高三数学简单随机抽样

合集下载

高考数学复习:随 机 抽 样

高考数学复习:随 机 抽 样

2.抽签法与随机数法的适用情况 (1)抽签法适用于总体中个体数较少的情况,随机数法 适用于总体中个体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点: 一是抽签是否方便;二是号签是否易搅匀.
考点二 系统抽样 【典例】(1)某班有学生52人,先用系统抽样的方法,抽 取一个容量为4的样本,已知座位是6号,32号,45号的同 学都在样本中那么样本中还有一位同学的座位号是 ________.
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49
A.12
B.32
C.06
D.16
【解析】选B.第15列和第16列的数字为90,从左到右依 次选取两个数字,依次为12,33,06,32,则第四个被选中 的红色球号码为32.
(2)某中学采用系统抽样方法,从该校高一年级全体800 名学生中抽取50名学生做牙齿健康检查,现将800名学 生从1到800进行编号,已知从33~48这16个数中取的数 是39,则在第1小组1~16中随机抽到的数是________.
世纪金榜导学号
【解析】(1)用系统抽样抽出的四个学生的号码从小到 大成等差数列,设样本中还有一位同学的座位号是x,将 号码从小到大排列:6,x,32,45,它们构成公差为13的等 差数列,因此,另一学生的座位号为6+13=19. 答案:19
【对点训练】
1.某班有学生60人,现将所有学生按1,2,3,…60随机编
号,若采用系统抽样的方法抽取一个容量为4的样本(等
距抽样),已知编号为3,33,48号学生在样本中,则样本
中另一个学生的编号为 ( )
A.28
B.23
C.18

第10章 第1节 随机抽样-2023届高三一轮复习数学精品备课(新高考人教A版2019)

第10章 第1节 随机抽样-2023届高三一轮复习数学精品备课(新高考人教A版2019)

[巩固演练] 1.下列抽样试验中,适合用抽签法的有( B ) A.从某厂生产的 5000 件产品中抽取 600 件进行质量检验 B.从某厂生产的两箱(每箱 18 件)产品中抽取 6 件进行质 量检验 C.从甲、乙两厂生产的两箱(每箱 18 件)产品中抽取 6 件 进行质量检验 D.从某厂生产的 5000 件产品中抽取 10 件进行质量检验
解析 (2)该地区中小学生总人数为 3 500+2 000+4 500=10 000, 则样本容量为 10 000×2%=200, 其中抽取的高中生近视人数为 2 000×2%×50%=20.
课时三省
课堂回眸
思维升华
误区防范
1.抽样方法 有哪几种?
1.两种抽样方法的共同点都是等概 率抽样,体现了这两种抽样方法的
►规律方法 应用简单随机抽样应注意以下两点
(1)一个抽样试验能否用抽签法,关键看两点:一是抽 签是否方便;二是号签是否易搅匀.一般地,当总体容量和 样本容量都较小时可用抽签法.
(2)应用随机数表法的两个关键点:一是确定以表中的 哪个数(哪行哪列)为起点,以哪个方向为读数的方向;二是 读数时注意结合编号特点进行读取,若编号为两位数字,则 两位两位地读取,若编号为三位数字,则三位三位地读取.
(2)福利彩票“双色球”中红球的号码可以从 01,02, 03,…,32,33 这 33 个两位号码中选取,小明利用如下所 示的随机数表选取红色球的 6 个号码,选取方法是从第 1 行 第 9 列的数字开始,从左到右依次读取数据,则第四个被选 中的红色球号码为( C )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75
[自主解答] 因为高一年级抽取学生的比例为 1224000=15,所以k+5k+3=15,解得 k=2, 故高三年级抽取的人数为 1 200×2+35+3=360.

2.1.1 简单随机抽样

2.1.1 简单随机抽样
【答案】①③②
配人教版 数学 必修3
简单随机抽样的概念 【例1】 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取50个个体作为样本; (2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进 行质量检查; (3)某连队从200名党员官兵中,挑选出50名最优秀的官兵 赶赴青海参加抗震救灾工作;
配人教版 数学 必修3
2.1 随机抽样 2.1.1 简单随机抽样
配人教版 数学 必修3
目标定位
重点难点
1.理解随机抽样的必要性和重 要性. 2.会用简单随机抽样方法从总 体中抽取样本.
重点:理解随机抽样的必要性 和重要性,用抽签法和随机数 法抽取样本. 难点:抽签法和随机数法的实 施步骤.
配人教版 数学 必修3
配人教版 数学 必修3
第二步,从“7”开始向右每次读取三位,凡在600~999中 且不与已读出的数重复的数保留,否则跳过去不读,依次得 753,724,688,770,721,763,676,630,785,916.
第三步,以上号码对应的10个零件就是要抽取的对象.
配人教版 数学 必修3
利用随机数表法抽样时应注意的问题 1.编号要求位数相同,若不相同,需先调整到一致再进 行抽样,如当总体中有100个个体时,为了操作简便可以选择 从00开始编号,那么所有个体的号码都用两位数字表示即可, 从00~99号.如果选择从1开始编号那么所有个体的号码都必 须用三位数字表示,从001~100.很明显每次读两个数字要比 读三个数字节省读取随机数的时间. 2.第一个数字的抽取是随机的. 3.当随机数选定,开始读数时,读数的方向可左,可 右,可上,可下,但应是事先定好的.
配人教版 数学 必修3
D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000 亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。

高中数学复习:随机抽样

高中数学复习:随机抽样

教材研读 栏目索引
(2)确定⑤ 分段间隔k ,对编号进行⑥ 分段 .
当N (n是样本容量)是整数时,取k=N .
n
ቤተ መጻሕፍቲ ባይዱ
n
(3)在第1段用⑦ 简单随机抽样 确定第一个个体编号l(l≤k).
(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号
⑧ l+k ,再加k得到第3个个体编号⑨ l+2k ,依次进行下去,直到获
. 答案 42 解析 设女运动员的人数为n,由题意得16 = 28 16,解得n=42.
56 n
考点突破
简单随机抽样
考点突破 栏目索引
典例1 (1)以下抽样方法是简单随机抽样的是 ( D ) A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽 取的方式确定号码的后四位是2709的为三等奖 B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产 品,称其质量是否合格 C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了 解对学校机构改革的意见
教材研读 栏目索引
2.简单随机抽样
(1)定义:设一个总体含有N个个体,从中① 逐个不放回地 抽取n个个 体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都 ② 相等 ,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:③ 抽签法 和随机数法.
3.系统抽样的步骤
假设要从容量为N的总体中抽取容量为n的样本. (1)先将总体的N个个体④ 编号 .
考点突破 栏目索引
规律总结 抽签法与随机数法的适用情况 (1)抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个 体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点: 一是制签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容 量都较小时可用抽签法.

高考数学一轮总复习课件:随机抽样、用样本估计总体

高考数学一轮总复习课件:随机抽样、用样本估计总体

6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )

简单随机抽样(第1课时(人教A版2019必修第二册)

简单随机抽样(第1课时(人教A版2019必修第二册)

可以剔除重复的编号并重新产生随机数,直到产生的不同
编号个数等于样本所需要的人数.
比较随机数法与抽
签法,它们各有什
么优点和缺点?
新知探索
(1)用随机试验生成随机数
准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,
把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,
第二步,将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步,将60个号签放入一个不透明的盒子里,充分搅匀;
第四步,从盒子中逐个抽取10个号签,并记录上面的编号;
第五步,所得号码对应的学生就是志愿小组的成员.
练习
方法技巧:
一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签
3.某工程从1000件产品中抽出40件进行质量合格检查,样本是40.(
)
4.抽签法和随机数法都适用于总体容量和样本容量较小时的抽样.(
)
)
)
5.利用随机数法抽取样本时,若一共有总体容量为100,则给每一个分别个体编号
为1,2,3,…,100.(
)
答案:√,×,×,√,×.
新知探索
辨析2:下列调查方式中,适合用普查的是(
并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个
三位随机数.如果这个三位数在1—712范围内,就代表对应编号的学生被抽中,
否则舍弃编号,这样产生的随机数可能会有重复.
新知探索
(2)用信息技术生成随机数
①用计算器生成随机数
进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机
A.调查春节联欢晚会的收视率
B.了解某渔场中青鱼的平均质量

高中数学(人教A版)必修第二册课后习题:简单随机抽样【含答案及解析】

高中数学(人教A版)必修第二册课后习题:简单随机抽样【含答案及解析】

第九章统计9.1随机抽样9.1.1简单随机抽样课后篇巩固提升必备知识基础练1.为抽查汽车排放尾气的合格率,某环保局在一路口随机抽查,这种抽查是()A.放回简单随机抽样B.抽签法C.随机数法D.以上都不对(包括总体个数),因此不属于简单随机抽样.2.高三某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左向右依次选取两个数字,则选出来的第4个志愿者的座号为()495443548217379323788735209643842634916457245506887704744767217633502583921206A.23B.09C.16D.02,依次抽取的样本数据为:21,32,09,16,17,所以第4个数据是16.3.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481A.08B.07C.02D.01,选出的5个个体的编号为:08,02,14,07,01,故第5个个体的编号是01.4.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A.mN MB.mM NC.MN mD.N总体中带有标记的比例是N M ,则抽取的m 个个体中带有标记的个数估计为mN M .5.“XX 彩票”的中奖号码是从分别标有01,02,…,30的30个小球中逐个不放回地选出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是 .个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.6.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是 ,某女学生被抽到的可能性是 ..2 0.220,总体数量为100,所以总体中每个个体被抽到的可能性都为20100=0.2.7.已知数据x 1,x 2,…,x n 的平均数为x =4,则数据3x 1+7,3x 2+7,…,3x n +7的平均数为 .数据x 1,x 2,…,x n 的平均数为x =4,即数据(x 1+x 2+…+x n )=4n ,则数据3x 1+7,3x 2+7,…,3x n +7的平均数3(x 1+x 2+…+x n )+7nn =3×4n+7n n=19. 8.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱节目的同学.,将32名男生从00到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.关键能力提升练9.(2021江西南昌二模)从编号依次为01,02,…,20的20人中选取5人,现从随机数表的第一行第3列和第4列数字开始,由左向右依次选取两个数字,则第五个编号为( ) 5308 3395 5502 6215 2702 4369 3218 1826 099478465887 3522 2468 3748 1685 9527 1413 8727 14955656A.09B.02C.15D.183列和第4列数字开始,依次读取:08,33(舍),95(舍),55(舍),02,62(舍),15,27(舍),02(舍),43(舍),69(舍),32(舍),18,18(舍),26(舍),09,则第五个编号为09.故选A.10.用放回简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是()A.110,110B.310,15C.1 5,310D.310,310,个体a每次被抽中的概率是相等的,因为总体容量为10,故个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.故选A.11.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knmB.k+m-nC.kmnD.不能估计x人,则kx =nm,解得x=kmn.12.(多选题)下列调查中,适宜采用抽样调查的是()A.调查某市中小学生每天的运动时间B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查C.农业科技人员调查今年麦穗的单穗平均质量D.调查某快餐店中8位店员的生活质量情况B中要对所有小朋友进行检查,所以用普查的方式;D中共8名店员,可采用普查的方式;A,C 中总体容量大,难以做到普查,故采用抽样调查的方式.13.(多选题)下列抽样方法是简单随机抽样的是()A.从50个零件中随机抽取5个做质量检验B.从50个零件中每次抽取一个有放回地共抽取5次做质量检验C.从整数集中随机抽取10个分析奇偶性D.运动员从8个跑道中随机选取一个跑道不是,因为整数集是无限集.14.(多选题)下列抽取样本的方式,不是简单随机抽样的是()A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中逐个不放回地选出5个零件进行质量检验C.从80件玩具中一次性随机抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛不是简单随机抽样,原因是简单随机抽样中总体的个数是有限的,而题中是无限的;B,C是简单随机抽样;D不是简单随机抽样,原因是指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.15.假设要抽查某种品牌的900颗种子的发芽率,抽取60粒进行实验.利用随机数法抽取种子时,先将900颗种子按001,002,…,900进行编号,如果从随机数表第8行第7列的数字7开始向右读,请你依次写出最先检测的3颗种子的编号.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 548行第7列的数字7开始向右读,第一个符合条件的是785,916要舍去,955要舍去,第二个符合条件是567,第三个符合条件是199,故最先检测的3颗种子的编号为785,567,199.16.某工厂抽取50个机械零件检验其直径大小,得到如下数据:估计这个工厂生产的零件的平均直径大约为..84 cm y=12×12+13×34+14×4=12.84(cm).50学科素养创新练17.选择合适的抽样方法抽样,并写出抽样过程.(1)现有一批电子元件600个,从中抽取6个进行质量检测;(2)现有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样.总体中个体数较大,用随机数法.第一步,给元件编号为001,002,003,...,099,100, (600)第二步,用随机数工具产生1~600范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的电子元件进入样本;第三步,依次操作,如果生成的随机数有重复,则剔除并重新产生随机数,直到样本量达到6;第四步,以上这6个号码对应的元件就是要抽取的对象.(2)总体中个体数较小,用抽签法.第一步,将30个篮球,编号为01,02, (30)第二步,将以上30个编号分别写在外观、质地等无差别的小纸条上,制成号签; 第三步,把号签放入一个不透明的盒子中,充分搅拌;第四步,从盒子中不放回地逐个抽取3个号签,并记录上面的号码;第五步,找出和所得号码对应的篮球.。

2.1抽样方法概念汇总

2.1抽样方法概念汇总
(总体个数N,样本容量 ) 总体个数 ,样本容量n)
个个体编号; (1)将总体中的 个个体编号; )将总体中的N个个体编号 (2)将这N个号码写在形状、 )将这 个号码写在形状、 个号码写在形状 大小相同的号签上; 大小相同的号签上; (3)将号签放在同一箱中,并 )将号签放在同一箱中, 搅拌均匀; 搅拌均匀; 个号签, (4)从箱中每次抽出 个号签, )从箱中每次抽出1个号签 连续抽出n次 连续抽出 次; (5)将总体中与抽到的号签编 ) 号一致的n个个体取出 个个体取出。 号一致的 个个体取出。 开始 开始 编号 55名同学从 到55编号 名同学从1到 制签 制作1到 制作 到55个号签 搅匀 将55个号签搅拌均匀 抽签 随机从中抽出10个签 随机从中抽出 个签 取出个体 对对应号码的学生检查 结束 结束
试利用上述资料设计一个抽样比为1/10的抽样方法。 的抽样方法。 试利用上述资料设计一个抽样比为 的抽样方法
练习、 个有机会中奖的号码( 练习、在1000个有机会中奖的号码(编号为 个有机会中奖的号码 000~999)中,在公证部门的监督下,按随机抽 在公证部门的监督下, ) 取的方法确定最后两位数为88的号码为中奖号码 的号码为中奖号码, 取的方法确定最后两位数为 的号码为中奖号码, 这是运用那种抽样方法确定中奖号码的? 这是运用那种抽样方法确定中奖号码的?依次写 出这10个中奖号码 个中奖号码。 出这 个中奖号码。 系统抽样 088,188,288,388,488,588,688,788, , , , , , , , , 888,988 ,
将总体均分成 在起始部分 几部分, 几部分,按预 样时采用简 总体个 数较多 先制定的规则 随机抽样 在各部分抽取 分层抽样时 总体由差 将总体分成 采用简单随 异明显的 几层, 几层,分层 机抽样或系 几部分组 进行抽取 统抽样 成

(完整word版)高中数学必修3统计与概率

(完整word版)高中数学必修3统计与概率

统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

三种抽样方法

三种抽样方法
(2)随机数表并不是唯一的,因此可以任选一个数作为开 始,读数的方向可以向左,也可以向右、向上、向下等等。 (3)用随机数表进行抽样的步骤:将总体中个体编号;选 定开始的数字;获取样本号码。
(4)由于随机数表是等概率的,因此利用随机数表抽取样 本保证了被抽取个体的概率是相等的。
随机抽样并不是随意或随便抽取,因为随 意或随便抽取都会带有主观或客观的影响因素
18,38,58,…,978,998
在上面的抽样中,由于在第1部分(个体编号1~20) 中的起始号码是随机确定的,每个号码被抽取的概率 都等于0.05,所以在抽取第1部分的个体前,其他各部分 中每个号码被抽取的概率也都是0.05.就是说,在这个系 统抽样中,每个个体被抽到的概率都是0.05.
思考1:下列抽样中不是系统抽样的是 ( C )
分层抽样适用于总体由差异明显的几部分组成的情况,每 一部分称为层,在每一层中实行简单随机抽样。这种方法较充 分地利用了总体己有信息,是一种实用、操作性强的方法。
分层抽样的一个重要问题是一个总体如何分层。分层抽样中分 多少层,要视具体情况而定。总的原则是:层内样本的差异要小, 而层与层之间的差异尽可能地大,否则将失去分层的意义。
N
n是整数时,
k
N; n
Nn不是整数时,从N中剔除一些个体,使得其为整数为止。
(3)第一段用简单随机抽样确定起始号码l。
(4)按照规则抽取样本:l;l+k;l+2k;……l+nk
系统抽样时,将总体中的个体均分后的每一段进
行抽样时,采用简单随机抽样;系统抽样每次抽样时, 总体中各个个体被抽取的概率也是相等的;如总体的个 体数不能被样本容量整除时,可以先用简单随机抽样从 总体中剔除几个个体,然后再按系统抽样进行。需要说 明的是整个抽样过程中每个个体被抽到的概率仍然相等。

随机抽样(整理)

随机抽样(整理)
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽档法,分层抽样法
6、某单位有工程师6人,技术员12人,技工18 人,要从这些人中抽取一个容量为n的样本;如果采 用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加1个,则在采用系统抽样时,需要
在总体中先剔除1个个体,求得样本容量为_6__.
练习:
(1).某县有30个乡,其中山区有6个,丘陵地区有12个, 平原地区有12个,要从中抽出5个乡进行调查,则应在
山区抽_个乡1 ,在丘陵地区抽_乡,2 在平原地区抽_ 个乡2 。
(2).高三某班有男生56人,女生42人,现在用分 层抽样的方法,选出28人参加一项活动,则男生 和女生的人数分别是:____1_6_和__1_2_____
4、从容量为N的总体中抽取容量为n的样本, 用系统抽样的一般步骤为: (1)将总体中的N个个体编号.有时可直接 利用个体自身所带的号码,如学号、准考证 号、门牌号等;
(2)将编号按间隔k分段(k∈N).
(3)在第一段用简单随机抽样确定起始个 体的编号L(L∈N,L≤k)。
(4)按照一定的规则抽取样本,通常是将 起始编号L加上间隔k得到第2个个体编号L+K, 再加上K得到第3个个体编号L+2K,这样继续 下去,直到获取整个样本.

生活中的辛苦阻挠不了我对生活的热 爱。20.11.1720.11.17Tuesday, November 17, 2020

人生得意须尽欢,莫使金樽空对月。02:41:5602:41:5602:4111/17/2020 2:41:56 AM

做一枚螺丝钉,那里需要那里上。20. 11.1702 :41:560 2:41No v-2017 -No v-2 0

高三数学简单随机抽样

高三数学简单随机抽样

Hale Waihona Puke mg娱乐手机平台下载 [单选]商标权的客体是()。A.商标B.注册的商标C.文字和图案D.商标的图像 [单选]()都属于饮料。A、矿泉水、水、咖啡B、矿泉水、纯酒精、茶C、水、白酒、咖啡D、矿泉水、白酒、茶 [单选]钩体病弥漫肺出血型的治疗下列哪项是错误的()A.短程大剂量肾上腺皮质激素B.维生素K注射止血C.度冷丁镇静D.酌情使用西地兰E.血压偏低时及时使用升压药 [单选]在PFD上,在右下角出现琥珀色的ILS闪亮时,表示:()A、APPR(进近)方式预位而未选择ILS显示。B、ILS信号丢失。C、航向道偏差过大。 [单选,A1型题]下列关于具有抗炎作用的有效成分,错误的是()A.硫酸钠B.小檗碱C.鱼腥草素D.绿原酸E.苦参碱 [判断题]海绵动物主要生活于海水中,全部营漂浮生活。()A.正确B.错误 [单选,A1型题]不是由于染色体分离异常出现的改变是()。A.三倍体B.单倍体C.21-三体D.四倍体E.三射体 [填空题]在大约30多亿年前,地球上出现了最早的生物,即原核细胞的(). [单选]多式联运是采用()不同运输方式组合的运输方式。A.陆海B.公路与铁路C.公路与航空D.两种以上 [单选,A2型题,A1/A2型题]DSA的中文全称叫做()A.数字减影成像B.数字血管成像C.数字减影血管造影D.数字造影血管减影E.数字血管断层成像 [单选]关于合理砂率对混凝土拌合物特性的影响,说法不正确的是()。A.流动性最小B.粘聚性良好C.保水性良好D.水泥用量最小 [单选]提高深层淤泥质土的承裁力可采取()。A.固结灌浆B.喷混凝土护面C.打土钉D.振冲置换 [单选]船舶航行必须持有的法定记录簿有多种,需轮机部填写的有:①轮机日志、车钟记录簿②油类记录簿③船舶垃圾记录簿④船舶航行签证簿A.①②B.①②③C.①②④D.①②③④ [单选]以下关于程序流程图、N-S盒图和决策表的叙述中,错误的是()。A.N-S盒图可以避免随意的控制转移B.N-S盒图可以同时表示程序逻辑和数据结构C.程序流程图中的控制流可以任意转向D.决策表适宜表示多重条件组合下的行为 [单选]世界消除对妇女暴力日是哪月哪日?()A、11月25日B、10月25日C、9月25日D、8月25日 [单选]2岁小儿,体重12kg,经询问法膳食调查结果如下:每天摄入总能量1300kcal,其中蛋白质供能占15%(优质蛋白质占总蛋白的60%),脂肪供能占30%,碳水化合物供能占55%。正确的膳食评价是()A.总能量摄入严重不足,三大产能营养素供给比例合理B.总能量摄入严重不足,三大产能营养 [单选]一患者术前合并风心病二尖瓣狭窄,但能正常工作生活,其ASA分级为()A.ⅠB.ⅡC.ⅢD.ⅣE.Ⅴ [单选,A1型题]患者男,34岁。较长距离步行后,感下肢疼痛,肌肉抽搐,休息后症状消失,再走一段路后症状又出现。平时有右足发凉、怕冷及麻木感。检查:右足背动脉较左侧搏动减弱。应考虑为()A.静脉血栓形成B.血栓性静脉炎C.动静脉瘘D.雷诺综合征E.血栓闭塞性脉管炎 [单选,A2型题,A1/A2型题]下列哪味是治疗梅毒的药物()A.马钱子B.黄连C.轻粉D.硼砂E.蛇床子 [名词解释]体积假说 [单选]企业对信用风险进行控制首先必须解决()。A.弄清企业信用风险的内部原因B.制定科学的信用决策C.应收账款的管理和监控D.拖欠账款的追收 [单选]某县人民政府做出有关规范该县集贸市场秩序的决定,这一行为属于()。A.行政立法行为B.抽象行政行为C.具体行政行为D.行政执法行为 [单选,A1型题]患儿,7个月,母乳喂养,未添加辅食。查体:面色苍白,精神差。该患儿最可能的情况是()A.地中海贫血B.溶血性贫血C.营养性巨幼红细胞性贫血D.再生障碍性贫血E.营养性缺铁性贫血 [单选]常规觉醒脑电图记录时间不应少于()A.10分钟B.20分钟C.30分钟D.60分钟E.无要求 [单选]工程咨询作为一个独立的行业,是近代()的产物。A.城市化B.信息化C.知识化D.工业化 [单选]RR表示()A.比值比B.相对危险度C.特异危险度D.人群特异危险度E.特异危险度百分比 [单选]以下哪种情况不属于《残疾人就业条例》规定残疾人就业服务机构的工作内容()?A.为残疾人提供心理咨询辅导B.组织残疾人开展文化活动C.为用人单位安排残疾人就业提供必要的支持D.开展残疾人职业培训 [多选]膨胀土按工程性质分为()。A.超强膨胀土B.强膨胀土C.中等膨胀土D.微膨胀土E.弱膨胀十 [单选]根据溶解度的大小,可以把气体分为易溶、可溶、微溶、()等。A、难溶B、不溶C、轻溶D、重溶 [名词解释]噪声 [单选]行政赔偿程序中的追偿发生在赔偿义务机关给予赔偿之后,且工作人员为致害行为时有()。A.故意或过错B.故意或重大过失C.责任或过错D.故意或一般过失 [单选]机床型号中,通用特征代号中“数控”的表示代号是:()。A.GB.MC.BD.K [单选,A2型题,A1/A2型题]最常用、最有效的热力灭菌法是()A.煮沸法B.巴氏消毒法C.流通蒸汽灭菌法D.高压蒸汽灭菌法E.间歇灭菌法 [单选]某工程竣工验收合格后第11年内,部分梁板发生不同程度的断裂.经有相应资质的质量鉴定机构鉴定,确认断裂原因为混凝土施工养护不当致其强度不符合设计要求,则该质量缺陷应由()。A.建设单位维修并承担维修费用B.施工单位维修并承担维修费用C.施工单位维修,设计单位承担维修 [单选,A2型题,A1/A2型题]LD酶有几种结构不同的同工酶().A.2B.3C.4D.5E.6 [单选]Smith骨折的典型移位是()A.远侧端向掌侧、尺侧移位B.远侧端向尺侧移位C.远侧端向桡、背侧移位D.近侧端向背侧移位E.近侧端旋转移位 [问答题,简答题]发动机机械损失有哪几部分组成? [单选,A2型题,A1/A2型题]以下组合错误的是()A.听眶线--ABLB.听眦线--OMBLC.听眉线--SNLD.眶下线--IOLE.人类生物学基线--ABL [单选]未成年人是指()的公民。A、年满十八周岁B、年满十七周岁C、年满十六周岁D、年满十五周岁 [单选]个体发展心理学的研究对象是()。A.人生全过程各个年龄阶段的心理发展特点B.人生全过程各个年龄阶段的认知发展特点C.从动物到人的心理变化D.从幼儿到成人的心理变化

第1讲 随机抽样、用样本估计总体

第1讲 随机抽样、用样本估计总体

第1讲随机抽样、用样本估计总体一、知识梳理1.随机抽样(1)简单随机抽样①定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),且每次抽取时总体内的各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样.②常用方法:抽签法和随机数法.(2)分层抽样①定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.②适用范围:适用于总体由差异比较明显的几个部分组成时.2.统计图表(1)频率分布直方图的画法步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图;②总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把a 1+a 2+…+a n n称为a 1,a 2,…,a n 这n 个数的平均数. (4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x -,则这组数据的标准差和方差分别是s = 1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2], s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].常用结论1.不论哪种抽样方法,总体中的每一个个体入样的概率是相同的.2.会用三个关系频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.巧用四个有关的结论(1)若x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x-+a ;(2)数据x 1,x 2,…,x n 与数据x ′1=x 1+a ,x ′2=x 2+a ,…,x ′n =x n +a 的方差相等,即数据经过平移后方差不变;(3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2;(4)s 2=1n ∑n i =1 (x i -x -)2=1n ∑n i =1x 2i-x -2,即各数平方的平均数减去平均数的平方. 二、教材衍化1.某校为了解学生学习的情况,采用分层抽样的方法从高一2 400人、高二2 000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为________.解析:由分层抽样可得 2 4002 400+2 000+n×90=36,则n =1 600,所以高三被抽取的人数为 1 6002 400+2 000+1 600×90=24. 答案:242.已知一组数据6,7,8,8,9,10,则该组数据的方差是________.答案:533.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在第________组.解析:由题图可得,前四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第4组.答案:4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)简单随机抽样是一种不放回抽样.()(2)在抽签法中,先抽的人抽中的可能性大.()(3)一组数据的方差越大,说明这组数据的波动越大.()(4)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越大.()(5)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.()(6)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数的估计值.()答案:(1)√(2)×(3)√(4)√(5)√(6)√二、易错纠偏常见误区|(1)随机数表法的规则不熟出错;(2)频率分布直方图识图不清;1.假设要考察某公司生产的狂犬疫苗的剂量是否达标,现用随机数法从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001, (499)行编号,若从随机数表第7行第8列的数开始向右读,则抽取的第3支疫苗的编号为________.(下面摘取了随机数表的第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54解析:由题意得,从随机数表第7行第8列的数开始向右读,符合条件的前三个编号依次是331,455,068,故抽取的第3支疫苗的编号是068.答案:0682.我市某校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是________.解析:依题意得,成绩低于60分的相应的频率等于(0.005+0.01)×20=0.3,所以该班的学生人数是15÷0.3=50.答案:50考点一随机抽样(基础型)复习指导| 1.理解随机抽样的必要性和重要性.2.学会用简单随机抽样的方法从总体中抽取样本.3.通过对实例的分析,了解分层抽样的方法.核心素养:数据分析1.(2020·重庆中山外国语学校模拟)如饼图,某学校共有教师120人,从中选出一个30人的样本,其中被选出的青年女教师的人数为()A.12B.6C.4D.3解析:选D .青年教师的人数为120×30%=36,所以青年女教师为12人,故青年女教师被选出的人数为12×30120=3.故选D . 2.(2020·武汉市武昌区调研考试)已知某射击运动员每次射击击中目标的概率都为80%.现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机数为一组,代表4次射击的结果.经随机模拟产生了如下20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281据此估计,该射击运动员4次射击至少3次击中目标的概率为________.解析:4次射击中有1次或2次击中目标的有:0371,6011,7610,1417,7140,所以所求概率P =1-520=1520=0.75. 答案:0.753.一支田径队有男运动员56人,女运动员m 人,用分层抽样抽出一个容量为n 的样本,在这个样本中随机取一个当队长的概率为128,且样本中的男队员比女队员多4人,则m =________.解析:由题意知n =28,设其中有男队员x 人,女队员有y 人.则⎩⎪⎨⎪⎧x +y =28,x -y =4,56m =x y .解得x =16,y =12,m =42.答案:42(1)抽签法与随机数法的适用情况①抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.②一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)分层抽样问题类型及解题思路①求某层应抽个体数量,根据该层所占总体的比例计算.②已知某层个体数量,求总体容量,根据分层抽样即按比例抽样,列比例式进行计算.③确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.考点二样本的数字特征(应用型)复习指导| 1.通过实例理解样本数据的标准差的意义和作用,学会计算数据的标准差.2.能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.核心素养:数据分析、数学运算(1)在一次歌咏比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为( )A .92,2.8B .92,2C .93,2D .93,2.8(2)(2020·盐城模拟)已知一组数据x 1,x 2,x 3,x 4,x 5的方差是2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的标准差为________.【解析】 (1)由题意得所剩数据:90,90,93,94,93.所以平均数x -=90+90+93+94+935=92. 方差s 2=15[(90-92)2+(90-92)2+(93-92)2+(93-92)2+(94-92)2]=2.8. (2)由s 2=1n i =1n (x i -x -)2=2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的方差是8,标准差为2 2. 【答案】 (1)A (2)2 2【迁移探究】 (变条件)本例(2)增加条件“x 1,x 2,x 3,x 4,x 5的平均数为2”,求数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数和方差.解:数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数为2×2+3=7,方差为22×2=8.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s2=1n[(x21+x22+…+x2n)-n x-2],或写成s2=1n(x21+x22+…+x2n)-x-2,即方差等于原数据平方的平均数减去平均数的平方.1.(2020·昆明市诊断测试)高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n座城市作试验基地.这n座城市共享单车的使用量(单位:人次/天)分别为x1,x2,…,x n,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:选B .平均数、中位数可以反映一组数据的集中程度;方差、标准差可以反映一组数据的波动大小,同时也反映这组数据的稳定程度.故选B .2.(2020·甘肃、青海、宁夏联考)从某小学随机抽取100名同学,将他们的身高(单位:厘米)分布情况汇总如下:A .119.3B .119.7C .123.3D .126.7解析:选C .由题意知身高在(100,110],(110,120],(120,130]内的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x ,则(x -120)×0.310=0.1,解得x ≈123.3.故选C .3.一组数据1,10,5,2,x ,2,且2<x <5,若该数据的众数是中位数的23倍,则该数据的方差为________.解析:根据题意知,该组数据的众数是2,则中位数是2÷23=3,把这组数据从小到大排列为1,2,2,x ,5,10,则2+x2=3,解得x =4,所以这组数据的平均数为 x -=16×(1+2+2+4+5+10)=4,方差为s 2=16×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.答案:9考点三 频率分布直方图(应用型)复习指导| 1.通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点.2.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性.核心素养:直观想象、数据分析角度一求样本的频率、频数(2020·福建五校第二次联考)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1 200元,每售出一件利润为50元,求该实体店一天获利不低于800元的概率.【解】(1)由题意知,网店销售量不低于50共有(0.068+0.046+0.010+0.008)×5×100=66(天),实体店销售量不低于50共有(0.032+0.020+0.012×2)×5×100=38(天),实体店和网店销售量都不低于50的天数为100×0.24=24,故实体店和网店至少有一边销售量不低于50的天数为66+38-24=80.(2)由题意,设该实体店一天售出x件,则获利为(50x-1 700)元,50x-1 700≥800⇒x ≥50.记该实体店一天获利不低于800元为事件A,则P(A)=P(x≥50)=(0.032+0.020+0.012+0.012)×5=0.38.故该实体店一天获利不低于800元的概率为0.38.角度二求样本的数字特征(2019·高考全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.(1)频率、频数、样本容量的计算方法①频率组距×组距=频率;②频数样本容量=频率,频数频率=样本容量,样本容量×频率=频数.(2)频率分布直方图中数字特征的计算①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.1.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:选B .设中间一组的频数为x ,因为中间一个小长方形的面积等于其他8个长方形的面积和的25,所以其他8组的频数和为52x ,由x +52x =140,解得x =40.2.(2020·武昌区调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据直方图完成以下表格;(2)); (3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩? 解:(1)填表如下:(2)平均数为55×0.05+65×0.15+75×0.35+85×0.35+95×0.1=78, 方差s 2=(-23)2×0.05+(-13)2×0.15+(-3)2×0.35+72×0.35+172×0.1=101. (3)进入复赛选手的成绩为80+350-(380-100)350×10=82(分),所以初赛成绩为82分及其以上的选手均可进入复赛.(说明:回答82分以上,或82分及其以上均可)[基础题组练]1.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A .23B .09C .02D .16解析:选D .从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.2.(2020·陕西汉中重点中学联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:若在“不喜欢的男性青年观众”中抽取了6人,则n =( )A .12B .16C .20D .24解析:选D .由题意得3030+10+30+50=30120=6n,解得n =24.故选D .3.(2019·高考全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差解析:选A .记9个原始评分分别为a ,b ,c ,d ,e ,f ,g ,h ,i (按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A .4.(多选)某学生5次考试的成绩(单位:分)分别为85,67,m ,80,93,其中m >0.若该学生在这5次考试中成绩的中位数为80,则得分的平均数可能为( )A .70B .75C .80D .85解析:选ABC .已知的四次成绩按照由小到大的顺序排列为67,80,85,93,该学生这5次考试成绩的中位数为80,则m ≤80,所以平均数85+67+m +80+935≤81,可知平均数可能为70,75,80,不可能为85.故选ABC .5.(多选)从某地区年龄在25~55岁的人员中,随机抽取100人,了解他们对今年两会热点问题的看法,绘制出频率分布直方图,如图所示,则下列说法正确的是( )A .抽取的100人中,年龄在40~45岁的人数大约为20B .抽取的100人中,年龄在35~45岁的人数大约为40C .抽取的100人中,年龄在40~50岁的人数大约为50D .抽取的100人中,年龄在35~50岁的人数大约为60解析:选AD .根据频率分布直方图的性质得(0.01+0.05+0.06+a +0.02+0.02)×5=1,解得a =0.04,所以抽取的100人中,年龄在40~45岁的大约为0.04×5×100=20,所以A 正确;年龄在35~45岁的人数大约为(0.06+0.04)×5×100=50,所以B 不正确;年龄在40~50岁的人数大约为(0.04+0.02)×5×100=30,所以C 不正确;年龄在35~50岁的人数大约为(0.06+0.04+0.02)×5×100=60,所以D 正确.故选AD .6.(2020·开封市定位考试)某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比为k ∶5∶3,现用分层抽样的方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为________.解析:依题意得24120=k k +5+3,解得k =2,所以C 种型号产品抽取的件数为32+5+3×120=36.答案:367.甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是________.解析:由题表中数据可知,丙的平均环数最高,且方差最小,说明技术稳定,且成绩好.答案:丙8.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.则志愿者年龄在[25,35)年龄组的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:(1)0.04(2)4409.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:(1)求a、b、c(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P (注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解:(1)由题意可得,b =1-(0.015+0.125+0.5+0.31)=0.05,a =200×0.05=10,c =200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.所以P =162200=0.81. (3)这次数学测验样本的平均分为x -=16×3+32.1×10+55×25+74×100+88×62200=73, 所以这次数学测验的年级平均分大约为73分.10.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A 在这10天投递的快递件数的平均数为36,众数为33.(2)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为 4.5×36×30=4 860(元),易知乙公司员工B 每天所得劳务费X 的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为110×(136×1+147×3+154×2+189×3+203×1)×30=165.5×30=4 965(元). [综合题组练]1.(2020·安徽五校联盟第二次质检)数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为( )A .σ22B .σ2C .2σ2D .4σ2解析:选D .设a 1,a 2,a 3,…,a n 的平均数为a ,则2a 1,2a 2,2a 3,…,2a n 的平均数为2a ,σ2=(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n. 则2a 1,2a 2,2a 3,…,2a n 的方差为(2a 1-2a )2+(2a 2-2a )2+(2a 3-2a )2+…+(2a n -2a )2n=4×(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n=4σ2.故选D . 2.(多选)新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出版产品供给,实现了行业的良性发展.下面是2015年至2019年我国新闻出版业和数字出版业营收情况,则下列说法正确的是( )A .2015年至2019年我国新闻出版业和数字出版业营收均逐年增加B .2019年我国数字出版业营收超过2015年我国数字出版业营收的2倍C .2019年我国新闻出版业营收超过2015年我国新闻出版业营收的1.5倍D .2019年我国数字出版业营收占新闻出版业营收的比例未超过三分之一解析:选ABD .根据图示数据可知A 正确;1 935.5×2=3 871<5 720.9,故B 正确;16 635.3×1.5=24 952.95>23 595.8,故C 不正确;23 595.8×13≈7 865>5 720.9,故D 正确.故选ABD .3.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.解:(1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x -甲=10+13+12+14+165=13; x -乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4; s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙,可知乙的成绩较稳定. 从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.4.(2020·广州市调研测试)某蔬果经销商销售某种蔬果,售价为每千克25元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每千克10元处理完.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种蔬果日需求量的平均数x -(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250千克该种蔬果,假设当天的需求量为x 千克(0≤x ≤500),利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1 750元的概率.解:(1)x -=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.0025×100+450×0.001 5×100=265.故该种蔬果日需求量的平均数为265千克.(2)当日需求量不低于250千克时,利润y =(25-15)×250=2 500(元),当日需求量低于250千克时,利润y =(25-15)x -(250-x )×5=15x -1 250(元),所以y =⎩⎨⎧15x -1 250,0≤x <2502 500,250≤x ≤500, 由y ≥1 750,得200≤x ≤500,所以P (y ≥1 750)=P (200≤x ≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7. 故估计利润y 不小于1 750元的概率为0.7.。

简单随机抽样高中数学教案

简单随机抽样高中数学教案

简单随机抽样高中数学教案
教学内容:随机抽样
教学目标:
1. 了解什么是随机抽样以及其重要性;
2. 掌握常见的随机抽样方法;
3. 能够应用随机抽样方法解决实际问题。

教学过程:
一、导入:引入随机抽样的概念,并讨论其在生活中的应用。

二、讲解:介绍常见的随机抽样方法,包括简单随机抽样、分层抽样、系统抽样等。

三、练习:让学生通过实例练习不同的随机抽样方法,并分析结果的可靠性。

四、应用:讨论随机抽样在统计调查和科学研究中的应用,以及如何避免抽样偏差。

五、总结:总结本节课的重点内容,并布置相关的练习作业。

教学工具:黑板、教科书、抽样工具(如抽奖箱、骰子等)
教学评估:通过练习和课堂讨论来评估学生对随机抽样的理解和应用能力。

教学延伸:引导学生深入了解随机抽样的原理和方法,以及在实际研究中的应用。

教学反思:及时收集学生的反馈意见,不断改进教学方法,提高教学效果。

高考数学复习考点知识讲解课件49 随机抽样 统计图表

高考数学复习考点知识讲解课件49 随机抽样 统计图表
频率 3.频率分布直方图中小长方形高=组距.
— 9—
(新教材) 高三总复习•数学
— 返回 —
诊断自测 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)简单随机抽样中,每个个体被抽到的机会与先后有关.( × ) (2)抽签法和随机数法都是简单随机抽样.( √ ) (3)分层随机抽样中,每个个体被抽到的可能性与层数及分层有关.( × ) (4)频率分布直方图中,小长方形的面积越大,表示样本数据落在该区间的频率越 大.( √ )
— 22 —
(新教材) 高三总复习•数学
— 返回 —
[解析] 解法一:因为抽样比为21000000=2100,
所以每类人中应抽选出的人数分别为4800×
1 200
=24,7200×
1 200
=36,6400×
1 200

32,1600×2100=8.故选D. 解法二:最喜爱、喜爱、一般、不喜欢的比例为4800∶7200∶6400∶1600=6∶9∶
A.110,110
B.130,15
C.15,130
D.130,130
[解析] 第一次被抽到,显然为110;第二次被抽到,首先第一次不能被抽到,第二次 才被抽到,可能性为190×19=110.
— 19 —
(新教材) 高三总复习•数学
— 返回 —
3.假设从高一年级全体同学(500人)中随机抽出60人参加一项活动,利用随机数法抽 取样本时,先将500名同学按000,001,…,499进行编号,如果从随机数表第8行第6列的 数开始,按三位数连续向右读取,最先抽出的5名同学的号码是(下面摘取了此随机数表 第7行和第8行)( B )
— 返回 —
考点二 分层抽样——自主练透 对点训练 1.(2023·石家庄二中期末)某电视台在因特网上就观众对其某一节目的喜爱程度进行 调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示:

第二章第一节简单随机抽样

第二章第一节简单随机抽样

第二章第一节简单随机抽样一、重点难点:1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.2.能够根据样本的具体情况选择适当的方法进行抽样.二、知识点讲解:一、简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二、抽签法和随机数法:1、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

抽签法的一般步骤:(1)将总体的个体编号;(2)连续抽签获取样本号码.思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方便吗?解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”2、随机数法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。

第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。

16 22 77 94 39 49 54 43 54 82 17 37 93 23 7884 42 17 53 31 57 24 55 06 88 77 04 74 47 6763 01 63 78 59 16 95 55 67 19 98 10 50 71 7533 21 12 34 29 78 64 56 07 82 52 42 07 44 3857 60 86 32 44 09 47 27 96 54 49 17 46 09 6287 35 20 96 43 84 26 34 91 6421 76 33 50 25 83 92 12 06 7612 86 73 58 07 44 39 52 38 7915 51 00 13 42 99 66 02 79 5490 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单选]多头巷道掘进时,爆破母线应(),以免误接爆破母线。A.固定使用B.一线多用C.随挂随用 [单选,A2型题,A1/A2型题]实验室管理者的最主要职责是()。A.决策与筹划,技术与业务B.组织和控制,处理与协调C.技术与业务,影响与号召D.决策与筹划,组织和控制E.影响与号召,处理与协调 [填空题]在旋风预热器的各级管道和旋风筒中,气流和物料热交换作用相对运动方向(),但如果从整体来看,则运动方向()。 [单选]胰岛β细胞分泌的激素是()A.胰高糖素B.胰岛素C.促胃液素D.胰多肽E.生长抑素 [判断题]在倾斜井巷中使用的钢丝绳,其插接长度不得小于钢丝绳直径的1000倍。A.正确B.错误 [问答题,案例分析题]男性,33岁。主诉:发热伴颈部淋巴结无痛性肿大10天就诊。 [单选]乳腺检查的正确顺序是()A.内上、外上、外下、内下、中央、腋窝及锁骨区B.外上、外下、内上、内下、中央、腋窝及锁骨区C.中央、内下、内上、外上、外下、腋窝及锁骨区D.外上、内上、外下、外上、中央、腋窝及锁骨区E.中央、腋窝及锁骨区、外上、内上、外下、外上 [单选]现代通信网由()四大部分组成.A.传送网.交换网.接入网和用户所在地网络B.传输网.交换网.接入网和信令网C.信合网.传送网.接入网和用户所在地网络 [不定项选择]生态环境保护措施中的绿化方案编制中,一般应遵循()的原则。A.采用乡土物种B.生态绿化C.因土种植D.因地制宜 [单选]下列关于会计凭证,表述错误的是()。A.会计凭证是记录经济业务、明确经济责任的书面证明B.会计凭证是登记账簿的依据C.填制原始凭证是会计处理程序的第一个关键步骤D.会计凭证根据填制的程序和用途不同分为原始凭证和记账凭证 [单选]数字微波通信与模拟微波通信相比,下面叙述不正确的是().A.抗干扰性强B.保密性强C.技术更复杂,上下话络比较困难 [单选,A2型题,A1/A2型题]导致声音嘶哑的原因不正确的是()A.用嗓过度B.肺癌纵隔淋巴结转移C.气管内异物D.贲门癌E.声带小结 [问答题,简答题]简述企业选配培训教师的基本标准有哪些。(2012年5月二级真题) [单选]活鲜、易腐物品的处理规定:应在报经上一级主管领导同意后,保存时间满()小时后立即处理,并做好记录。A.24B.48C.72D.12 [单选]关于肋骨骨折,下述哪项不正确()A.直接暴力或间接暴力均可致伤B.以成年和老年人多见C.以第4~7肋骨最易发生骨折D.间接暴力所致肋骨骨折易致气胸E.骨折可发生于单肋,也可发生于多肋 [填空题]消费心理学是商品经济发展到一定阶段的产物,对它的研究有助于实现消费者的消费需求;有助于();有助于提高服务水平;有助于()的发展。 [单选]对于烟气能量回收系统的特点,下列选项中关于烟气描述错误的是()。A、流量大B、压力高C、温度高D、催化剂细粉含量较高 [单选]关于生物电的叙述中,哪一项是错误的A.感受器电位和突触后电位的幅度可随刺激强度的增加而增大B.感受器电位和突触后电位的幅度在产生部位较其周围大C.感受器电位和突触后电位均可以总和D.感受器电位和突触后电位的幅度比动作电位大E.感受器电位和突触后电位都是局部电 [单选]图示结构弯矩MK影响线在K点的竖标为:()A.1.414d/2B.d/4C.0D.d/2 [单选]CT检查前,病人准备工作的主要依据是:()A.申请单B.预约登记卡C."病人需知"预约单D.对家属的交待E.病人自己理解 [单选,A2型题,A1/A2型题]Hayem液中NaCl的主要作用是()A.调节细胞渗透压B.防腐作用C.防止细胞黏附D.固定细胞形态E.提高稀释液比密 [单选]保险合同有效与保险合同生效的关系是()。A.前者是后者的前提条件B.后者是前者的前提条件C.二者互为前提条件D.二者并无实质关系 [单选]按照完好机泵标准,离心泵应达到铭牌能力的()A.A.70%B.B.80%C.C.90% [单选]()是中世纪建筑艺术的巅峰,其代表作在法国有巴黎圣母院教堂、夏特尔教堂,在德国有科隆大教堂,在意大利有著名的米兰大教堂。A.哥特式建筑B.罗马式建筑C.希腊式建筑D.拜占庭式建筑 [单选]生产、使用易燃易爆化学物品场所的电气设备,必须符合国家()标准。A、安全设计B、防火措施C、防静电导除D、电气防爆 [单选,A2型题,A1/A2型题]纠正低血钾时,尿量需达到多少以上才能静脉补钾()A.15ml/hB.40ml/hC.60ml/hD.10ml/hE.5ml/h [单选]下列不属于涉烟案件调查取证方案作用的是()。A、有利于为决策提供依据,辅助决策,支持处罚B、有利于保证调查取证工作的依法进行C、有利于提高调查取证的效率D、有利于保障执法人员和相对人的人身和财产安全 [填空题]妊娠5~6周时超声探测可发现______。 [单选]现在就读小学四年级的学生,可选择开立()的教育储蓄,并在支取时凭证明按规定免征利息所得税。A.五年B.三年C.一年D.六年 [单选,A2型题,A1/A2型题]引起婴儿佝偻病的主要原因是()。A.饮食中缺钙B.甲状旁腺素缺乏C.食物中钙、磷比例不当D.缺乏维生素AE.缺乏维生素D [填空题]GCr15为滚珠轴承刚,“G”表示(),15表示()。 [单选]公安消防机构在消防监督检查中,发现消防安全布局不符合消防安全要求、严重威胁城市安全的易燃易爆化学物品场所时,应当书面报请()或者通报有关部门予以解决。A、上一级公安消防机构B、主管公安机关C、当地人民政府D、城市建设部门 [单选]对个人购买自用普通住房发放的按揭贷款最长不得超过()年。A.30B.35C.40D.45 [单选,A2型题,A1/A2型题]正常肌肉在针电极停止活动后,插入活动()A.持续时间少于100msB.持续时间少于200msC.持续时间少于300msD.持续时间少于400msE.持续时间少于500ms [单选,A2型题,A1/A2型题]骨髓检查对下列哪种疾病的确诊无意义()A.白血病B.不稳定血红蛋白病C.多发性骨髓瘤D.巨幼细胞性贫血E.恶性组织细胞病 [单选]影响指示失速速度的因素有().A.重量、载荷因数、功率B.载荷因数、迎角、功率C.迎角、重量、空气密度 [单选,A1型题]当某种卫生服务的价格上升1%,其需求数量增加0.2%,说明该服务为()。A.完全弹性B.富有弹性C.单元弹性D.缺乏弹性E.完全无弹 [填空题]大量的历史数据采集()保存。 [单选,A1型题]静脉注射肝胆显像剂后可被肝内何种细胞摄取()A.肝巨噬细胞B.胆管细胞C.肝细胞D.转移性肝癌细胞E.血管上皮细胞 [多选]f列单位中,()属于我国法定计量单位。A.小时(h)B.华氏度(℉)C.海里(nmile)D.公顷(hm2)
相关文档
最新文档