.抽签法最大的优点是简便易行,但此种方法不宜适用于总体数量较大的对象,一般适用于个体数量较少的对象.要点提炼一个调查方案的设计一定要科学、合理,要易于操作,易得出数据便于统计;问卷的设计更要具有科学性,选项要全面、合理.通过调查方案的设计和实施,有利于提高同学们的思维、逻辑、组织和实践能力,这也符合素质教育的要求.全析提示利用抽签法抽取样本时,编号应从1开始;而利用随机数抽取样本时,编号应从0开始.利用随机数表产生随机数是最常用的产生随机数的方法,要掌握此种方法的步骤.表3-17816 6572 0802 6314 0702 4369 9728 0198 3204 9243 4935 8200 3623 4869 6938 7481 2976 3413 2841 4241 2424 1985 9313 2322 8303 9822 5888 2410 1158 2729 6443 2943 5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 4950 3211 4919 7306 4916 7677 8733 9974 6732 2748 6198 7164 4148 7086 2888 8519 1620 7477 0111 1630 2404 2979 7991 9683 5125 5379 7076 2694 2927 4399 5519 8106 85019264 4607 2021 3920 7766 3817 3256 1640 5858 7766 3170 0500 2593 0545 5370 7814 2889 6628 6757 8231 1589 0062 0047 3815 5131 8186 3709 4521 6665 5325 5383 2702 9055 7196 2172 3207 1114 1384 4359 44887900 5870 2602 8813 5509 4324 0030 4750 3693 9212 0557 7369 7162 9568 1312 9438 0380 3338 0138 4560 4230 6496 3806 0347 0246 4469 9719 8316 1285 0357 2389 2390 7266 0081 6897 2851 4666 0620 4596 34009312 4779 5737 8918 4550 3994 5573 9229 6111 6098 0965 7352 6847 3034 9977 3770 2310 4476 9148 0679 2662 2062 0522 9234 9826 8857 8675 6642 5471 8820 4308 2105 6703 8248 6064 6962 0053 8188 6494 45091110 9486 6533 3954 1944 1516 1682 3404 9651 1456 5613 0357 4244 3341 9605 3567 8350 5728 4338 0824 7899 1307 5814 8688 6982 5126 7736 3383 6215 3441 8578 2277 6490 7644 7085 8361 5662 4141 9877 37478570 2150 8140 4355 5321 2548 0208 7543 9169 0408 4353 6122 8913 9930 4169 6032 2127 0162 6176 4969 8185 9312 8748 8575 8090 9872 1968 0263 0081 2662 6831 3106 2959 9011 1448 4346 7019 8148 1557 8400第一步,先将40件产品编号,可以编为00,01,02, (38)39;全析提示用随机数表产生随机数分三步,一第二步,在随机数表中任选一个数开始,由于总体的编号是两位数,我们可以一次选取其中的两列,组成一个两位数.我们从附表的第17列和第18列的第2行开始选数;第三步,从选定的数36开始,得到第一个两位数,将它取出;继续向下读,由上至下分别是24,11,24,16,76,70,29,43,77,25,15,66,11,55,71,42,12,46,45,68,26,54,00,…其中24,11重复出现,76,70,43,77,66,55,71,42,46,45,68,54超过39,不能选取,这样选取的10个样本的编号分别为36,24,11,16,29,25,15,12,26,00.课本例1,严格地按照用随机数表产生随机数的步骤进行的.在选数的过程中,是从表3-1中第6列和第7列这两列的第4行开始,由上至下的顺序进行选数的.事实上,定位置和选数的顺序是任意的.下面我们用另外一种顺序选取10个样本.第一步,将总体中的每个个体进行编号:00,01,02,…,79; 第二步,由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如从表3-1中第1列和第2列这两列的第三行开始选数,由左至右分别是29,76,34,13,28,41,42,41,24,24,19,85,93,13,23,…其中13,41,24重复出现,83,93超过79,不能选取,这样选取的10个样本的编号分别为29,76,34,13,28,41,42,24,19,23. 3.分层抽样将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中随机抽取一定的样本,这种抽样方法通常叫做分层抽样,有时也称为类型抽样.例如教材中的问题2,如若用简单随机抽样,则抽到的15个样本很可能不能按照它们的家数之比抽取,这样得到的数据就不能真实地反映情况,误差很大;为了避免这种情况,我们按照大型、中型、小型的比例,从100家大型商店中抽出1个代表,从500家中型商店中抽出5个代表,从900家小型商店中抽出9个代表. 再例如,一个单位有职工500人,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解这个单位职工身体状况有关的某项指标,要从中抽取一个容量为100的样本.由于职工年龄与这项指标有关,决定采用分层抽样的方法进行抽取.因为样本容量与总体个数的比为 100∶500=1∶5,所以在各年龄段抽取的个体数依次是 5125,5280,595,即25,56,19.在各年龄段分别抽取时,可采用简单随机抽样,将各年龄段抽取的个体合在一起,就是所要抽取的样本.是编号;二是定位置;三选数.定住位置后,读数的方向可以向右,也可以向左、向上、向下等.取数过程中,要把不符合要求的数(超过最大编码)和与前面重复的数去掉.利用随机数表选取样本的一般步骤:①编号;②定位;③选数.选数过程中,重复的数字只取一个,超过最大编号的数不能取.思维拓展定位置是任意的,选数的顺序是任意的,没有任何约束,所以选取的样本的编号可以是多种多样的,并不唯一.全析提示当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占比例进行抽样.由于分层抽样充分地利用了我们所掌握的信息,使样本具有较好地代表性,而在各层中进行抽样时,大多数情况下采用简单随机抽样,有时也会用到其他方法,这样需根据问题的需要来决定.本例符合分层抽样的特点和适用范围.课本例2,显然不同类型的农田之间的产量有较大差异,也就是说,总体由差异明显的几部分组成,故采用分层抽样的方法,对不同类型的农田按其总数的比例来抽取.假设本例中共有农田500亩,山地、丘陵、平原和洼地各占农田总数的10%、20%、40%和30%,欲抽取50亩进行产量调查,则应抽取5亩山地、10亩丘陵、20亩平原和15亩洼地.课本例3,由于不同层次管理人员的收入差异很大,故采取分层抽样的方法.不同层抽取样本的数目等于抽取样本总数与不同层次管理人员所占总体比例的积,所以应抽取:高层管理人员:100×5%=5(人),中层管理人员:100×15%=15(人),一般员工:100×80%=80(人).4.系统抽样系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按照相同的间隔(称为抽抽样距)抽取其他样本,这种抽样方法有时也叫等距抽样或机械抽样.例如,为了了解参加某种知识竞赛的1000名学生的成绩,打算从中抽一个容量为50的样本.假定这1000名学生的编号是1,2,…,1000,由于50∶1000=1∶20,我们将总体分成50个部分,其中每一部分包括20个个体,例如第一部分的编号是1,2,3,…,20,然后在第一部分随机抽取一个号码,比如它是18号,那么可以从第18号起,每隔20个抽取一个号码,这样得到了一个容量为50的样本,它们的号码分别是:18,38,58,…,978,998.由于总体中的个体数1000正好能被样本容量整除,可以用它们的比值作为抽样距.如果不能整除,比如总体中的个数为1003,样本容量仍为50,这时可先用简单随机抽样先从总体中剔除3个个体,使剩下的个体数1000能被50整除,然后再按系统抽样法往下进行.在抽样时,如果总体的排列存在明显的周期性或者事先是排好序的,那么利用系统抽样进行抽样时将会产生明显的偏差,因为这样抽取的样本不具有代表性.如课本P20思考交流中的两个问题,第一个问题中,抽取的样本不具备代表性,身体偏高;第二个问题中,采取这样的抽样方法,只对周一的交通流量进行了统计,无法代表一个月的状况,只要改变抽样距,如抽样距改为6,就可以了.课本例4,由于总体个体数太大,又无明显的层次差异,所以不能采用简单随机抽样和分层抽样,采用系统抽样是比较合适的.课本给出了系统抽样的一般步骤,要严格地按步骤进行抽样.第一步,确定分段情况,所抽取样本数就是需要分的段数,应为50;确定抽样距,抽样距=总体个体数/抽取样本数=10000/50=200;第二步,按顺序进行编号;要点提炼采用分层抽样时,不同层次所选取的样本数=抽取样本总数×该层所占总体的比例.全析提示当总体容量和样本容量都很大时,采用简单随机抽样或分层抽样,都是非常麻烦的,系统抽样正好能解决这个问题.要点提炼用系统抽样抽取一定容量的样本时,首先要分清总体中的个数是否能被样本容量整除,否则就会出现抽样距不等的情况,就不合乎系统抽样的原则.全析提示在利用系统抽样进行抽样时,要注意总体的排列有没有明显的周期性,这时抽样距的选取要恰当,要打乱周期性;如果总体事先排好序,要先打乱顺序,再抽样,以达到抽取的样本具有广泛的代表性.系统抽样的步骤:①确定分段情况和抽样距;②编号;③确定第一个样本编号;④等距抽样.在确定第一个样本编号时,一定要采用简单随机抽样,并且一定要在第一段内抽取,否则无法保证等距抽样.对于系统抽样,经常遇见的两种情况要加以区分,以避免不必要的麻烦.第三步,采用简单随机抽样从第一个时间段抽取第一个样本;第四步,等距抽样,顺序抽取相应编号的样本.课本例5,本例与例4的不同之处在于,总体个体数不能被样本总数整除,这时可把商作为抽样距,余数得通过简单随机抽样从总体中剔除,对剩余进行编号,其余完全同例4.5.三种抽样方法的比较上面介绍了简单随机抽样、分层抽样和系统抽样.下面通过列表将它们作一个简单的比较.三种抽样方法的比较熟悉三种抽样方法各自的特点和适用范围,以便针对不同的实际问题,采取不同的抽样方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档