2[1]1简单随机抽样和系统抽样

合集下载

2.1 简单随机抽样、系统抽样

2.1  简单随机抽样、系统抽样
上述四点特征,如果有一点不满足,就不是简单随机抽样.
预习检测
4.系统抽样的概念
先将总体中的个体逐一编号,然后按号码顺序以一定的间隔 k 进行抽取,先
从第一个间隔中随机地抽取一个号码,
编号
然后按此间隔_逐__个__抽取即得到所需样
本.
5.系统抽样的步骤
N n
一般地,假设要从容量为 N 的总体
简单随机抽样
3.抽签法和随机数法的特点
优点
缺点
简单易行,当总体的个体数_不__多___时,仅适用于个体数_较__少__的总体,当总体
抽签法
使总体处于“搅拌”均匀的状态比较
容易,这时,每个个体都有_均__等___的
容量_较__大___时,费时费力又不方便,况
且,如果号签搅拌的不均匀,可能导致
机被抽中,从而能够保证样本的代
号码抽出.
达标检测
1.抽签法中确保样本代表性的关键是( B )
A.抽签
B.搅拌均匀
C.逐一抽取
D.抽取后不放回
2.某班 50 名学生中有 30 名男生,20 名女生,用简单随机抽样抽取 1 名学生参
加某项活动,则抽到女生的可能性为( A )
A.0.4 B.0.5
C.0.6
2 D.3
3.在“世界读书日”前夕,为了了解某地 5 000 名居民某天的阅读时间,从中
卷 B,其余的人做问卷 C.则抽到的人中,做问卷 B 的人数为( C )
A.7
B.9
C.10
D.15
例 2 某单位有 200 名职工,现要从中抽取 40 名职工作为样本.用系统抽样法, 将全体职工随机按 1~200 编号,并按编号顺序平均分为 40 组(1~5 号,6~10 号,…,196~200 号).若第 5 组抽出的号码为 22,则第 8 组抽出的号码应是 ____3_7___.

高考数学一轮复习专题训练—随机抽样

高考数学一轮复习专题训练—随机抽样

随机抽样考纲要求1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.知识梳理1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样. (2)系统抽样的操作步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①先将总体的N 个个体编号;②确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =Nn (否则,先剔除一些个体);③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),……,依次进行下去,直到获取整个样本. 3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(2)系统抽样在起始部分抽样时采用简单随机抽样.()(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()答案(1)×(2)√(3)×(4)×2.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案 A解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中每1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.一个公司共有N名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那么从该部门抽取的员工人数是________.答案nm N解析 每个个体被抽到的概率是n N ,设这个部门抽取了x 个员工,则x m =n N ,∴x =nmN.4.(2020·上饶一模)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为( ) 附:第6行至第9行的随机数表如下: 2635 7900 3370 9160 1620 3882 7757 4950 3211 4919 7306 4916 7677 8733 9974 6732 2748 6198 7164 4148 7086 2888 8519 1620 7477 0111 1630 2404 2979 7991 9683 5125 A .3 B .16 C .38 D .20答案 D解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,超出00~49及重复的不选,则编号依次为33,16,20,38,49,32,…,则选出的第3个个体的编号为20,故选D.5.(2021·郑州调研)某校有高中生1 500人,现采用系统抽样法抽取50人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、490人、515人)按1,2,3,…, 1 500编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为( ) A .15 B .16 C .17 D .18答案 C解析 采用系统抽样法从1 500人中抽取50人,所以将1 500人平均分成50组,每组30人,并且在第一组抽取的号码为23,所以第n 组抽取的号码为a n =23+(n -1)×30=30n -7,而高二学生的编号为496到985,所以496≤30n -7≤985,又n ∈N *,所以17≤n ≤33,则共有17人,故选C.6.(2018·全国Ⅲ卷)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 答案 分层抽样解析 因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.考点一 简单随机抽样及其应用1.下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验 答案 D解析 A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体中的个体有明显的层次;D 是简单随机抽样.故选D.2.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( ) A.110,110 B .310,15C.15,310 D .310,310答案 A解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110,故选A.3.(2021·南昌一模)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.07 C.02 D.01答案 D解析从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.感悟升华 1.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.2.简单随机抽样常有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).考点二系统抽样及其应用【例1】(1)(2021·太原调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为()A.15 B.18 C.21 D.22(2)(2019·全国Ⅰ卷)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生(3)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.答案 (1)C (2)C (3)2 10解析 (1)由已知得间隔数为k =244=6,则抽取的最大编号为3+(4-1)×6=21.(2)根据题意,系统抽样是等距抽样, 所以抽样间隔为1 000100=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C. (3)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.感悟升华 1.如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn ,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样,特别注意,每个个体被抽到的机会均是nN .2.系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.【训练1】 (1)(2021·衡水调研)衡水中学高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. (2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 (1)45 (2)4解析 (1)分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.(2)依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据,从每组中抽取一人.成绩在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人. 考点三 分层抽样及其应用角度1 求某层入样的个体数【例2】 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有 20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢 4 8007 2006 4001 600为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( ) A .25,25,25,25 B .48,72,64,16 C .20,40,30,10 D .24,36,32,8答案 D解析 法一 因为抽样比为10020 000=1200,所以每类人中应抽取的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.法二 最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8.角度2 求总体或样本容量【例3】 (1)(2021·东北三省四校联考)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( ) A .12B .18C .24D .36(2)(2020·西安调研)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 (1)D (2)1 800解析 (1)根据分层抽样方法知n 960+480=24960,解得n =36.(2)由题设,抽样比为804 800=160.设甲设备生产的产品为x 件,则x60=50,∴x =3 000.故乙设备生产的产品总数为4 800-3 000=1 800.感悟升华 1.求某层应抽个体数量:按该层所占总体的比例计算.2.已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.【训练2】 (1)(2020·郴州二模)已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )A .240,18B .200,20C .240,20D .200,18(2)(2021·合肥模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________. 答案 (1)A (2)6解析 (1)样本容量n =(250+150+400)×30%=240,抽取的户主对四居室满意的人数为150×30%×40%=18.(2)抽样比为2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.A 级 基础巩固一、选择题1.(2020·兰州二模)某学校为响应“平安出行”号召,拟从2 019名学生中选取50名学生加入“交通志愿者”,若采用以下方法选取:先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率( ) A .不全相等 B .均不相等C .都相等,且为140D .都相等,且为502 019答案 D解析 先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率相等,且为p =502 019,故选D. 2.(2021·永州模拟)现从已编号(1~50)的50位同学中随机抽取5位以了解他们的数学学习状况,用选取的号码间隔一样的系统抽样方法确定所选取的5位同学的编号可能是( ) A .5,10,15,20,25 B .3,13,23,33,43 C .1,2,3,4,5 D .2,10,18,26,34答案 B解析 抽样间隔为505=10,只有选项B 符合题意.3.(2020·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是( ) A .①简单随机抽样,②系统抽样 B .①分层抽样,②简单随机抽样 C .①系统抽样,②分层抽样 D .①②都用分层抽样 答案 B4.在一个容量为N 的总体中抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3 答案 D解析 由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D. 5. (2021·襄阳联考)如图是调查某学校高三年级男女学生是否喜欢数学的等高条形图,阴影部分的高表示喜欢数学的频率.已知该年级男、女生各500名(所有学生都参加了调查),现从所有喜欢数学的学生中按分层抽样的方式抽取32人,则抽取的男生人数为( )A .16B .32C .24D .8答案 C解析 由题中等高条形图可知喜欢数学的女生和男生的人数比为1∶3,,所以抽取的男生人数为24.故选C.6.某中学400名教师的年龄分布情况如图,现要从中抽取40名教师作样本,若用分层抽样方法,则40岁以下年龄段应抽取( )A .40人B .200人C .20人D .10人答案 C解析 由图知,40岁以下年龄段的人数为400×50%=200,若采用分层抽样应抽取200×40400=20(人).7.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20答案 C解析 由系统抽样的定义知,分段间隔为1 00040=25.8.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800双B .1 000双C .1 200双D .1 500双答案 C解析 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的13,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的13,即为1 200双皮靴. 二、填空题9.某单位在岗职工共620人,为了调查工人用于上班途中的时间,决定抽取62名工人进行调查,若采用系统抽样方法将全体工人编号等距分成62段,再用简单随机抽样法得到第1段的起始编号为4,则第40段应抽取的个体编号为________. 答案 394解析 将620人的编号分成62段,每段10个编号,按系统抽样,所抽取工人编号成等差数列,因此第40段的编号为4+(40-1)×10=394.10.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________(下面摘取了随机数表第7行至第9行).答案 068解析 由随机数表知,前4个样本的个体编号分别是331,572,455,068.11.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________件. 答案 800解析 设样本容量为x ,则x3 000×1 300=130,∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件). 设C 产品的样本容量为y ,则y +y +10=170,∴y =80. ∴C 产品的数量为3 000300×80=800(件).12.某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为________. 答案 3解析 系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.B 级 能力提升13.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A .104人 B .108人C .112人D .120人答案 B解析 由题意知,抽样比为 3008 100+7 488+6 912=175,所以北乡遣175×8 100=108(人).14.下列抽取样本的方式属于简单随机抽样的个数为( ) ①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里. ③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. A .0 B .1 C .2 D .3答案 A解析 ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.15.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,在采用系统抽样时,需要在总体中先剔除2个个体,则n =________. 答案 18解析 总体容量为6+12+18=36,当样本容量为n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.16.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组(k≥2)中抽取的号码个位数字与m+k的个位数字相同,若m=8,则k的值为________,在第8组中抽取的号码是________.答案876解析由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.。

简单随机抽样和系统抽样

简单随机抽样和系统抽样

简单随机抽样和系统抽样引言在统计学和调查研究领域中,抽样是一种常用的方法,用于从总体中选择一个样本集合进行分析和推断。

在抽样过程中,有许多不同的抽样方法可供选择,其中最常见的包括简单随机抽样和系统抽样。

本文将介绍这两种抽样方法的基本原理、应用场景和计算流程。

简单随机抽样简单随机抽样是一种基本的抽样方法,它要求每个个体被选中的概率相等且相互独立。

具体步骤如下:1.定义总体:首先需要明确总体的定义,即要进行抽样的对象或样本来源。

2.确定样本容量:根据研究目的和可行性要求,确定需要抽取的样本容量。

3.编号:为了对总体个体进行抽样,需对其进行编号,通常采用标志符号或编号系统。

4.抽样:使用随机数表或计算机生成随机数,按照随机数的顺序选择相应的个体,直到达到所需的样本容量。

5.收集数据:通过对抽取得到的样本个体进行观察、测量或调查,收集相关数据。

简单随机抽样的优点是操作简单、易于理解和实施,且能够充分反映总体的抽样特征。

然而,当总体规模较大时,操作复杂度较高,且可能涉及样本重复的情况。

系统抽样系统抽样是一种基于均匀间隔的抽样方法,它的基本思想是按照固定的间隔从总体中选择样本。

具体步骤如下:1.定义总体:与简单随机抽样相同,首先需要明确总体的定义。

2.确定样本容量:同样需要确定所需的样本容量。

3.编号:对总体个体进行编号,通常采用标志符号或编号系统。

4.计算抽样间隔:根据总体容量和样本容量,计算出抽样间隔(抽样单位)。

5.随机起点:使用随机数表或计算机生成随机数,选择一个起始位置以确保样本选择的随机性。

6.抽样:从起始位置开始,每隔抽样间隔选择一个个体作为样本。

7.收集数据:同样需要通过对抽取得到的样本个体进行观察、测量或调查,收集相关数据。

系统抽样相较于简单随机抽样的优势在于操作相对简单且较为高效,可以避免样本的重复选择。

然而,如果总体中存在某种特殊的顺序或周期性,系统抽样可能导致样本存在明显的偏差。

应用场景在实际应用中,简单随机抽样和系统抽样都有各自的适用场景。

简单随机抽样系统抽样分层抽样含答案

简单随机抽样系统抽样分层抽样含答案

2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。

简单随机抽样和系统抽样

简单随机抽样和系统抽样
方法简单易行,适用于总体容量较小或对总体单 02 元差异不大的情况。
可以避免主观因素对抽样的干扰。 03
缺点
01 当总体容量较大时,简单随机抽样需要大量的时
间和资源,实施难度较大。
02
在某些情况下,可能存在难以编号或标识的情况, 导致无法进行简单随机抽样。
02
系统抽样
定义
系统抽样:按照某种规则从总体中抽取样本的方 法。
实施步骤
确定总体
明确研究对象的总体 范围和数量。
确定样本量
根据研究目的和资源 确定所需的样本数量。
随机编号
对总体中的每个单元 进行编号,确保每个
编号都是唯一的。
随机抽取
使用随机数表或计算 机软件生成随机数, 选择与随机数对应的
单元作为样本。
优点
每个样本被选中的概率相等,保证了样本的代表 01 性。
在一项关于消费者对某品牌手机满意度的调查中,研究者根据消费者的购买记录 ,每隔10名顾客抽取一名顾客进行调查,总共抽取了500名顾客。
比较两种抽样方法的应用实例
• 在一项关于某地区居民健康状况的研究中,研究者先采用简单随机抽样方法从该地区居民名 单中抽取了1000名居民作为样本,然后在这1000名居民中采用系统抽样方法,根据居民的年 龄分布,每隔10岁抽取一个居民进行更详细的调查。
01
如果总体分布不均匀,可能会导致样本偏差。
02
如果总体很大,抽样间隔可能很小,导致样本重复。
03
如果总体有明显的结构或分层,系统抽样可能无法 反映这些结构或分层。
简单随机抽样和系统抽样的
03
比较
定义与特点比较
简单随机抽样
从总体中随机抽取一定数量的样本,每个样本被选中的概率相等。

简单随机抽样和系统抽样

简单随机抽样和系统抽样
(3)采用简单随机抽样的方法,从第一组5名学生中抽 出一名学生,不妨设编号为l(1≤l≤5).
(4)那么抽取的学生编号为l+5k(k=0,1,2…,58),得 到59个个体作为样本,如当l=3时的样本编号为3,8,13…, 288,293.
高一数学备课组
返回
点评:当总体中个体无差异且个体数目较大时,采用 系统抽样抽取样本.利用系统抽样抽取样本时,要注意在每 一段上仅抽取一个个体,并且抽取出的个体编号按从小到大 顺序排列时,从第2个号码起,每个号码与前面一个号码的 差都等于同一个常数,这个常数就是分段间隔,因此系统抽 样又称为等距抽样.
返回
高一数学备课组
返回
1.抽签法的优点是简单易行,缺点是当总体的容量 非常大时,费时、费力,又不方便,如果标号的签搅拌得 不均匀,会导致抽样不公平,随机数表法的优点与抽签法 相同,缺点是当总体容量较大时,仍然不是很方便,但是 比抽签法公平,因此这两种方法只适合总体容量较少的抽 样类型,简单随机抽样每个个体入样的可能性都相等,均 为n/N.
高一数学备课组
返回
第三步,从选定的数59开始向右读下去,得到一个 两位数字号码59,由于59>39,将它去掉;继续向右读, 得到16,将它取出;继续下去,又得到 19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于 它在前面已经取出,将它去掉,再继续下去,得到34.至 此,10个样本号码已经取满.于是,所要抽取的样本号码 是
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

2.1.1-2 简单随机抽和系统抽样样

2.1.1-2  简单随机抽和系统抽样样
为参加活动的人选.
思考3:一般地,抽签法的操作步骤如何? 第一步:将总体中的所有个体编号,并把号码写在形状、
大小相同的号签上.
第二步:将号签放在一个容器中,并搅拌均匀. 第三步:每次从中抽取一个号签,连续抽取n次,就得 到一个容量为n的样本.
思考4:你认为抽签法有哪些优 点和 缺 点?
优点:简单易行,当总体个数不多的时候搅拌均匀很容易, 个体有均等的机会被抽中,从而能保证样本的代表性. 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性 差的可能性很大.
思考:假设我们要考察某公司生产的500克袋装牛奶的质 量是否达标,现从800袋牛奶中抽取60袋进行检验,利用 随机数表抽取样本时应如何操作? 第一步:将800袋牛奶编号为000,001,002,…,799.
第二步:在随机数表中任选一个数作为起始数(例如选出
第8行第7列的数7为起始数). 第三步:从选定的数7开始依次向右读(读数的方向也可 以是向左、向上、向下等),将编号范围内的数取出,编 号范围外的数去掉,直到取满60个号码为止,就得到一个
第二章 统计
2.1 随机抽样
2.1.1 简单随机抽样
1936年,美国总统选举前,一份颇有名气的杂志的工作人员做了 一次民意测验,调查共和党的兰顿(当时任堪萨斯州州长)和民主党的
罗斯福(当时的总统)谁将当选下一届总统。为了了解公众意向,调查
者通过电话簿和车辆登记簿的名单给一大批人发了调查表(注意在1936 年电话和汽车只有少数富人拥有)。通过分析收回的调查表,显示兰顿
可得到一个容量为40的样本.
1.为了解1200名学生对学校某项教改试验的意见,打算从 中抽取一个容量为30的样本,考虑采用系统抽样,则分段
的间隔k为( A )

2[1].1.简单随机抽样和系统抽样

2[1].1.简单随机抽样和系统抽样
注意以下四点: (1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取;
(3)它是一种不放回抽样;
(4)它是一种等概率抽样。
随机数表:
制作一个表,其中的每个数都是 用随机方法产生的(随机数)。
随 机 数 表 法
随 机 数 表
教材103页
实 例 二要考察某公司生产的500克袋装牛奶的质
量是否达标,现从800袋牛奶中抽取60袋进行 检验。
1、将800袋牛奶编号,000,001,…,799 2、在随机数表(课本103页)中任选一数, 例如第8行第7列,是7。
3、从7开始往右读(方向随意),得到第一 个三位数785<编号799,将对应编号的牛奶 取出;继续向右读,得到916>编号799,舍 弃;如此继续下去,直至抽出60袋牛奶。
抽取都会带有主观或客观的影响因素.
练习
1.中央电视台要从春节联欢晚会的60名热心 观众中随机抽出4名幸运观众,试用抽签法为 其设计产生这4名幸运观众的过程. 2.欲从本班56名学生中随机抽取8名学生参 加党的基本知识竞赛,试用随机表法确定这8 名学生.
评点:抽签法—编号、制签、搅拌、抽取,关
键是“搅拌”后的随机性;随机数表法—编号、选数、 取号、抽取,其中取号位置与方向具有任意性.
电话 动迁户 原住户
A.6500户
B.300户
已安装
未安装
65
40
30
65
C.19000户 D.9500户
练习2.某工厂有1003名工人,从中抽取10名工人进行体 检. ①试用简单随机抽样和系统抽样两种方法进行具体实施 . ②以上两种不同的抽样方法对于每一个个体被抽到的概 率是否相同.
小结 1.系统抽样也是等概率抽样,即每个个体被抽到 的概率是相等的,从而保证了抽样的公平性.

简单随机抽样,系统抽样,分层抽样 (2)

简单随机抽样,系统抽样,分层抽样 (2)

课 题 简单随机抽样,系统抽样,分层抽样 教学目标1.正确理解三种抽样方法的一般步骤和方法2.正确理解三中抽样方法间的区别和联系;重点、难点三种抽样方法概念的理解 2能够灵活应用三种抽样的方法解决统计问题。

考点及考试要求综合题考点一、简单随机抽样的概念一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。

(2)简单随机样本数n 小于等于样本总体的个数N 。

(3)简单随机样本是从总体中逐个抽取的。

(4)简单随机抽样是一种不放回的抽样。

(5)简单随机抽样的每个个体入样的可能性均为Nn 。

思考:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。

(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

抽签法和随机数表法 1、抽签法的定义。

抽签法就是把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。

【说明】抽签法的一般步骤:(1)将总体的个体编号。

(2)连续抽签获取样本号码。

思考:你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?2、随机数表法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。

【说明】随机数表法的步骤: (1)将总体的个体编号。

(2)在随机数表中选择开始数字。

(3)读数获取样本号码。

【例题精析】例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样。

常见的随机抽样方法介绍

常见的随机抽样方法介绍

常见的随机抽样方法介绍抽样方法介绍朱一军福建省产品质量检验研究院一、随机方法选择及随机数产生按照GB/T 10111-2008 《随机数的产生及其在产品质量抽样检验中的应用程序》的要求,并根据受检单位的产品堆放形式、基数(批量)大小,确定抽样方法(通常包括简单随机抽样、分层随机抽样、系统抽样、整群抽样、全数抽样五种方法)。

随机数一般可使用随机数表、骰子或扑克牌中任选一种方式产生。

(一)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;优点:操作简便易行缺点:总体过大不易实行1. 定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≦N),如果每次抽取式总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

2. 简单随机抽样方法(1)抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。

当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)(2)随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

(二)分层抽样(Stratified Random Sampling) 主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。

共同点:每个个体被抽到的概率都相等N/M。

定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样(stratified sampling)。

(三)系统抽样当总体中的个体数较多时,采用简单随机抽样显得较为费事。

这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

简单随机抽样、系统抽样、分层抽样含答案

简单随机抽样、系统抽样、分层抽样含答案

简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.6.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件 分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ),110,15,310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案 C 解析 从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,32 答案 B 解析 由题意知分段间隔为10.只有选项B 中相邻编号的差为10,选B .7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A .抽签法B .随机数表法C .系统抽样D .分层抽样答案 D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A .70B .20C .48D .2答案B 由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A .某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D .从50个零件中抽取5个做质量检验答案 C 解析 A 的总体容量较大,宜采用系统抽样方法;B 的总体容量较小,用简单随机抽样法比较方便;C 总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D 与B 类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A .5个B .10个C .20个D .45个答案 A 解析 由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性大一些B .与第几次抽样无关,每次抽到的可能性相等C .与第几次抽样有关,最后一次抽到的可能性大些D .与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案 B解析 由简单随机抽样的特点知与第n 次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案 抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案 ①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________. 答案 16解析 用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案 7,4,6解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 16.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C 中抽取________个个体.答案 20解析 由题意可设A 、B 、C 中个体数分别为5k,3k,2k ,所以C 中抽取个体数为2k 5k +3k +2k×100=20. 17.某工厂生产A 、B 、C 、D 四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号有16件,那么此样本的容量n 为________.答案 88解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n =2+3+5+12×16=88.。

常见的随机抽样方法介绍

常见的随机抽样方法介绍

抽样方法介绍朱一军福建省产品质量检验研究院一、随机方法选择及随机数产生按照GB/T10111-20PP《随机数的产生及其在产品质量抽样检验中的应用程序》的要求,并根据受检单位的产品堆放形式、基数(批量)大小,确定抽样方法(通常包括简单随机抽样、分层随机抽样、系统抽样、整群抽样、全数抽样五种方法)。

随机数一般可使用随机数表、骰子或扑克牌中任选一种方式产生。

(一)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;优点:操作简便易行缺点:总体过大不易实行1. 定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n W N ,如果每次抽取式总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

2. 简单随机抽样方法(1)抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。

当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)(2)随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

(二)分层抽样( StratifiedRandomSampling) 主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。

共同点:每个个体被抽到的概率都相等N/M。

定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样 ( stratifiedsampling )。

(三)系统抽样当总体中的个体数较多时,采用简单随机抽样显得较为费事。

这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

2.1.1简单随机抽样(三种抽样方法)

2.1.1简单随机抽样(三种抽样方法)
(2)分层抽样是建立在简单随机抽样或系统抽样的基础
上的,由于它充分利用了已知信息,因此它获取的样本更 具代表性,在实用中更为广泛。
第28页,共36页。
2、分层抽样的抽取步骤:
第1页,共36页。
笑一笑,十年少
一天,爸爸叫儿子去买一盒火柴,临出门 前,爸爸嘱咐儿子要买能划燃的火柴,儿子拿 着钱出门了,过了好一会儿,儿子才回到家。
“火柴能划燃吗?”爸爸问。 “都能划燃。” “你这么肯定?”
儿子递过一盒划过的火柴,兴奋地说: “我每根都试过啦。”
问:这则笑话中,儿子采用的是什么调查方式?这其 中的全体是什么?这种调查方式好不好?
性是( )C 。
A.与第几次抽样有关,第一次抽的可能性最大 B.与第几次抽样有关,第一次抽的可能性最小 C.与第几次抽样无关,每次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本无关
第20页,共36页。
问题某:校高一年级共有20个班,每班有50名学生。
为了了解高一学生的视力状况,从这1000人中抽 取一个容量为100的样本进行检查,应该怎样抽样?
中任意拿出一个零件进行质量检验后,再把它放回盒子里;
4. ③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑已编好号,
对编号随机抽取)
5. A.① B.② C.③
D.以上都不对
四个特点:①总体个数有限;②逐个抽取;③不 放回;④每个个体机会均等,与先后无关。
第10页,共36页。
B 2.在简单随机抽样中,某一个个体被抽中的可能性是( )
为了解1200名学生对学校教改试验的意见打算从中抽取一个容量为30的样本考虑采用系统抽样则分段间隔k2某商场新进3000袋奶粉为检查其三聚氰胺是否超标先采用系统抽样的方法从中抽取150检查若第一组抽取号码是11则第61组抽出的号码2采用系统抽样的方法从个体数为1003的总体中抽取一个容量50的样本则在抽样过程中被剔除的个体数为抽样间隔为1某工厂生产产品用传送带将产品送放下一道工序质检人员每隔十分钟在传送带的某一个位置取一件检验则这种抽样方法是a

简单随机抽样、系统抽样、分层抽样

简单随机抽样、系统抽样、分层抽样

专题四作业作者:卢弘观看讲座“基于课改背景的高中概率统计的教学”,提出三个说明统计抽样的方法对于科学结论的作用的实际案例简单随机抽样系统抽样分层抽样在现实生活中,会遇到很多进行抽样调查的问题,这时候我们就需要对具体问题具体分析,采用不同抽样方法来解决。

主要的抽样方法有三种:简单随机抽样,系统抽样,分层抽样。

这三种抽样方法的共同点是:抽样过程中每个个体被抽到的概率是相同的。

这三种抽样方法也具有各自的特点:简单随机抽样的特点是从总体中逐个抽取,适用的范围是总体中的个体数较少;系统抽样的特点是将总体均分为几个部分,按照事先确定的规则在各部分抽取,适用的范围是总体中的个体数较多;分层抽样的特点是将总体分成几层,分层进行抽取,适用范围是总体由差异明显的几部分组成。

三种方法之间相互联系:系统抽样在第一部分抽样是进行的是简单的随机抽样,分层抽样中各层抽样采取简单随机抽样方法。

简单随机抽样案例:在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?系统抽样案例:从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A.5,10,15,20,25 B、3,13,23,33,43C.1,2,3,4,5 D、2,4,6,16,32[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B分层抽样案例:某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本.第一步:该项调查应采用哪种抽样方法进行?第二步:在各年龄段具体如何抽样?怎样获得所需样本?第三步:计算样本容量与总体的个体数之比.第四步:将总体分成互不交叉的层,按比例确定各层要抽取的个体数第五步:按比例,三个年龄层次的职工分别抽取多少人?35岁以下25人,35岁~49岁56人,50岁以上19人..第六步:用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第七步:将各层抽取的个体合在一起,就得到所取样本.。

2.1.2系统抽样

2.1.2系统抽样

2.1.1-2简单随机抽样、系统抽样班级:姓名:编者:高台一中王旭刚问题引航什么是简单随机抽样?简单随机抽样有哪两种?它们各自的特点是什么?(2)什么是系统抽样?它的优点和缺点是什么?自主探究N个个体,从中地抽取n个个体作为(n≤N),如果每次抽取时总体内的各个个体,就把这种抽样方法叫做。

(1)抽签法:一般地,抽签法就是把总体中的N个个体,把号码写在上,将号签放在一个容器中,,每次从中抽取一个号签, n次就得到一个容量为n的样本。

(2)随机数法:利用或计算机产生的随机数进行抽样,叫随机数表法.二、系统抽样:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体,然后按照,从每一部分抽取,得到所需要的样本,这种抽样的方法叫做。

总结简单随机抽样和系统抽样的优缺点:提出疑惑特点:(1)简单随机抽样要求被抽取的样本的总体个数N是(2)简单随机样本是从总体中逐个抽取的(3)简单随机抽样的每个个体入样的可能性均为步骤:抽签法的一般步骤:随机数法的一般步骤:1. 1.2. 2.3.二.系统抽样的特点?步骤?特点:(1)当时,采用系统抽样。

(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=.(3)预先制定的规则指的是:在第1段内采用确定一个,在此编号基础上加上分段间隔的整倍数即为抽样编号.系统抽样的一般步骤:1.2.3.4.互动探究例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作为样本;(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;(3)某班45名同学,指定个子最高的5人参加某活动;(4)从20个零件中一次性抽出3个进行质量检测.例2、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。

简单随机抽样,系统抽样

简单随机抽样,系统抽样

这样就得到一个容量为50的样本。
一、系统抽样的概念
一般地,要从容量为N的总体中抽取容量为n的样 本,可将总体分成均衡的若干部分,然后按照预 均衡的 先制定的规则,从每一部分抽取一个个体,得到 所需要的样本,这种抽样的方法叫做系统抽样。 (又叫等距抽样)
二、系统抽样的一般步骤 (1)将总体的N个个体编号. (2)确定分段间隔k,对编号进行分段.当样 本容量n整除N时,k=N/n; (若k=N/n不是整数,则可随机剔除一些 个体,使剩下的个体总数N1能被n整除)
用系统抽样方法从中抽取6件检验,则所抽到的个体编号可能
是( )
(A)5,10,15,20,25,30 (B)2,14,26,28,42,56 (C)5,8,31,36,48,54 (D)3,13,23,33,43,53 60 【解析】选D.由k= =10,故采用系统抽样,编号分成6段, 6 每段间隔为10,故所给的选项只有D符合.
目 录 学 习 目 标 定 位 基 础 自 主 学 习
典 例 精 析 导 悟 课 堂 基 础 达 标 ห้องสมุดไป่ตู้ 能 提 升 作 业
4.从总数为N的一批零件中抽取一个容量为30的样本.若每个 零件被抽取的可能性为25%,则N为( (A)150 (B)200 (C)100 ) (D)120
【解题提示】因为在简单随机抽样中,每个个体被抽到
30 的机会相等,故可利用 =25%求得. N 30 【解析】选D.由 N =25%,解得N=120.
2.1.2 系统抽样
探究:
某学校为了了解高一年级学生对教师教学的 意见,打算从高一年级500名学生中抽取50名 进行调查,你能否设计抽取样本的方法?
(1)将这500名学生从1到500编号 (2)确定间隔,间隔为500/50=10 (3)在第一段1~10随机抽取一个号码(假设为6) (4)每隔10个号码抽取一个,得到 6,16,26,…,486,496.

《统计与计量分析》答案-190616(2)

《统计与计量分析》答案-190616(2)
外生变量一般是确定性变量,或是具有临界概率分布的随机变量,其数值是在所研究的经济系统的模型之外决定的,其参数不是模型系统研究的元素。外生变量影响系统但不受系统影响。外生变量一般是经济变量,条件变量,政策变量,虚变量。
8.我国1998年至2016年的季度通货膨胀率数据属于什么数据(时间序列,面板数据,还是截面数据)?
P值检验的有点在于,它提供了更过的信息,让人们可以选择一定的水平来评估结果是否具有统计上的显著性。
7.请说明内生变量与外生变量的区别。
内生变量是具有某种概率分布的随机变量,其数值是在所研究的经济系统的模型内决定的,其参数是联立方程模型估计的元素。内生变量是由模型系统决定的,同时也对模型系统产生影响。内生变量一般为经济变量。
分层抽样也叫分类抽样,就是先将总体的所有单位依照一种或几种特征分为若干个子总体,每一个子总体即为一类,然后从每一类中按简单随机抽样或系统随机抽样的办法抽取一个子样本,称为分类样本,它们的集合即为总体样本。
(4)整群抽样
整群抽样又称聚类抽样或集体抽样,是将总体按照某种标准划分为一些群体,每一个群体为一个抽样单位,再用随机的方法从这些群体中抽取若干群体,并将所抽出群体中的所有个体集合为总体的样本。
数据分布偏斜程度较大时应用。
3.请解释中心极限定理的含义。
中心极限定理是研究独立随机变量和的极限分布为正态分布的问题。它是概率论中最重要的一类定理,有广泛的实际应用背景。
中心极限定理是概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量积累分布函数逐点收敛到正态分布的积累分布函数的条件。
(5)多阶段抽样
多阶段抽样又称多级抽样或分段抽样,就是把从总体中抽取样本的过程分成两个或多个阶段进行的抽样方法。

(最新整理)简单随机抽样和系统抽样

(最新整理)简单随机抽样和系统抽样
(3).关于读数:方向事先设定好
2021/7/26
18
例3:高一(9)班有42名学生,学号从01到42,数学 老师在上统计课时,应用随机数表法选5名学生, 先选定随机数表中第21行第29个数2,得到一个 两位数26,然后依次提问,那么被提问的5个学生 是__2_6_号__0_4_号__3_3_号__0_9_号__0_7_号_____.
随机数表的第21行和第22行如下
68 34 30 13 70 55 74 30 77 40 44 22 78 84 26 04 33 46 09 52 68 07 97 06 57
74 57 25 65 76 59 29 97 68 60 71 91 38 67 54 13 58 18 24 76 15 54 55 95 52
2021/7/26
17
说明:
(1). 关于编号:位数相同 [问题]当N=100时,分别以0,1为起点对总体编号,再利用
随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗? 答:在这个问题中,个体总数为100.从0开始编号,那么用
两位数字即可,因此可以节省从随机数表中查取随机数的时间.
(2).关于选首数:随意选取
构改革的意见,要从中抽取容量为20的样本;
D. 某乡农田有山地8000亩,丘陵12000亩,平地
24000亩,洼地4000亩,现抽取农田 480 亩估计全乡
农田平均产量 。
4、某工厂生产产品,用传送带将产品送放下一道工序,
质检人员每隔十分钟在传送带的某一个位置取一件检验,
则这种抽样方法是( C )。
例4中每个学生被抽到的概率都是多少?
40/322
2021/7/26
26
系统抽样与简单随机抽样比较,有何 优、缺点?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时
总体:所要考察对象的全体。 个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做 这个总体的一个样本。
样本容量:样本中个体的数目。
联系生活
要判断一锅汤的味道需要把整锅汤都 喝完吗?应该怎样判断?
将锅里的汤“搅拌均匀”,品尝一 小勺就知道汤的味道,这是一个简单 随机抽样问题.
联系生活
实 例 二要考察某公司生产的500克袋装牛奶的质 量是否达标,现从800袋牛奶中抽取60袋进行 检验。
1、将800袋牛奶编号,000,001,…,799
2、在随机数表(课本103页)中任选一数, 例如第8行第7列,是7。
3、从7开始往右读(方向随意),得到第一 个三位数785<编号799,将对应编号的牛奶 取出;继续向右读,得到916>编号799,舍 弃;如此继续下去,直至抽出60袋牛奶。
上述抽样方法称为系统抽样,一般地, 系统抽样的含义是:
将总体分成均衡的n个部分,再按照预先 定出的规则,从每一部分中抽取1个个体, 即得到容量为n的样本.
思考1:用系统抽样从含有N个个体的总 体中抽取一个容量为n的样本,要平均 分成多少段,每段各有多少个号码?
思考2:如果N不能被n整除怎么办?
从总体中随机剔除N除以n的余数个个体 后再分段.
抽签决定
开始
47名同学从1到47编号

制作1到47个号签


将47个号签搅拌均匀
随机从中抽出10个签
对号码一致的学生检查
结束
抽签法的一般步骤:
(总体个数N,样本容量n)
(1)将总体中的N个个体编号;
(2)将这N个号码写在形状、 大小相 同的号签上;
(3)将号签放在同一箱中,并 搅拌均匀;
(4)从箱中每次抽出1个号签, 连续抽出n次; (5)将总体中与抽到的号签编 号一致的n个个体取出。
小结
1.简单随机抽样的概念
一般地,设一个总体的个体数为N,如果通过逐个抽 取的方法从中抽取一个样本,且每次抽取时各个个体被 抽到的机会都相等,就称这样的抽样为简单随机抽样。
2.简单随机抽样操作办法:
抽签法
随机数表法
注:随机抽样并不是随意或随便抽取,因为随意或随便
抽取都会带有主观或客观的影响因素.
练习3、下列抽取样本的方式是属于简单随机抽 样的是(C ) ①从无限多个个体中抽取100个个体作样本; ②盒子里有80个零件,从中选出5个零件进行质 量检验,在抽样操作时,从中任意拿出一个零件 进行质量检验后,再把它放回盒子里; ③从8台电脑中不放回的随机抽取2台进行质量检 验(假设8台电脑已编好号,对编号随机抽取)
第三步,在第1部分用抽签法确定起始 编号. 第四步,从该号码起,每间隔8个号码 抽取1个号码,就可得到一个容量为40 的样本.
练习1.某住宅小区有居民2万户,从中随机抽取200户,
调查是否安装电话,调查的结果如下表所示,则该小
区已安装电话的户数估计有(

电话 已安装 未安装
动迁户 65
40
原住户 30 65
在高考阅卷过程中,为了统计每一道试题 的得分情况,如平均得分、得分分布情况等, 如果将所有考生的每题的得分情况都统计出 来,再进行计算,结果是非常准确的,但也 是十分繁琐的,那么如何了解各题的得分情 况呢?
通常,在考生有这么多的情况下,我们只从中抽 取部分考生 (比如说1000名) ,统计他们的得分情况, 用他们的得分情况去估计所有考生的得分情况。
第三步,在第1段用简单随机抽样确定 起始个体编号l.
第四步,按照一定的规则抽取样本.
例1 某中学有高一学生322名,为 了了解学生的身体状况,要抽取一个容 量为40的样本,用系统抽样法如何抽样?
第一步,随机剔除2名学生,把余下的 320名学生编号为1,2,3,…320.
第二步,把总体分成40个部分,每个 部分有8个个体.
随机数表:
制作一个表,其中的每个数都是 用随机方法产生的(随机数)。

先将总体中的所有个体(共有N个)编
机 号,然后在随机数表内任选一个数作为开

始,再从选定的起始数,沿任意方向取数 (不在号码范围内的数、重复出现的数必须
表 去掉),最后根据所得号码抽取总体中相应
法 的个体,得到总体的一个样本.
步 骤: 编号、选数、取号、抽取.
开开始始
47名同学编从号1到47编号 制作1到制4签7个号签
将47个号搅签匀搅拌均匀
随机从中抽抽签出10个签 对对应取号出码个的体学生检查
结结束束
抽签法所产生的样本为何是具有代表性的? 摇匀使得每一个体被抽到的机会是相等的
1、抽签法(抓阄法) 2、随机数表法
抽签法注意以下四点: (1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等机会抽样。
A.6500户 B.300户 C.19000户 D.9500户
练习2.某工厂有1003名工人,从中抽取10名工人进行体 检. ①试用简单随机抽样和系统抽样两种方法进行具体实施. ②以上两种不同的抽样方法对于每一个个体被抽到的概 率是否相同.
思考3:将含有N个个体的总体平均分成 n段,每段的号码个数称为分段间隔, 那么分段间隔k的值如何确定?
总体中的个体数N除以样本容量n所得 的商.
一般地,用系统抽样从含有N个个体的 总体中抽取一个容量为n的样本,其操 作步骤如下: 第一步,将总体的N个个体编号.
第二步,确定分段间隔k,对编号进 行分段.
A.① B.② 60件进行质量检查, 除用随机数表法之外可以如何操作?
第一步,将这600件产品编号为1,2,3,…,600.
第二步,将总体平均分成60部分,每一部分含10个个体.
第三步,在第1部分中用简单随机抽样抽取一个号码 (如8号).
第四步,从该号码起,每隔10个号码取一个号码,就得 到一个容量为60的样本. (如8,18,28,…,598)
首要问题:样本样一本定估能计准总确体地反应总体吗?
简单随机抽样
设一个总体含有N个个体 ,从中逐个不放回 地抽取n个个体作为样本 (n≤N),如果每次抽取时 总体内的各个个体被抽到的机会都相等,这种抽 样方法叫做简单随机抽样。
1、抽签法(抓阄法) 2、随机数表法
实例一
为了了解高二(5)班47名同 学的视力情况,从中抽取10名同 学进行检查。
相关文档
最新文档