人教版七年级数学下册期末试卷 (2)
2022-2023学年人教版七年级下册期末达标测数学试卷(二)(含详细解析)
期末达标测试卷(二)时间:90分钟 分值:120分 得分:__________分一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是( )2.下列各数中,是无理数的是( )A .-5B .12C .16D .3.143.若{x =1,y =2是关于x ,y 的方程x +ay =3的一个解,则a 的值为( )A .1B .-1C .3D .-34.下列计算正确的是( )A .9=±3B .3-27=-3C .(-4)2=-4D .32+22=55.如图,将三角形ABC 沿BC 所在的直线向右平移得到三角形DEF ,已知∠ABC =90°,则下列结论中,错误的是( )第5题图A .EC =CFB .∠A =∠DC .AC ∥DFD .∠DEF =90°6.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的扇形统计图,已知甲类书籍有30本,则丙类书籍的数量是( )第6题图A .200本B .144本C .90本D .80本7.已知|x+y+1|+2x-y=0,则x-y的值为( )A.-13B.-1C.13D.18.在平面直角坐标系中,点P(2x-6,x-5)在第三象限,则x的取值范围是( )A.x<5B.x<3C.x>5D.3<x<59.如图,两面平面镜OA,OB形成∠AOB,从OB上一点E射出的一条光线经OA上一点D反射后的光线DC恰好与OB平行,已知∠AOB=35°,∠ODE=∠ADC,则∠DEB的度数是( )第9题图A.35°B.60°C.70°D.85°10.如图,在平面直角坐标系中,A,B,C,D四点的坐标分别是A(1,3),B(1,1),C(3,1),D(3,3),动点P从点A出发,在正方形边上按照A→B→C→D→A→…的方向不断移动,已知P的移动速度为每秒1个单位长度,则第2 023秒,点P的坐标是( )第10题图A.(1,2)B.(2,1)C.(3,2)D.(2,3)二、填空题(本大题5小题,每小题3分,共15分)11.若8点时室外温度为2 ℃,记作(8,2),则21点时室外温度为零下3 ℃,记作__________.1216-|-52|=__________.13.小刚在期中测试中,数学得了95分,语文得了83分,要使三科的平均分不低于90分,则英语至少得__________分.14.如图,直线AB与CD相交于点O,∠AOC-2∠AOE=20°,射线OF平分∠DOE,若∠BOD =60°,则∠AOF=__________.第14题图15.定义:对于实数a,[a]表示不大于a的最大整数,例如:[5.71]=5,[5]=5,[-π]=-4.如果[x+12]=-2,那么x可取的整数值之和为__________.三、解答题(一)(本大题3小题,每小题8分,共24分)16.解方程组:{3x+4y=9,x+y=1.17.当x取何值时,代数式x+43与3x-12的差的值大于1?18.已知2a+1的平方根是±3,3a+2b+4的立方根是-2,求4a-5b+5的算术平方根.四、解答题(二)(本大题3小题,每小题9分,共27分)19.如图,AC∥EF,∠1+∠3=180°.(1)求证:AF∥CD;(2)若AC⊥EB于点C,∠2=40°,求∠BCD的度数.第19题图20.某校组织七年级学生参加汉字听写大赛,并随机抽取部分学生的成绩作为样本进行分析,绘制成如下不完整的统计图表:七年级抽取部分学生成绩的频数分布表成绩x/分频数百分比(%)第1段50≤x<6024第2段60≤x<70612第3段70≤x<809b第4段80≤x<90a36第5段90≤x≤1001530第20题图请根据所给信息,解答下列问题:(1)a=__________,b=__________,并补全频数分布直方图.(2)已知该年级有500名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?(3)请你根据学生的成绩情况提一条合理的建议.21.一家玩具店购进二阶魔方和三阶魔方共100个,花去1 800元,这两种魔方的进价、售价如下表:二阶魔方三阶魔方进价(元/个)1520售价(元/个)2030(1)求购进二阶魔方和三阶魔方的数量;(2)如果将销售完这100个魔方所得的利润全部用于公益捐赠,那么这家玩具店捐赠了多少钱?五、解答题(三)(本大题2小题,每小题12分,共24分)22.如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向向左平移3个单位长度,平移后的线段为CD.(1)点C的坐标为__________,线段BC与线段AD的位置关系是__________.(2)在四边形ABCD中,点P从点A出发,沿AB→BC→CD方向运动,到点D停止.若点P 的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,若在某一时刻四边形ABCP的面积为4,求此时点P的坐标.第22题图23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光线自AM顺时针旋转至AN便立即回转,灯B射出的光线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=__________,b=__________.(2)若灯B先转动20秒,灯A才开始转动,在灯B射出的光线到达BQ之前,灯A转动多长时间时,两灯射出的光线互相平行?第23题图期末达标测试卷(二)1.D2.A3.A4.B5.A6.D7.C8.B9.C 10.D 11.(21,-3) 12.-21 13.92 14.70° 15.-916.解:{3x +4y =9, ①x +y =1. ②②×3,得3x +3y =3.③①-③,得y =6.把y =6代入②,得x +6=1.解得x =-5.所以这个方程组的解为{x =-5,y =6.17.解:根据题意,得 x +43-3x -12>1.去分母,得2(x +4)-3(3x -1)>6.去括号,得2x +8-9x +3>6.移项,得2x -9x >6-8-3.合并同类项,得-7x >-5.系数化为1,得x <57.18.解:∵2a +1的平方根是±3,∴2a +1=9.解得a =4.∵3a +2b +4的立方根是-2,∴3a +2b +4=-8,即12+2b +4=-8.解得b =-12.当a =4,b =-12时,4a -5b +5=4×4-5×(-12)+5=81.∴4a -5b +5的算术平方根为9.19.(1)证明:∵AC ∥EF ,∴∠1+∠2=180°.又∠1+∠3=180°,∴∠2=∠3.∴AF ∥CD .(2)解:∵AC ⊥EB ,∴∠ACB =90°.又∠3=∠2=40°,∴∠BCD =∠ACB -∠3=90°-40°=50°.20.解:(1)18 18.补全频数分布直方图如答图所示.第20题答图(2)500×0.3=150(人).答:估计该年级成绩为优的有150人.(3)由统计图可知,有34%的学生的成绩低于80分,应鼓励学生多阅读书籍,增强学生识字能力.(答案不唯一,合理即可)21.解:(1)设购进二阶魔方x 个,三阶魔方y 个.依题意,得{x +y =100,15x +20y =1 800.解得{x =40,y =60.答:购进二阶魔方40个,三阶魔方60个.(2)(20-15)×40+(30-20)×60=800(元).答:这家玩具店捐赠了800元.22.解:(1)(-4,2) 平行.(2)①当0≤t <2时,P (-1,t );当2≤t ≤5时,P (-t +1,2);当5<t ≤7时,P (-4,7-t ).②由题意,得AB =2,AD =3,PD =7-t .∴S 四边形ABCP =S 四边形ABCD -S △ADP =AB ·AD -12AD ·PD =2×3-12×3(7-t )=4.解得t =173.∴7-t =7-173=43.∴此时点P 的坐标为(-4,43).23.解:(1)3 1.(2)设灯A 转动t 秒时,两灯射出的光线互相平行(记灯A 射出的光线为AM ′,灯B 射出的光线为BP ′).∵PQ ∥MN ,∠BAN =45°,∴∠MAB =∠ABP =135°.①当0<t ≤60时,此时BP ′在AB 右侧.若AM ′∥BP ′,则AM ′在AB 左侧,且∠M ′AB =∠P ′BA ,即135-3t=135-(20+t)×1.解得t=10.②当60<t<115时,此时BP′在AB右侧.若AM′∥BP′,则AM′在AB左侧,且∠M′AB=∠P′BA,即135-(3t-180)=135-(20+t)×1.解得t=100.③当115≤t≤120时,该情况不存在.④当120<t≤160时,BP′在AB左侧.若AM′∥BP′,则AM′在AB右侧,且∠M′AB=∠P′BA,即3t-360-135=(20+t)×1-135.解得t=190>160(不合题意,舍去).综上所述,当t=10秒或100秒时,两灯的光束互相平行.。
新人教版七年级数学(下册)期末试卷及答案(新版)
新人教版七年级数学(下册)期末试卷及答案(新版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .22.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145° 3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+= B .x y 50{x y 180=++= C .x y 50{x y 90=++= D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( ) A .54573x x -=- B .54573x x +=+ C .45357x x ++= D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=,C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.若()2320m n -++=,则m+2n 的值是________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、C6、C7、B8、D9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、105°3、0.4、-15、两6、5三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x = 2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1. 3、50°.4、∠BOE 的度数为60°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
2024新人教版七年级数学下册期末试卷及答案
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
新人教版七年级数学下册期末考试卷(参考答案)
新人教版七年级数学下册期末考试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A .点MB .点NC .点PD .点Q7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.正五边形的内角和等于______度.4.若+x x-有意义,则+1x=___________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)x﹣7=10﹣4(x+0.5) (2)512136x x+--=12.化简求值:()1已知a是13的整数部分,3b=,求54ab+的平方根.()2已知:实数a,b在数轴上的位置如图所示,化简:22(1)2(1)a b a b++---.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、C7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、203、5404、15、16、54°三、解答题(本大题共6小题,共72分)1、(1)3x ;(2)x=38.2、(1)±3;(2)2a +b ﹣1.3、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)A 种商品的单价为16元、B 种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件。
人教版七年级数学下册期末测试卷 (2)
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
人教版数学七年级下册期末复习练习题A组(2)
A 组(2)1.下列不等式变形正确的是( )(A)由a >b ,得2-a <2-b (B)由a >b ,得a 2-<b 2-(C)由a >b ,得a >b (D)由a >b ,得2a >2b2.若关于x 的方程85124-=+-x m x 的解是负数,则m 的取值范围是( )A .m <0B .m >92C .m <92D .m >0 3. 如图:正方形ABCD 的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b 的长分别是 ( )A . a=3,b=5 B.a=5,b=3 C. a=6.5,b=1.5 D.a=1.5,b=6.55.已知不等式组的解集是-1<x <2,则a 、b 的值是( )A.a =-2,b=-1B.a =-1,b =4C.a =1,b =-4D.以上答案都不对6.若是关于x 的一元一次不等式,则该不等式的解集为__________7.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是8.某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元,(1)若购买这批小鸡苗共用了4500元,求甲、乙两种小鸡苗各买了多少只?(2)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%,且买小鸡苗的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?51)2(12>--+m x m a9.哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、lO吨的卡车共也辆,全部车辆运输一次可以运输l10吨残土.(1)该车孰有载重量为8吨,l0吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于l65吨,为了完成任务,该车队准备新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?10.某机械厂甲、乙两个生产车间承担生产同一种零件的任务,甲、乙两车间共有50人,甲车间平均每人每天生产零件30个.乙车间平均每人每天生产零件20个,甲车间每天生产零件总数与乙车间每天生产零件总数之和为1300个.(1)求甲、乙两车间各有多少人?(2)该机械厂改进了生产技术。
2023-2024学年人教版七年级数学下册期末综合模拟测试2
2023-2024学年人教版七年级数学下册期末综合模拟测试2一、单选题1.下列实数是无理数的是( ) A .()01π-B .3π C .5 D .3.142.如图,一辆汽车在笔直的公路上由A 向B 行驶,M 是学校的位置,当汽车行驶到下列哪一位置时,汽车离学校最近( )A .D 点B .E 点C .F 点D .N 点3.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是1±C 5=±D .2是4的平方根4.在平面直角坐标中,点A (4,-1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.为了了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.下列叙述正确的是( ) A .32000名学生是总体 B .1600名学生的体重是总体的一个样本 C .每名学生是总体的一个个体D .样本容量是1600名6.如图,直线a b ∥,一块直角三角形ABC 按如图所示放置,若150∠=︒,则2∠的度数是( )A .105︒B .110︒C .115︒D .130︒7 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间8.若31a ->,两边都除以3-,得( )A .13a <-B .13a >-C .3a <-D .3a >-9.已知点(1,3)A m -与点(2,1)B n -关于x 轴对称,则m n +的值为( ) A .1B .1-C .0D .310.在解二元一次方程组259236x y x y +=⎧⎨-=⎩①②时,用①-②消去未知数x 后,得到的方程是( )A .23y =B .215y =C .83y =D .815y =11.如果关于x 的不等式()11a x a +>+的解集为1x <,则a 的取值范围是( )A .0a <B .1a <-C .1a >D .1>-a12.如图,90C ∠=︒,将直角三角形ABC 沿着射线BC 方向平移5cm ,得三角形A B C ''',已知3cm BC =,4cm AC =,则阴影部分的面积为( )2cm .A .18B .14C .20D .2213.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如图所示的条形图(D 组数据被污染).该调查的调查方式及D 组对应的频率分别为( )A .全面调查;52%B .全面调查;48%C .抽样调查;52%D .抽样调查;48%14.《九章算术》中记载这样一个问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺;如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设绳长、井深分别为x 、y 尺,则符合题意的方程组是( )A .()()3441y x y x ⎧=+⎪⎨=+⎪⎩B .3441y x y x =+⎧⎨=+⎩C .()()3441x y x y ⎧=+⎪⎨=+⎪⎩D .3441x y x y =+⎧⎨=+⎩15.如图,在平面直角坐标系中,有若干个整点,按图中→方向排列,即()0,0→ 0,1 →()1,1→()2,2→ 2,3 →()3,3→()4,4,……,则按此规律排列下去第23个点的坐标为( )A .(13,13)B .(14,14)C .(15,15)D .(14,15)二、填空题16.图,∠1+∠2=180°,∠3=110°,则∠4=度.17.已知43x y +=,且17y -<≤则x 的取值范围是.18.在已知点A 的坐标是()2,4A -,线段AB y ∥轴,且5AB =,则B 点的坐标是. 19.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是.三、解答题 20.计算:1-;3π- 21.解不等式组23(1)2223x x x x +<+⎧⎪+⎨-≤⎪⎩.22.有A 、B 两种型号台灯,若购买2台A 型台灯和6台B 型台灯共需610元.若购买6台A 型台灯和2台B 型台灯共需470元. (1)求A 、B 两种型号台灯每台分别多少元?(2)采购员小红想采购A 、B 两种型号台灯共30台,且总费用不超过2200元,则最多能采购B 型台灯多少台?23.疫情期间,学校为了解学生最喜欢以下4门网课:A .数学,B .语文,C .英语,D .道德与法制中的哪一门学科,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图1,图2),请回答下列问题:(1)这次被调查的学生共有多少人? (2)补全图2中的条形统计图;(3)图1扇形统计图中,B ,C ,D 所占的百分比各是多少?24.二元一次方程组23253x y m x y m +=+⎧⎨+=-⎩的解x ,y 的值是一个等腰三角形两边的长,且这个等腰三角形的周长为5,求腰的长.(注:等腰三角形中相等的两条边叫做等腰三角形的腰) 25.如图,已知AD BC ⊥,EF BC ⊥,垂足分别为D 、F ,23180∠+∠=︒,试说明:GDC B ∠=∠.请补充说明过程,并在括号内填上相应的理由.解:AD BC ⊥Q ,EF BC ⊥(已知)90ADB EFB ∴∠=∠=︒(), ∴EF AD ∥(), ∴2180+∠=︒().又23180∠+∠=︒Q (已知),13∠∠∴=(),∴AB P (), ∴GDC B ∠=∠().26.某商场有A 、B 两种商品,每件的进价分别为15元、35元.商场销售5件A 商品和2件B 商品,可获得利润45元;销售8件A 商品和4件B 商品,可获得利润80元. (1)求A 、B 两种商品的销售单价;(2)如果该商场计划购进A 、B 两种商品共80件,用于进货资金最多投入2 000元,但又要确保获利至少590元,请问有那几种进货方案?27.在综合与实践课上,老师让同学们以“两条平行线、AB CD 和一块含60︒角的直角三角尺EFG (90EFG ∠=︒,60EGF ∠=︒)”为主题开展数学活动.(1)如图1,若三角尺的60︒角的顶点G 放在CD 上,若221∠=∠,求1∠的度数; (2)如图2,小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,小亮把三角尺的直角顶点F 放在CD 上,30︒角的顶点E 落在AB 上,请你探索并说明AEG ∠与CFG ∠间的数量关系.。
人教版七年级下册数学期末考试试题含答案
人教版七年级下册数学期末考试试卷一、单选题1.下列实数中,无理数是()A .0B .2C .0.5D .-92.已知21x y =⎧⎨=-⎩是方程1x ay +=的解,则a 的值为()A .2B .1-C .1D .2-3.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是()A .B .C .D .4.为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调查中的样本容量是()A .1500B .300C .150D .505.如图,ABC 沿着BC 方向平移到DEF ,已知6BC =、2EC =,那么平移的距离为()A .2B .4C .6D .86.下列调查中,调查方式选择最合理的是()A .为了解柳州市中学生的课外阅读情况,选择全面调查B .调查七年级某班学生打网络游戏的情况,选择抽样调查C.为确保长征六号遥二火箭成功发射,应对零部件进行全面调查D.调查某种灯泡的使用寿命,选择全面调查7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==8.若x y>,且(3)(3)a x a y-<-,则a的值可能是()A.0B.3C.4D.59<8<;③5112<;④510.52->.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个10.如图,下列推理正确的是()A.因为∠BAD+∠ABC=180°,所以AB∥CDB.因为∠1=∠3,所以AD∥BCC.因为∠2=∠4,所以AD∥BCD.因为∠BAD+∠ADC=180°,所以AD∥BC二、填空题11.计算:=______.12.把方程21x y +=改写成用含x 的式子表示y 的形式,得y =__.13.若某个正数的平方根是3a -和5a +,则这个正数是__.14.某药品说明书上标明药品保存的温度是10±4∘,设该药品合适的保存温度为∘,则的取值范围是______.15.将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是__.16.将一个矩形纸片按如图所示折叠,若140 ∠=,则2∠的度数是______o .三、解答题17.解不等式:2(1)3x +<,并把它的解集在数轴上表示出来.18.解方程组:3223y x x y-=⎧⎨=-⎩19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,已知点2,4,1,1,3,2.(1)将三角形B先沿着轴负方向平移6个单位,再沿轴负方向平移2个单位得到三角形111,在图中画出三角形111;(2)直接写出点1,1,1的坐标.20.某市数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评价调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中七年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了______名学生;(2)请将频数分布直方图补充完整;(3)如果全市有40000名七年级学生,那么在试卷评讲课中,“独立思考”的七年级学生约有多少人?21.如图,已知12180∠+∠= ,AED C ∠=∠,试判断3∠与B Ð的大小关系,并说明理由.22.某中学计划为学校科技活动小组购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用235元,购买4个A 型放大镜和6个B 型放大镜需用170元.(1)求每个A 型放大镜和每个B 型故大镜各多少元?(2)该中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1300元,那么最多可以购买多少个A 型放大镜?23.对于实数a ,b 定义两种新运算“※”和“*”:a ※b a kb =+,*a b ka b =+(其中k 为常数,且0)k ≠,若对于平面直角坐标系xOy 中的点(,)P a b ,有点P '的坐标(a ※b ,*)a b 与之对应,则称点P 的“k 衍生点”为点P '.例如:(1,3)P 的“2衍生点”为(123,213)P '+⨯⨯+,即(7,5)P '.(1)点(1,5)P -的“3衍生点”的坐标为;-,求点P的坐标;(2)若点P的“5衍生点”P的坐标为(9,3)(3)若点P的“k衍生点”为点P',且直线PP'平行于y轴,线段PP'的长度为线段OP长度的3倍,求k的值.参考答案1.B【解析】根据无理数的定义逐一判断即可得.【详解】A、0是有理数;B、2是无理数;C、12是分数,为有理数;D、-9是有理数;故选B.【点睛】本题主要考查无理数的定义,属于简单题.2.C【解析】把x与y的值代入方程计算即可求出a的值.【详解】把21xy=⎧⎨=-⎩代入方程得:21a-=,解得:1a=,故选:C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l 的距离.故选A.4.B【解析】【分析】根据总体、个体、样本容量、样本的定义解答即可.【详解】∵为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,∴该调查中的样本容量是:300.故选B.【点睛】本题考查了总体、个体、样本容量、样本的定义,正确把握相关定义是解题关键.5.B【解析】【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离==-=,进而可得答案.BE624【详解】=-=-=,由题意平移的距离为BE BC EC624故选:B.【点睛】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.6.C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、为了解柳州市中学生的课外阅读情况,选择抽样调查,错误;B、调查七年级某班学生打网络游戏的情况,选择全面调查,错误;C、为确保长征六号遥二火箭成功发射,应对零部件进行全面调查,正确;D、调查某种灯泡的使用寿命,选择抽样调查,错误;故选C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5 15 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.A【解析】【分析】根据不等式的性质,可得答案.【详解】由不等号的方向改变,得a−3<0,解得a<3,四个选项中满足条件的只有0.故选:A.【点睛】考查不等式的性质3,熟练掌握不等式的性质是解题的关键.9.C【解析】【分析】①两个正数,哪个数的越大,则它的算术平方根就越大,据此判断即可.②首先分别求出8的平方各是多少;然后根据两个正数,哪个数的平方越大,则这个数就越大,8的大小关系即可.③根据1-12所得的差的正负,判断出12、1的大小关系即可.④根据510.52--所得的差的正负,判断出512-、0.5的大小关系即可.【详解】810<,∴<,∴①正确;265=,2864=,6564>,∴8>,∴②不正确; 51533310222----=<=,∴112-<,∴③正确; 5152220.50222----=>=,∴510.52>,∴④正确.综上,可得大小关系正确的式子的个数是3个:①③④.故选:C .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0>>负实数,两个负实数绝对值大的反而小.解答此题的关键还要明确:两个正数,哪个数的平方越大,则这个数就越大.10.B【解析】【分析】根据平行线的判定定理分析即可.【详解】A 、错误.由∠BAD +∠ABC =180°应该推出AD ∥BC .B 、正确.C 、错误.由∠2=∠4,应该推出AB ∥CD .D 、错误.由∠BAD +∠ADC =180°,应该推出AB ∥CD ,故选:B.【点睛】考核知识点:平行线的判定.理解判定是关键.11.【解析】【分析】合并同类二次根式即可得出答案.【详解】(3-=-=故答案为:【点睛】此题考查了二次根式的加减运算,属于基础题,掌握同类二次根式的合并是关键.12.12x-.【解析】【分析】把x当成已知数,解关于y的方程即可.【详解】21x y+=,21y x=-,12xy-=,故答案为:12x-.【点睛】本题考查了解二元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.16.【解析】【分析】利用一个非负数的平方根互为相反数即可得到关于a的方程,解方程即可解决问题.【详解】一个正数的平方根是3a-和5a+,则350a a -++=,解得:1a =-,则34a -=-,所以这个正数是16.故答案为:16.【点睛】此题主要考查了平方的定义,要注意:一个正数有正、负两个平方根,它们互相为相反数.14.6≤≤14【解析】【分析】根据正数和负数的定义即可得出答案.【详解】某药品说明书上标明药品保存的温度时(10±4)℃,说明在10℃的基础上,再上下4℃,∴6℃≤t≤14℃;故答案为:6℃≤t≤14℃.【点睛】此题考查了正负数在实际生活中的应用,解题关键是理解(10±4)℃的意义.15.(0,3).【解析】【分析】根据向右平移横坐标加,向上平移纵坐标加即可得解.【详解】将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是(11,12)-++,即(0,3).故答案为(0,3).【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.16.70【解析】【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【详解】如图,由题意可得:∠1=∠3=∠4=40°,由翻折可知:∠2=∠5=180402︒-︒=70°.故答案为:70.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.17.12x<,不等式的解在数轴上表示见解析.【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】2(1)3x-<,223x∴+<,21x<12x<,不等式的解在数轴上表示为:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.11x y =⎧⎨=⎩.【解析】【分析】方程组利用加减消元法求出解即可.【详解】3223y x x y -=⎧⎨=-⎩①②,由①得:624y x -=③,由②得:23x y +=④,③+④得,77y =,解得:1y =,代入①解得,1x =,综上知原方程组的解为:11x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(1)详见解析;(2)1−4,2,1−5,−1,1−3,0【解析】【分析】(1)分别将点A,B,C向左平移6个单位,再向下平移2个单位,再首尾顺次连接即可得.(2)根据所作图形可得三顶点的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)由图知,A1(-4,2),B1(-5,-1),C1(-3,0).【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.20.(1)560;(2)详见解析;(3)在试卷评讲课中,“独立思考”的七年级学生约有12000人.【解析】【分析】(1)由专注听讲的人数及其所占百分比可得总人数;(2)根据各项目人数之和等于总人数可得讲解题目对应的人数,从而补全图形;(3)利用样本估计总体思想求解可得.【详解】(1)在这次评价中,一共抽查学生为:224÷40%=560人,(2)“讲解题目”的人数是:5608416822484---=(人).作图如下:(3)1684000012000560⨯=(人)故在试卷评讲课中,“独立思考”的七年级学生约有12000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.3B ∠=∠,理由详见解析【解析】【分析】求出∠2=∠4,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出∠3=∠ADE ,根据平行线的判定得出DE ∥BC ,根据平行线的性质得出∠B=∠ADE ,即可得出答案.【详解】3B ∠=∠,理由如下:∵12180∠+∠= ,14180∠+∠=o ,∴24∠∠=,∴EF AB ∥,∴3ADE ∠=∠.∵AED C ∠=∠,∴DE BC ‖,∴ADE B ∠=∠,∴3B ∠=∠.【点睛】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,解题时注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.(1)每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)最多可以买35个A 型放大镜.【解析】【分析】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【详解】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得852*******x y x y +=⎧⎨+=⎩①②.解得:2015x y =⎧⎨=⎩,答:每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)设购买A 型放大镜a 个,根据题意可得:2015(75)1300a a +⨯-,解得:35a.答:最多可以买35个A 型放大镜.【点睛】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.23.(1)(14,2);(2)点(1,2)P -;(3)k=±3.【解析】【分析】(1)直接利用新定义进而分析得出答案;(2)直接利用新定义结合二元一次方程组的解法得出答案;(3)先由//PP y '轴得出点P 的坐标为(,0)a ,继而得出点P '的坐标为(,)a ka ,由线段PP '的长度为线段OP 长度的3倍列出方程,解之可得.【详解】(1)点(1,5)P -的“3衍生点”P '的坐标为(135,135)-+⨯-⨯+,即(14,2),故答案为:(14,2);(2)设(,)P x y 依题意,得方程组5953x y x y +=⎧⎨+=-⎩.解得12x y =-⎧⎨=⎩.∴点(1,2)P -;(3)设(,)P a b ,则P '的坐标为(,)a kb ka b ++.PP ' 平行于y 轴a a kb ∴=+,即0kb =,又0k ≠ ,0b ∴=.∴点P 的坐标为(,0)a ,点P '的坐标为(,)a ka ,∴线段PP '的长度为||ka .∴线段OP 的长为||a .根据题意,有3PP OP '=,3ka a ∴=.∴k=±3.【点睛】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.。
人教版七年级下册数学期末考试试题带答案
人教版七年级下册数学期末考试试卷一、单选题1.9的算术平方根是( )A .3B .3-C .3±D .2.下列命题正确的是( )A .相等的角是对顶角B .同旁内角相等C .经过一点,有且只有一条直线与已知直线平行D .内错角相等,两直线平行 3.为了了解商丘市中学生的体重情况,从某一中学任意抽取了100名中学生进行调查,在这个问题中,100名中学生的体重是( )A .个体B .样本C .样本容量D .总体 4.已知a b >,则下列不等式中,正确的是( )A .a b ->-B .44a b +>+C .33a b <D .2131a b ->-5.将方程112-+=x y 中的x 的系数变为整数,则下列结果正确的是( ) A .1x y -+= B .2x y -+= C .22x y -= D .22x y -=- 6.在数轴上表示不等式2x ﹣4>0的解集,正确的是( )A .B .C .D .7.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程ax+y =1的解,则a 的值等于( ) A .3 B .1 C .﹣1 D .﹣38.如图,∠1=∠2,∠3=30°,则∠4等于( )A .120°B .130°C .150°D .40°9.如图,有以下四个条件:∠∠B +∠BCD =180°,∠∠1=∠2,∠∠3=∠4,∠∠B =∠5,其中能判定AB∠CD 的条件的个数有( )A .1B .2C .3D .410.如图,在平面直角坐标系中,AB//EG//x 轴,BC//DE//HG//AP//y 轴,点D 、C 、P 、H 在x 轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),把一条长为2019个单位长度且没有弹性的细线(粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -E -F -G -H -P -A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(1,1)二、填空题11.计算=___________12.不等式21x -≤的正整数解是______________ .13.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.14.已知点(2,36)P x x -+到两坐标轴的距离相等,则点P 的坐标为__________.15.如图所示,下列三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中m =____(用含n 的式子表示)16.苹果的进价是19元/千克,销售中估计有5%的苹果正常损耗,为了避免亏本,售价至少应定为________元/千克.17.如图,已知//AD BC ,//AB CD ,E 在线段BC 延长线上,AE 平分∠BAD .连接DE ,若∠ADC=2∠CDE ,∠AED=60°,则∠CDE=____.三、解答题18.计算:32019|2|(1)(1)---19.解方程组:3125x y x y +=-⎧⎨-=⎩20.解不等式组3(1)511242x x x x -<+⎧⎪⎨+≥-⎪⎩并把它的解集在数轴上表示出来. 21.将∠ABO 向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′(1)请画出平移后的三角形A′B′O′,并写出点O′的坐标.(2)求∠ABO 的面积.22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A ,B ,C ,D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)将两幅不完整的图补充完整;(2)本次参加抽样调查的居民有多少人?(3)若居民区有8000人,请估计爱吃D粽的人数.23.完成下面的解题过程(在下面的横线上,填写相应的结论或推理的依据):已知:∠ABC,∠A、∠B、∠C之和为多少?为什么?解:∠A+∠B+∠C=180°理由:过C作CD//AB,并延长BC到E∠CD//________(已作)∠∠________=∠ACD(两直线平行,内错角相等)且∠B=∠___________(________________)而∠DCE+∠ACD+∠ACB=_________°∠∠________+∠B+∠ACB=180°(__________)24.某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花共需13元;2盆A种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?25.如图,在长方形ABCD中,O为平面直角坐标系的原点,点的坐标分别为A(a,2)、B(a,-1),D(b,2).且a、b|4|0+=.点P从A点出发,以每秒1个单位长度的速b度A-B-C-D-A的线路移动,运动时间为t,当点P回到A点时运动停止(1)点C的坐标为_______________(2)当点P移动在线段BC上时,求三角形ACP的面积(用含t的代数式表示)(3)在移动过程中,当三角形ACP的面积是5时,直接写出点P移动的时间为几秒26.已知关于x ,y 的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都为正数. (1)当a=2时,解此方程组;(2)求a 的取值范围;(3)已知a+b=4,且b>0,z=2a -3b ,求z 的取值范围.27.已知:如图所示,BAC ∠和ACD ∠的平分线交于E ,AE 交CD 于点F ,1290∠+∠=︒.(1)求证://AB CD ;(2)试探究2∠与3∠的数量关系,并说明理由.参考答案1.A【分析】根据算术平方根的定义即可得.【详解】由算术平方根的定义得:93故选:A .【点睛】本题考查了算术平方根的定义,熟记定义是解题关键.2.D【解析】【详解】解:A.相等的角不一定是对顶角,错误;B.两直线平行,同旁内角互补,错误;C.经过直线外一点,有且只有一条直线与已知直线平行,错误;D.内错角相等,两直线平行,正确.故选D.3.B【解析】【详解】∠个体是指每个中学生的体重,总体是指我市中学生的体重的全体,样本是指100名中学生的体重,样本容量是100,∠在这个问题中,100名中学生的体重是样本,故选B.4.B【解析】【分析】利用不等式的性质判断即可.【详解】由a>b,得到−a<−b,故选项A不合题意;得到a+4>b+4,故选项B符合题意;得到3a>3b,故选项C不合题意;得到2a−1>2b−1,故选项D不合题意.故选:B.【点睛】本题考查了不等式的性质,不等式的两边都乘或都除以同一个负数,不等号的方向改变.5.D【解析】【分析】方程两边乘以2即可得到结果.【详解】方程两边乘以2得:−x+2y=2,即x−2y=−2,故选:D.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.6.A【解析】【详解】不等式的解集为:x>2,故选A7.A【解析】【分析】把解代入方程进行求解即可;【详解】解:将12xy=⎧⎨=-⎩是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.【点睛】本题主要考查了二元一次方程的根,准确计算是解题的关键.8.C【解析】【详解】∠∠1=∠2,∠a∠b,∠∠5=∠3=30°,∠∠4=180°−∠5=150°,故选C9.C【解析】【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:∠∠∠B+∠BCD=180°,∠AB∠CD;∠∠∠1=∠2,∠AD∠BC;∠∠∠3=∠4,∠AB∠CD;∠∠∠B=∠5,∠AB∠CD;∠能得到AB∠CD的条件是∠∠∠.故选:C.【点睛】本题考查平行线的判定定理:1.同旁内角互补,两直线平行;2.同位角相等,两直线平行;3.内错角相等,两直线平行.10.D【解析】【分析】先求出“凸”形ABCDEFGHP的周长为20,得到2019÷20的余数,进而可得答案.【详解】解:∠A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),∠“凸”形ABCDEFGHP的周长为20,∠2019÷20的余数为19,∠细线另一端所在位置的点在P处上面1个单位的位置,坐标为(1,1).【点睛】本题考查了坐标系中点的坐标规律,解题的关键是找出规律、求出“凸”形的周长,根据规律解答.11【解析】【分析】直接合并同类二次根式即可.【详解】=-=(3【点睛】此题主要考查了二次根式的加减法,知道二次根式的加减法实质是合并同类二次根式,熟练掌握合并同类二次根式的法则是解答此题的关键.12.1、2、3【解析】【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【详解】移项,得:x∠1+2,合并同类项,得:x∠3,则不等式的正整数解为1、2、3;故答案为1,2,3.【点睛】此题考查了求一元一次不等式的整数解的方法,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.13.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力,物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 14.(6,6)-或(3,3)【解析】【分析】根据点到坐标轴的距离的定义,分点的横坐标与纵坐标相等和互为相反数列式子求出x 的值,然后求解即可.【详解】点(2,36)P x x -+到两坐标轴的距离相等,则∠2360x x -++=解得:4x =-,∴点P 的坐标为(6,6)-∠236x x -=+,解得:1x =-,∴点P 的坐标为(3,3),综上:点P 的坐标为(3,3),(6,6)-,故答案为:(6,6)-或(3,3).【点睛】本题考查了点的坐标,是基础题,难点在于分两种情况求解.15.22n n +【解析】【分析】由题意可得左上边三角形中数字的规律,右上边三角形中数字的规律,从而发现下边三角形的数字规律,继而求得答案.【详解】解:∠观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,,2,n •••下边三角形的数字规律为:1×2+2,2n+,222⨯+, (22)则m=22nn+.故答案为:22nn+.【点睛】此题考查了规律型:数字的变化类问题.注意根据题意找到规律m=22nn+是关键.16.20【解析】【分析】设商家把售价应该定为每千克x元,因为销售中估计有5%的苹果正常损耗,故每千克苹果x-,根据题意列出不等式即可.损耗后的价格为(15%)【详解】解:设商家把售价应该定为每千克x元,x-,根据题意得:(15%)19x,解得:20故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价进价”列出不等式即可求解.17.15°【解析】【分析】设∠CDE=x°,则∠ADC=2x°,∠BAE=∠DAE=a°,根据平行线的性质得出∠BAD+∠ADC=180°,求出a=90-x,根据三角形内角和定理求出60+2x+x+90-x=180,求出x即可.【详解】解:设∠CDE=x°,则∠ADC=2x°,∠AE平分∠BAD,∠∠BAE=∠DAE,设∠BAE=∠DAE=a°,∠AB∠CD,∠∠BAD+∠ADC=180°,∠a+a+2x=180,解得:a=90-x ,∠在∠AED 中,∠AED+∠ADE+∠DAE=180°,∠60+2x+x+90-x=180,解得:x=15,即∠CDE=15°,故答案为:15°.【点睛】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义等知识点,能求出a=90-x 是解此题的关键.18.2【解析】【分析】先去绝对值、根号,计算立方,开立方根,再计算2019次方,最后进行加减法即可.【详解】解:原式22(1)2(1)2=+---+-=.【点睛】本题主要考查了实数的综合运算能力,解题的关键是掌握算术平方根、绝对值等知识点的运算.19.21x y =⎧⎨=-⎩【解析】【分析】根据代入消元法解答即可.【详解】解:对方程组3125x y x y +=-⎧⎨-=⎩①②, 由∠,得13x y =--∠,把∠代入∠,得()2135y y ---=,解得:1y =-,把1y =-代入∠,得()1312x =--⨯-=,所以原方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,属于应知应会题型,熟练掌握代入消元法和加减消元法解方程组的方法是解题关键.20.23x -<【解析】【分析】分别解两个一元一次不等式,再取解得公共部分,即为一元一次不等式组的解集,将其解集在数轴上表示出来.【详解】 原式:3(1)511242x x x x -<+⎧⎪⎨--⎪⎩①②, 由∠可得,3351x x -<+,移项得24x -<,解得2x >-;由∠可得,+148x x -,移项得39x ≤,解得3x故原不等式组的解集为23x -<,在数轴上表示如图所示:【点睛】本题主要考查一元一次不等式组的解法.21.(1)作图见解析(2)6【解析】【分析】(1)画出A、B、O三点平移后的对应点A1、B1、O1即可解决问题;(2)利用分割法求三角形的面积即可;【详解】解:(1)平移后的三角形A'B' O',如图所示.O'(4,-1).(2)111442224246222S ABO=⨯-⨯⨯-⨯⨯-⨯⨯=【点睛】本题考查的是平移变换和正方形与三角形的面积,理解平移变换并能够熟练的掌握坐标系以及灵活运用正方形与三角形的面积是解决本题的关键.22.(1)见解析;(2)600人;(3)3200人【解析】【分析】(1)求出C类的人数(总人数减去其它各组的人数);求出C类、A类所占的百分数,画出图形可得;(2)利用总人数=B类的人数÷其所占的百分比可求得;(3)利用8000乘以对应的百分比可求得.【详解】(1)本次参加抽样调查的居民的人数是:60÷10%=600(人)∠C类的人数是:600﹣180﹣60﹣240=120(人),所占的百分比是:120600×100%=20%,故A类所占的百分比是:180600×100%=30%.如图,补全统计图如下:(2)由(1)可得本次参加抽样调查的居民的人数是600(人)答:本次参加抽样调查的居民有600人;(3)解:8000×40%=3200(人)答:估计爱吃D粽的人数有3200人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.23.AB;A;DCE,两直线平行,同位角相等;180;A;等量代换.【解析】【分析】依据平行线的性质∠A=∠ACD,∠B=∠DCE,再根据平角为180°,即可得到∠A+∠B+∠ACB=180°.【详解】解:∠A+∠B+∠C=180°理由:过C作CD∠AB,并延长BC到E∠CD∠AB(已作)∠∠A=∠ACD(两直线平行,内错角相等)且∠B=∠DCE(两直线平行,同位角相等)而∠DCE+∠ACD+∠ACB=180°∠∠A+∠B+∠ACB=180°(等量代换)故答案为:AB;A;DCE,两直线平行,同位角相等;180;A;等量代换.【点睛】本题主要考查了平行线的性质,三角形内角和定理,解题时注意:两直线平行,内错角相等;两直线平行,同位角相等.24.(1)1盆A 种花的售价为3元,1盆B 种花的售价是5元;(2)A 种盆花最多购进66盆.【解析】【分析】(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据:“1盆A 种花和2盆B 种花共需13元;2盆A 种花和1盆B 种花共需11元”列方程组求解即可;(2)首先根据“A 种盆花的数量不超过B 种盆花数量的2倍”确定m 的取值范围,然后得出最值即可.【详解】解:(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据题意可得: 213211,x y x y +=⎧⎨+=⎩解得:35.x y =⎧⎨=⎩答:1盆A 种花的售价为3元,1盆B 种花的售价是5元;(2)设购进A 种花m 盆,依据题意可得:()2100,m m ≤- 解得:266,3m ≤ 而m 为正整数, ∠m 最多=66,答:A 种盆花最多购进66盆.【点睛】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.25.(1)()4,1C --;(2)()()39=392ACP t St -≤≤;(3)当三角形ACP 的面积是5时,53t =、173、323. 【解析】【分析】(1|4|0b +=可得到2a =,4b =-,由矩形的性质可得C 点的横坐标与D 点的相等,纵坐标与B 点相同,即可得到结论;(2)因为点P 从A 点出发,以每秒1个单位长度的速度A -B -C -D -A 的线路移动,且当点P 移动在线段BC 上时,可得BP=t ,根据三角形面积公式即可得到结果;(3)分类讨论,当P 在AB 上运动和BC 上运动进行讨论;【详解】(1|4|0b +=可得:20a -=和40b +=,解得2a =,4b =-,∠A(2,2)、B(2,-1),D(-4,2),∠四边形ABCD 是矩形,∠C 的横坐标坐标-4,纵坐标为-1,∠()4,1C --.(2)由题可知BP=t ,由(1)可知,AB=3,BC=6,且点P 从A 点出发,以每秒1个单位长度的速度A -B -C -D -A 的线路移动,∠当t=3时,P 点运动到点B ,当t=9时,点P 运动到C 处,根据图形可得∠ACP 的面积=12CP AB ⨯⨯, ∠BP=t -3,∠9CP t =-, ∠()()39-11=9-3=222t CP AB t ⨯⨯⨯⨯, ∠39t ≤≤.故()()39=392ACP t S t -≤≤.(3)当点P 在AB 边上运动时,△11=6=322ACP S AP BC t t ⨯⨯=⨯⨯, 当角形ACP 的面积是5时,可得35t =, 解得53t =; 当点P 在AB 边上运动时,由(1)得()()△39=3<92ACP t S t -≤,当角形ACP 的面积是5时,可得()39=52t -, 解得:173t =, 当点P 在CD 上运动时,9<12t ≤,()()△11=96=3922ACP S CP AD t t ⨯⨯=⨯-⨯- 当角形ACP 的面积是5时,可得()39=5t -, 解得:323t =; 当点P 在DA 上运动时,12<18t ≤,∠DP=t -12,∠AP=18-(t -12)=30-t ,()()△33011=303=222ACP t S AP CD t -⨯⨯=⨯-⨯, 当角形ACP 的面积是5时,可得()330-=52t , 解得:803t =(舍去); 故当三角形ACP 的面积是5时,53t =、173、323. 【点睛】 本题主要考查了矩形性质应用与利用坐标系求点的应用,能够准确判断动点的特征是解题的关键.26.(1)14x y =⎧⎨=⎩;(2)1a >;(3)78z -<<. 【解析】【分析】(1)将a 代入得到一个二元一次方程组,再利用加减消元法解方程组即可得;(2)先利用加减消元法求出方程组的解,再根据“解都为正数”建立不等式组,然后解不等式组即可得;(3)先根据0b >求出a 的取值范围,再根据4b a =-化简z ,由此即可得.【详解】(1)当2a =时,方程组为3129x y x y -=-⎧⎨+=⎩①②∠2⨯+∠得:629x x +=-+解得1x =将1x =代入∠得:31y -=-解得4y =则此方程组的解为14x y =⎧⎨=⎩; (2)325233x y a x y a -=-⎧⎨+=+⎩③④ ∠2⨯+∠得:641033x x a a +=-++解得1x a =-将1x a =-代入∠得:3325a y a --=-解得2y a =+则此方程组的解为12x a y a =-⎧⎨=+⎩ 方程组的解都为正数1020a a ->⎧∴⎨+>⎩解得1a >;(3)4a b +=,且0b >40b a ∴=->解得4a <结合(2)的结论得:14a <<将4b a =-代入23z a b =-得:23(4)512z a a a =--=-14a <<75128a ∴-<-<故78z -<<.【点睛】本题考查了利用加减消元法解二元一次方程组、解一元一次不等式组等知识点,熟练掌握方程组和不等式组的解法是解题关键.27.(1)见解析;(2)3290∠+∠=︒,理由见解析【解析】【分析】(1)由角平分线的定义及1290∠+∠=︒可得180BAC ACD ∠+∠=︒,根据同旁内角互补,可得两直线平行.(2)由平行线的性质及角平分线的概念分析求解.【详解】(1)证明:BAC ∠与ACD ∠的角平分线相交于点E21BAC ∠∠∴=,22ACD ∠=∠21222120(8)1BAC ACD ∴∠+∠=∠+∠=∠+∠=︒//AB CD ∴(2)解:3290∠+∠=︒由(1)知,//AB CD3BAF ∴∠=∠ AF 平分BAC ∠1BAF ∴∠=∠31∴∠=∠又∠1290∠+∠=︒3290∴∠+∠=︒【点睛】此题主要考查了角平分线的性质以及平行线的判定和性质,难度不大,掌握相关概念及性质正确推理论证是解题关键.。
人教版七年级数学下册期末测试卷 (2)
2020年人教版七年级数学下册期末模拟冲刺卷(二)一、选择题(共12小题;共60分)1. 下列图形中,不是轴对称图形的是A. B.C. D.2. 如图,图中给出了过直线外一点作已知直线的平行线的方法,其依据的是A. 同位角相等,两直线平行B. 同旁内角互补,两直线平行C. 内错角相等,两直线平行D. 同平行于一条直线的两直线平行3. 若下列各组值代表线段的长度,以它们为边不能构成三角形的是A. ,,B. ,,C. ,,D. ,,4. 下列说法错误的是A. 必然发生的事件发生的概率为B. 不可能发生的事件发生的概率为C. 不确定事件发生的概率为D. 随机事件发生的概率介于和之间5. 在实数,,中,无理数的个数是个.A. B. C. D.6. 等腰三角形一个外角等于,则底角为A. 或B. 或C. 或D.7. 小明把如图所示的的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是8. 如图.矩形纸片中,已知,折叠纸片使边与对角线重合,点落在点处,折痕为,且.则的长为A. B. C. D.9. 小亮每天从家去学校上学行走的路程为米,某天他从家去上学时以每分米的速度行走了米,为了不迟到他加快了速度,以每分米的速度行走完剩下的路程,那么小亮行走过的路程(米)与他行走的时间(分)之间的函数关系用图象表示正确的是A. B.C. D.10. 已知蚂蚁从长、宽都是,高是的长方形纸箱的点沿纸箱爬到点,那么它所行的最短路线的长是A. B. C. D.11. 如图,已知,为的平分线上一点,连接,;如图,已知,,为的平分线上两点,连接,,,;如图,已知,,,为的平分线上三点,连接,,,,,;,依次规律,第个图形中有全等三角形的对数是A. B. C. D.12. 如图,为的外角平分线上一点并且满足,,过作于,交的延长线于,则下列结论:①;②;③;④.其中正确的结论有A. 个B. 个C. 个D. 个二、填空题(共9小题;共45分)13. 的平方根是.14. 若三角形三条边的长分别为,,,则这个三角形的最大内角是度.15. 如图,已知,平分,,则的度数是.16. 根据如图所示程序计算函数值,若输入的的值为,则输出的函数值为.17. 若一个正数的平方根为和,则这个数是.18. 如图,在中,,,的垂直平分线交于点,垂足为点,连接,则的周长为.19. 如图,是的边上的中线,点在上,,若的面积是,则的面积是.20. 如图,等腰中,,为其底角平分线的交点,将沿折叠,使点恰好落在边上的点处,若,则的度数为.21. 在三角形纸片中,已知,,.过点作直线平行于,折叠三角形纸片,使直角顶点落在直线上的处,折痕为.当点在直线上移动时,折痕的端点,也随之移动.若限定端点,分别在,边上移动,则线段长度的最大值与最小值之和为(计算结果不取近似值).三、解答题(共7小题;共91分)22. 计算:(1);(2).(3).23. 已知:如图,,,求证:.24. 化简求值:已知,满足:,求代数式的值.25. 巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动而朱老师先跑.当小明出发时,朱老师已经距起点米了.他们距起点的距离(米)与小明出发的时间(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)朱老师的速度为米/秒;小明的速度为米/秒;(3)求小明第一次追上朱老师前,朱老师距起点的距离与的关系式,并写出自变量的取值范围.26. 我们来定义下面两种数:①平方和数:若一个三位数或者三位以上的整数分成左、中、右三个数后满足:,我们就称该整数为平方和数;例如:对于整数.它中间的数字是,左边数是,右边数是.,是一个平方和数.又例如:对于整数,它的中间数是,左边数是,右边数是,,是一个平方和数.当然和这两个数也是平方和数;②双倍积数:若一个三位数或者三位以上的整数分拆成左、中、右三个数后满足:,我们就称该整数为双倍积数;例如:对于整数,它的中间数是,左边数是,右边数是,,是一个双倍积数,又例如:对于整数,它的中间数是,左边数是,右边数是,,是一个双倍积数,当然和这两个数也是双倍积数;注意:在下面的问题中,我们统一用字母表示一个整数分出来的左边数,用字母表示一个整数分出来的右边数,请根据上述定义完成下面问题:(1)如果一个三位整数为平方和数,且十位数为,则该三位数为;如果一个三位整数为双倍积数,且十位数字为,则该三位数为;(2)如果一个整数既为平方和数,又是双倍积数.则,应该满足什么数量关系;说明理由;(3)为一个平方和数,为一个双倍积数,求.27. 如图,四边形中,,,为等腰直角三角形,,;与交于,连接,为中点,连接交于.请证明:(1);(2).28. 直角三角形有一个非常重要的性质:直角三角形斜边上的中线等于斜边的一半,比如:如图,中,,为斜边中点,则.请你利用该定理和以前学过的知识解决下列问题:如图,在中,点为边中点,直线绕顶点旋转,若,在直线的异侧,于点,于点,连接,;(1)求证:;(2)若直线绕点旋转到图的位置时,点,在直线的同侧,其它条件不变,此时还成立吗?若成立,请给予证明:若不成立,请说明理由;(3)如图,,旋转到与垂直的位置,为上一点且,于,连接,取中点,连接,,求证:.答案第一部分1. A2. A3. A4. C5. B6. C7. C8. D 【解析】四边形是矩形,,,是翻折而成,,,是直角三角形,,在中,,设,在中,,即,解得.9. D10. B11. C12. D第二部分13.14.15.【解析】在范围中,把代入,得.17.18.19.20.21.第三部分22. (1)(2)(3)23. 因为,所以.在和中,所以.24. 已知等式整理得:,所以,,解得:,,则25. (1)小明出发的时间;距起点的距离(2);(3)设小明第一次追上朱老师前,朱老师距起点的距离与的关系式为,将,代入中,得解得小明第一次追上朱老师前,朱老师距起点的距离与的关系式为,当时,有,解得:,小明第一次追上朱老师前,朱老师距起点的距离与的关系式为.26. (1);或(2)如果一个整数既为平方和数,又是双倍积数.则,应该满足,即,.(3)由题意易知,,,,,,.27. (1),,,,,,,,,,,,,在和中,.(2),,,在和中,,,.28. (1)如图中,延长交的延长线于.,,,,,,,.(2)结论:.如图中,延长交于.,,,,在和中,,,,.(3)如图中,延长交于.,,,,,,,,在和中,,,,,,.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a+b+c=0,且abc≠0,则a+c2b=-12;②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;③若a+b+c=0,且abc≠0,则abc>0;④若|a|>|b|,则a-ba+b>0.其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月19月29月39月49月59月69月7日日日日日日日电表读123130137145153159165 数/度(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y +5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290, 所以点D 表示的数为-290. (4)ON -AQ 的值不变. 设运动时间为m s , 则PO =100+8m ,AQ =4m . 由题意知N 为PO 的中点, 得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m , ON -AQ =50+4m -4m =50. 故ON -AQ 的值不变,这个值为50.。
人教版七年级下册数学期末考试试卷及答案
人教版七年级下册数学期末考试试卷及答案一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 3.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4B .8C .-8D .±84.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 5.下列运算结果正确的是( ) A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a =6.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩7.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12B .15C .12或15D .188.一元一次不等式312x -->的解集在数轴上表示为( ) A .B .C .D .9.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y ) B .(﹣x ﹣3y )(x +3y ) C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )10.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A.23m≤B.23m<C.23m≥D.23m>二、填空题11.最薄的金箔的厚度为0.000000091m,用科学记数法表示为________m.12.等式01a=成立的条件是________.13.已知关于x,y的方程组2133411x y mx y m+=+⎧⎨-=-⎩(m为大于0的常数),且在x,y之间(不包含x,y)有且只有3个整数,则m取值范围______.14.内角和等于外角和2倍的多边形是__________边形.15.若(x2+x-1)(px+2)的乘积中,不含x2项,则p的值是 ________.16.233、418、810的大小关系是(用>号连接)_____.17.已知(a+b)2=7,a2+b2=5,则ab的值为_____.18.如图,两块三角板形状、大小完全相同,边//AB CD的依据是_______________.19.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=_____.20.已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a=__________ .三、解答题21.如图,边长为1的正方形ABCD被两条与边平行的线段EF,GH分割成四个小长方形,EF与GH交于点P,设BF长为a,BG长为b,△GBF的周长为m,(1)①用含a,b,m的式子表示GF的长为;②用含a ,b 的式子表示长方形EPHD 的面积为 ; (2)已知直角三角形两直角边的平方和等于斜边的平方, 例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=, 请用上述知识解决下列问题:①写出a ,b ,m 满足的等式 ; ②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?22.计算: (1)(y 3)3÷y 6; (2)2021()(3)2π--+-.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD . (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.24.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-. 25.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°. 如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案) (2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN . 26.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′; (2)在图中画出△A′B′C′的高C′D′. 27.因式分解: (1)16x 2-9y 2 (2)(x 2+y 2)2-4x 2y 228.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数.(1)求m 的取值范围;(2)化简:22|2|(1)(1)m m m --+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案. 【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确; B 、a 2+a 2=2a 2,故此选项错误; C 、a 2•a 3=a 5,故此选项错误; D 、a 6÷a 3=a 3,故此选项错误; 故选:A. 【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.C解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=,∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.3.D解析:D 【解析】试题分析:∵(x±4)2=x 2±8x+16, 所以m=±2×4=±8. 故选D .考点:完全平方式.4.D解析:D 【解析】 【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答. 【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得: 2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°. 故选D . 【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.5.A解析:A 【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A . 【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.6.C解析:C 【解析】试题解析:A. 的解是51x y =⎧⎨=⎩, 故A 不符合题意; B. 的解是06x y =⎧⎨=⎩,故B 不符合题意;C. 的解是51x y =-⎧⎨=⎩,故C 符合题意;D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意;故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.7.B解析:B 【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6. 3+6>6,符合条件.成立. ∴C=3+6+6=15. 故选B .考点:等腰三角形的性质.8.B解析:B 【解析】 【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可. 【详解】 -3x-1>2, -3x >2+1, -3x >3, x <-1, 在数轴上表示为:,故选B . 【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.9.B解析:B 【分析】根据平方差公式:22()()a b a b a b +-=-进行判断. 【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意; 故选B . 【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.10.A解析:A 【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围. 【详解】解:202x m x m -<⎧⎨+>⎩①②解不等式①,得x<2m. 解不等式②,得x>2-m. 因为不等式组无解, ∴2-m ≥2m. 解得23m ≤. 故选A. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题 11.. 【解析】 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为 与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解析:89.110-⨯. 【解析】 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000091m 用科学记数法表示为89.110m -⨯. 故答案为89.110-⨯. 【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.12.. 【分析】根据零指数幂有意义的条件作答即可. 【详解】 由题意得:. 故答案为:. 【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.解析:0a ≠. 【分析】根据零指数幂有意义的条件作答即可. 【详解】由题意得:0a ≠. 故答案为:0a ≠. 【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.13.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案. 【详解】由中的上式加下式乘以2得到 解析:04m <<【分析】 由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y mx y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x my m=-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】 由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y mx y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x my m=-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<. 【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.14.六 【解析】 【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可. 【详解】解:设多边形有n 条边,由题意得: 1解析:六 【解析】 【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可. 【详解】解:设多边形有n 条边,由题意得: 180(n-2)=360×2, 解得:n=6, 故答案为:六. 【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).15.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案. 【详解】 解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.16.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.17.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.18.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.∠=∠,解:由题意:ABD CDBAB CD∴(内错角相等,两直线平行)//故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.19.10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,解析:10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC−AB=2cm,即AC−8cm=2cm,∴AC=10cm,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.20.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.三、解答题21.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1,∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG == ()()11a b =--1a b ab =--+2112ma mb a m b +-=--+ ()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.22.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.23.(1)证明见解析;(2)∠AED +∠D =180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(3)依据已知条件求得∠CGF 的度数,进而利用平行线的性质得出∠CEF 的度数,依据对顶角相等即可得到∠AEM 的度数.【详解】(1)∵∠CED =∠GHD ,∴CB ∥GF ;(2)∠AED +∠D =180°;理由:∵CB ∥GF ,∴∠C =∠FGD ,又∵∠C =∠EFG ,∴∠FGD =∠EFG ,∴AB ∥CD ,∴∠AED +∠D =180°;(3)∵∠GHD =∠EHF =80°,∠D =30°,∴∠CGF =80°+30°=110°,又∵CE ∥GF ,∴∠C =180°﹣110°=70°,又∵AB ∥CD ,∴∠AEC =∠C =70°,∴∠AEM =180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为:2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.25.知识回顾:∠A+∠B ;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A 和∠P 之间的数量关系是:∠P =∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC 度数,进而求得∠ACB 度数;(2)已知∠A 度数,即可求得∠ABC+∠ACB 度数,进而求得∠DBC+∠ECB 度数. 拓展延伸:(1)连接AP ,根据三角形外角性质,∠DBP =∠BAP+∠APB ,∠ECP =∠CAP+∠APC , 得到∠DBP+∠ECP =∠BAC+∠BPC ,已知∠BAC =70°,∠BPC =150°,即可求得∠DBP+∠ECP 度数;(2)如图⑤,设∠DBO =x ,∠OCE =y ,则∠OBP =∠DBO =x ,∠PCO =∠OCE =y , 由(1)同理得:x+y =∠A+∠O ,2x+2y =∠A+∠P ,即可求出∠A 和∠P 之间的数量关系; (3)如图,延长BP 交CN 于点Q ,根据角平分线定义,∠DBP =2∠MBP ,∠ECP =2∠NCP ,且∠DBP+∠ECP =∠A+∠BPC ,∠A =∠BPC ,得到∠BPC =∠MBP+∠NCP ,因为∠BPC =∠PQC+∠NCP ,证得∠MBP =∠PQC ,进而得到BM ∥CN .【详解】知识回顾:∵∠ACD+∠ACB =180°,∠A+∠B+∠ACB =180°,∴∠ACD =∠A+∠B ;故答案为:∠A+∠B ;初步运用:(1)∵∠DBC =∠A+∠ACB ,∠A =70°,∠DBC =150°,∴∠ACB =∠DBC ﹣∠A =150°﹣70°=80°;故答案为:80;(2)∵∠A =70°,∴∠ABC+∠ACB =110°,∴∠DBC+∠ECB =360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP ,∵∠DBP =∠BAP+∠APB ,∠ECP =∠CAP+∠APC ,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.26.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.27.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.28.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。
人教版七年级数学下册期末学情评估 附答案 (2)
人教版七年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.在平面直角坐标系中,点A (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.为了表示某种食品中钙、维生素、糖等物质的含量的百分比,应选用( )A .扇形统计图B .条形统计图C .折线统计图D .以上都可以3.如图,AB ∥CD ,∠C =70°,BE ⊥BC ,则∠ABE 等于( )A .60°B .35°C .30°D .20° 4.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行. A .5个 B .4个 C .3个 D .2个5.已知⎩⎨⎧x =2,y =1是方程组⎩⎨⎧ax +by =5,bx +ay =1的解,则a -b 的值是( )A .-1B .2C .3D .4 6.与3+24最接近的整数是( )A .6B .7C .8D .97.已知表示实数a ,b 的点在数轴上的位置如图所示,下列结论错误的是( )A.||a <1<||b B .1<-a <b C .1<||a <b D .-b <a <-18.如图,线段AB 经过平移得到线段A 1B 1,其中A ,B 的对应点分别为A 1,B 1,若线段AB 上有一点P (a ,b ),则点P 在A 1B 1上的对应点P 1的坐标为( )A .(a -4,b +2)B .(a -4,b -2)C .(a +4,b +2)D .(a +4,b -2)9.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是( )A .共抽取了50人B .90分以上的有12人C .80分以上的所占的百分比是60%D .60.5~70.5分这一分数段的频数是1210.不等式组⎩⎪⎨⎪⎧x -13-12x <-1,2(x -1)≤x -a有3个整数解,则a 的取值范围是( ) A .-6≤a <-5 B .-6<a ≤-5 C .-6<a <-5 D .-6≤a ≤-5二、填空题(本题共6小题,每小题4分,共24分) 11.比较大小:5-15________15(填“>”“<”或“=”). 12.不等式-3x +1>-8的正整数解是__________.13.从学校七年级抽取100名学生,调查学校七年级全体学生双休日用于做数学作业的时间,调查中的总体是____________________________,个体是________________________,样本容量是__________.14.已知一本书上写着方程组⎩⎨⎧x +my =2,x +y =1的解是⎩⎨⎧x =0.5,y =■.其中y 的值被墨渍盖住了,则m =________.15.如图,已知AB ∥CD ,BC ∥DE ,若∠A =20°,∠C =120°,则∠AED 的度数是________.16.在平面直角坐标系中,对于点P (x ,y ),我们把P 1(y -1, -x -1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若点A 2 024的坐标为(-3,2),设点A 1的坐标为(x ,y ),则x +y 的值是________.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算: (1)214+0.01-3-8;(2)3-0.125+|3-2|-3-34+|3|-(-2)2.18.(8分)解下列方程组或不等式组: (1)⎩⎨⎧3x -2y =-1,3x -4y =-5;(2)⎩⎨⎧x -2≤14-3x ,5x +2≥3(x -1).19.(8分)已知(2x +5y +4)2+|3x -4y -17|=0,求4x -2y 的平方根.20.(8分)如图,∠BAP+∠APD=180°,∠BAE=∠CPF,求证:AE∥PF.21.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7 ∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.22.(10分)央视热播节目《朗读者》激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书.学校组织学生会随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查结果进行了统计,并绘制了如图不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍.若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.23.(10分)某小区计划安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元.(2)该小区至少需要安装48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元?24.(12分) 如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为(-1,1),(3,-2 3). (1)直接写出点B ,D 的坐标.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒3个单位长度,设运动时间为t s. ①当t =1 时,求点P 的坐标; ②当t =3 时,求三角形PDC 的面积.25.(14分) 发现问题:已知⎩⎨⎧3x +2y =4,①2x -y =6,②求4x +5y 的值.方法一:先解方程组,得出x ,y 的值,再代入,求出4x +5y 的值. 方法二:将①×2-②,求出4x +5y 的值. 提出问题:怎样才能得到方法二呢?分析问题:为了得到方法二,可以将①×m +②×n ,可得(3m +2n )x +(2m -n )y =4m +6n .令等式左边(3m +2n )x +(2m -n )y =4x +5y ,比较系数可得⎩⎨⎧3m +2n =4,2m -n =5,求得⎩⎨⎧m =2,n =-1. 解决问题:(1)请你选择一种方法,求4x +5y 的值;(2)对于方程组⎩⎨⎧3x +2y =4,2x -y =6,利用方法二的思路,求7x -7y 的值;迁移应用:(3)已知⎩⎨⎧1≤2x +y ≤2,4≤3x +2y ≤7,求x -3y 的取值范围.答案一、1.D 2.A 3.D 4.D 5.D 6.C 7.A 8.A 9.D 10.B二、11.> 12.1,213.学校七年级全体学生双休日用于做数学作业的时间;学校七年级每名学生双休日用于做数学作业的时间;100 14.3 15.80° 16.3三、17.解:(1)原式=32+0.1+2=3.6.(2)原式=-0.5+2-3-32+3-2=-2. 18.解:(1)⎩⎨⎧3x -2y =-1,①3x -4y =-5,②①-②,得2y =4,解得y =2. 把y =2代入①,得x =1. 所以这个方程组的解是⎩⎨⎧x =1,y =2.(2)⎩⎨⎧x -2≤14-3x ,①5x +2≥3(x -1),② 由①,得x ≤4,由②,得x ≥-52, 所以原不等式组的解集为-52≤x ≤4.19.解:由题意得⎩⎨⎧2x +5y +4=0,3x -4y -17=0,解得⎩⎨⎧x =3,y =-2.∴4x -2y =16=4.∴4x -2y 的平方根为±2. 20.证明:∵∠BAP +∠APD =180°,∴AB ∥CD ,∴∠BAP =∠CP A . 又∵∠BAE =∠CPF , ∴∠P AE =∠APF , ∴AE ∥PF .21.解:(1)∵∠AOC +∠AOD =180°,∠AOC ∶∠AOD =7 ∶11,∴∠AOC =70°,∠AOD =110°,∴∠BOD =∠AOC =70°,∠COB =∠AOD =110°. ∵OE 平分∠BOD ,∴∠BOE =12∠BOD =35°, ∴∠COE =∠COB +∠BOE =145°. (2)∵OF ⊥OE ,∴∠EOF =90°.∵OE 平分∠BOD ,∴∠DOE =12∠BOD =35°, ∴∠DOF =90°-∠DOE =55°, ∴∠COF =180°-∠DOF =125°. 22.解:(1)200 (2)15;40(3)设最喜爱丙类图书的男生人数为x 人,则女生人数为1.5x 人,由题意,得 x +1.5x =1 500×20%,解得x =120.则1.5x =180.答:估计该校最喜爱丙类图书的女生和男生分别有180人,120人. 23.解:(1)设温馨提示牌的单价是x 元,垃圾箱的单价是y 元.根据题意,得⎩⎨⎧2x +3y =550,y =3x ,解得⎩⎨⎧x =50,y =150.答:温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买垃圾箱m 个,则购买温馨提示牌(100-m )个.由题意得 ⎩⎨⎧150m +50(100-m )≤10 000,m ≥48, 解得48≤m ≤50.∵m 为整数,∴m =48,49或50. 购买方案如下:综上可知,方案一所需资金最少,为9 800元. 24.解:(1)B (3,1),D (-1,-2 3).(2)①当t =1时,AP =3,∴点P 的坐标是(3-1,1). ②当t =3时,点P 运动的路程为33,此时PC =AB +BC -3 3=(1+3)+(1+2 3)-3 3=2,∴S 三角形PDC =12DC ·PC =12×(1+3)×2=1+3, 即三角形PDC 的面积为1+3.25.解:(1)利用方法二来求4x +5y 的值.由题意可知:2(3x +2y )-(2x -y )=6x +4y -2x +y =4x +5y ,即4x +5y =2×4-6=2.(也可选择用方法一求解) (2)⎩⎨⎧3x +2y =4,①2x -y =6,②由①×a +②×b 可得:(3a +2b )x +(2a -b )y =7x -7y ,则⎩⎨⎧3a +2b =7,③2a -b =-7,④由③+2×④可得:7a =-7,解得a =-1.将a =-1代入④可得b =5, ∴⎩⎨⎧a =-1,b =5,则7x -7y =-(3x +2y )+5(2x -y )=-1×4+5×6=26. (3)已知⎩⎨⎧1≤2x +y ≤2,4≤3x +2y ≤7,易得:x -3y =11(2x +y )-7(3x +2y ), 11≤11(2x +y )≤22,-49≤-7(3x +2y )≤-28, ∴-38≤x -3y ≤-6.。
人教版七年级下册数学期末考试试卷及答案
人教版七年级下册数学期末考试试题(考试时间:100分钟满分:120分)一、选择题(本题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点P (-1,-4)的位置在()A .第一象限B .第二象限C .第三象限D .第四象限2.下列实数中,是无理数的是()A .0B .21C .4D .53.若⎩⎨⎧==12y x 是二元一次方程3=-y kx 的解,则k 的值为()A .2B .3C .4D .54.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2的大小是()A .20°B .50°C .70°D .110°5.不等式组1020x x +≥⎧⎨-<⎩的解集在数轴上表示为()A .B .C .D .6.如图是某班一次数学成绩统计图.下列说法错误的是()A .得分在70~80分之间的人数最多B .该班的总人数为40C .得分在90~100分之间的人数最少D .及格(≥60分)人数是267.若a <b ,则下列式子一定成立的是()A .a +3>b +3B .a −1<b −1C .22a b >D .3a >3b8.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°,其中正确的个数是()A .1B .2C .3D .49.一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是()A .602503y x y x =+⎧⎨=-⎩B .602350y x x y-=⎧⎨=-⎩C .602503y x y x -=⎧⎨-=⎩D .602503y x y x =-⎧⎨=+⎩10.如果关于x 为不等式2≤3x ﹣7<b 有四个整数解,那么b 的取值范围是()A .﹣11≤b ≤﹣14B .11<b <14C .11<b ≤14D .11≤b <14二、填空题(本题共6小题,每小题4分,共24分)11.点A (2,-3)到x 轴的距离是12.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是13.如图,直线AB 、CD 相交于点O ,EO ⊥AB ,垂足为O ,DM ∥AB ,若∠EOC =35°,则∠ODM =14.命题“如果22b a =,那么a =b ”是(填写“真命题”或“假命题”).15.如图,在ABC Rt ∆中,090=∠C ,4=AC ,将ABC ∆沿CB 向右平移得到DEF ∆,若平移距离为3,则四边形ABED 的面积等于16.如图,在平面直角坐标系中,A (1,1),B (-1,1),C (-1,-2)D (1,-2).把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是第13题第15题第16题三、解答题(一)(本题共3小题,每小题6分,共18分)17.计算:43-8-3-13++18.解方程组25432x y x y -=-⎧⎨+=⎩19.解不等式325153x x +-<-,并在数轴上表示解集四、解答题(二)(本题共3小题,每小题7分,共21分)20.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE21.如图,在平面直角坐标系中有三个点(32),(51),(20)A B C ---,,,,(,)P a b 是三角形AC 边上一点,三角形ABC 经平移后得到三角形C B A ''',点P 的对应点为)3,4(++'b a P .⑴画出平移后的三角形C B A ''',写出点A '、B '、C '三个点的坐标.⑵求四边形A C AC ''的面积.22.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:⑴本次调查中,一共调查了名同学;⑵条形统计图中,m =,n =;⑶扇形统计图中,艺术类读物所在扇形的圆心角是度;⑷学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?五、解答题(三)(本题共3小题,每小题9分,共27分)23.学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副一羽毛球拍共需116元,购买3副乒乓球拍和2副一羽毛球拍共需204元.⑴求购买1副乒乓球拍和1副一羽毛球各需多少元?⑵若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?24.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.⑴若∠O=40°,求∠ECF的度数;⑵求证:CG平分∠OCD;⑶当∠O为多少度时,CD平分∠OCF,并说明理由.25.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).⑴直接写出点E的坐标为;⑵在四边形ABCD中,点P从点B出发,沿“B→C→D”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①求点P在运动过程中的坐标(用含t的式子表示,写出过程);②当t=秒时,点P的横坐标与纵坐标互为相反数;③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.答案与评分标准一、选择题(本题共10小题,每小题3分,共30分)题号12345678910答案CDACBDBDAD二、填空题(本题共6小题,每小题4分,共24分)11.3;12.200;13.1250;14.假命题;15.12;16.(1,0);三、解答题(一)(本题共3小题,每小题6分,共18分)17.-2 2.......32.......4-1.......5=+=+=解:原式(分分分18.解:①×4-②,得-11y =-22,y =2,………3分将y =2代入①,得x-4=-5,x =-1,………5分∴12x y =-⎧⎨=⎩………6分19.解:去分母,得15)5253)x 3-->+x ((………2分解这个不等式,得7>x ∴不等式组的解集为7>x :………4分将不等式解集表示在数轴上(图略):………6分四、解答题(二)(本题共3小题,每小题7分,共21分)20.证明:∵∠1=∠2ECDB ||∴E ∠=∠∴4………4分∵∠3=∠E ,∴∠4=∠3………6分∴AD ∥BE .………7分21.解(1)图(略)………2分点A '、B '、C '三个点的坐标.(15),(14),(23)A B C '''-,,,………4分1111255214321432222ACC A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯()251616251411.......7=----=-=分22.解:⑴一共调查了:70÷35%=200人………2分⑵科普类人数为:n =200×30%=60人,m =200﹣70﹣30﹣60=40人………4分⑶艺术类读物所在扇形的圆心角是:×360°=72°………6分⑷由题意,得(册).答:学校购买其他类读物900册比较合理………7分五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:⑴设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由题意,得⎩⎨⎧=+=+2042y x 3116y x 2解得:⎩⎨⎧==6028x y 答:购买一副乒乓球拍28元,一副羽毛球拍60元.………5分⑵设可购买a 副羽毛球拍,则购买乒乓球拍(30-a )副,由题意得,60a+28(30-a )≤1480,解得:a ≤20,答:这所中学最多可购买20副羽毛球拍.…9分24.解:⑴∵DE ∥OB ,∴∠O =∠ACE ∵∠O=40°,∴∠ACE=40°,∵∠ACD+∠ACE=180°,∴∠ACD=140°,又∵CF平分∠ACD,∴∠ACF=70°,∴∠ECF=70°+40°=110°;………3分⑵证明:∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°,又∵∠AOC=180°,∴∠GCO+∠FCA=90°,∵∠ACF=∠DCF,∴∠GCO=∠GCD,即CG平分∠OCD.………6分⑶结论:当∠O=60°时,CD平分∠OCF.∵DE∥OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF.………9分25.解:⑴∵点A的坐标是(1,0),∴点E的坐标是(-2,0);………2分⑵①∵点C的坐标为(-3,2).∴BC=3,CD=2,当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);………4分②∵点P的横坐标与纵坐标互为相反数;当点P在线段BC上时,-t+2=0,即t=2当点P在线段CD上时,t>3,5-t≠3,∴点P的横坐标与纵坐标不能互为相反数∴当t=2秒时,点P的横坐标与纵坐标互为相反数;………6分③能确定如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y………9分。
人教版七年级下册数学期末考试试卷含答案
人教版七年级下册数学期末考试试题一、单选题1.在实数:3.14159,1.010010001,4.21 ,π,227中,无理数有()A .1个B .2个C .3个D .4个2.下列运算正确的是()A .3a+2a =5a 2B .2a 2b ﹣a 2b =a 2bC .3a+3b =3abD .a 5﹣a 2=a 33.下列调查中,最适合采用全面调查的是()A .对全国中学生睡眠时间的调查B .了解一批节能灯的使用寿命C .对“中国诗词大会”节目收视率的调查D .对玉免二号月球车零部件的调查4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A .90°B .110°C .108°D .100°5.不考虑优惠,买1本笔记本和3支水笔共需14元,买3本笔记本和5支水笔共需30元,则购买1本笔记本和1支水笔共需()A .3元B .5元C .8元D .13元6.将点()2,1A -向左平移3个单位长度,在向上平移4个单位长度得到点B ,则点B 的坐标是()A .()5,3B .()5,5-C .()1,5--D .()1,3-7.不等式组2−1<5<的解集是x <3,那么m 的取值范围是()A .m >3B .m ≥3C .m <2D .m ≤28.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >0二、填空题9.16的平方根是.10.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.11.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.12.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.13.已知关于x的不等式323x ax-≥⎧⎨-≥-⎩的整数解共有3个,则a的取值范围是_____.14.如图,把“QQ”笑脸图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B的坐标为(0,3),则嘴唇C点的坐标是____________.15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有___人.16.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x为正整数,则x可以取的所有值是__.三、解答题17.计算题:(1|1| --(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:513(1) 131722x xx x->+⎧⎪⎨-≤-⎪⎩①②18.已知5a+2的立方根是3,4b+1的算术平方根是3,ca+b+c的值.19.已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.20.如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移4格,再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点B′的坐标:B(,),B′(,).21.如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.22.我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.23.某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?24.如图,已知l1∥l2,线段MA分别与直线l1,l2交于点A,B,线段MC分别与直线l1,l2交于点C,D,点P在线段AM上运动(P点与A,B,M三点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)若点P在A,B两点之间运动时,若a=25°,β=40°,那么γ=.(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)25.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A,B作x轴.y 轴的垂线交于点C,如图所示.点P从原点出发,以每秒1个单位长度的速度沿着O→B→C→A的路线移动,运动时间为t秒.(1)写出A,B,C三点的坐标:A,B,C;(2)当t=14秒时,求△OAP的面积.(3)点P在运动过程中,当△OAP的面积为6时,求t的值及点P的坐标.参考答案1.A【解析】【分析】根据无理数的的定义解答即可.【详解】3.14159364=4,1.010010001,4.21 ,227是有理数;π是无理数.故选A.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断即可.【详解】A 、325a a a +=,故本选项错误;B 、222 2a b a b a b ﹣=,故本选项正确;C 、3a 与3b 不是同类项,不能合并,故本选项错误;D 、a 5与a 2不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项,正确理解同类项的意义是解题的关键.3.D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A 、对全国中学生睡眠时间的调查,应采用抽样调查,故此选项不合题意;B 、了解一批节能灯的使用寿命,应采用抽样调查,故此选项不合题意;C 、对“中国诗词大会”节目收视率的调查,应采用抽样调查,故此选项不合题意;D 、对玉免二号月球车零部件的调查,意义重大,应采用普查,故此选项符合题意;故选:D.【点睛】考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.D【解析】【分析】依据l1∥l2,即可得到∠1=∠3=50°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=100°.【详解】如图,∵l1∥l2,∴∠1=∠3=50°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-50°-30°=100°,故选:D.【点睛】考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.5.C【解析】【分析】设每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可【详解】设购买1本笔记本需要x元,购买1支水笔需要y元,根据题意,得+314 3530x yx y=⎧⎨+=⎩.解得53xy=⎧⎨=⎩.所以x +y =5+3=8(元)故选C .【点睛】此题主要考查二元一次方程组的应用,难度不大,关键在于列出方程组6.D【解析】【分析】根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.【详解】将点A (2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B (−1,3),故选:D .【点睛】本题考查坐标平移,记住坐标平移的规律是解决问题的关键.7.B【解析】【分析】由已知不等式组的解集确定出m 的范围即可.【详解】不等式组整理得:<3<,由解集为x <3,得到m 的范围为m≥3,故选:B .【点睛】考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.D【解析】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选D.9.±4.【解析】【详解】由(±4)2=16,可得16的平方根是±4.10.135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.11.120【解析】分析:先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=150°,求得答案.详解:如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.点睛:此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.12.250.【解析】【分析】设这件夹克衫的成本是x 元,根据售价=原价×(1+20%)×0.9,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设这件夹克衫的成本是x 元,依题意,得:(1+20%)×0.9x=270,解得:x=250.故答案是:250.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.0<a ≤1.【解析】【分析】不等式组整理后,由整数解共有3个,确定出a 的范围即可.【详解】不等式组整理得:3x a x ≥⎧⎨≤⎩,即a≤x≤3,由不等式组的整数解共有3个,即1,2,3,则a 的取值范围是0<a≤1,故答案是:0<a≤1.【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.(-1,1)【解析】【分析】根据左眼,右眼坐标,得到嘴唇C的坐标【详解】解:∵左眼A的坐标是(-2,3),右眼B的坐标为(0,3),∴嘴唇C的坐标是(-1,1),故答案为:(-1,1)【点睛】本题考查了坐标确定位置:直角坐标系内的点与有序实数对一一对应.记住平面内特殊位置的点的坐标特征:(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.15.340.【解析】【分析】用600乘以第3组和第4组的频率和可估计该校一分钟仰卧起坐的次数不少于25次的人数.【详解】600×125 310125++++=340,所以估计该校一分钟仰卧起坐的次数不少于25次的有340人.故答案是:340.【点睛】考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.2或3.【解析】【分析】根据题意得出经过1次运算结果不大于7及经过2次运算结果大于7,得出关于x的一元一次不等式组,解之即可得出结论.【详解】根据题意得:若运算进行了2次才停止,则有()21217217x x ⎧+⨯+⎨+≤⎩>,解得:1<x≤3.则x 可以取的所有值是2或3,故答案是:2或3.【点睛】考查了一元一次不等式组的应用,根据运算程序找出关于x 的一元一次不等式组是解题的关键.17.(1(2)31x y =⎧⎨=⎩;(3)24x <≤.【解析】【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)原式;(2)21239x y x y -⎧⎨+⎩=①=②,①×2-②得:y=1,代入①得:x=3,所以方程组的解为:31x y ⎧⎨⎩==;(3)解①得:x >2,解②得:x≤4,综合得:2<x≤4.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.10.【解析】【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,相加可得结论.【详解】由已知得:5a+2=27,4b+1=9,c=3,解得:a=5,b=2,c=3,所以:a+b+c=10.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.19.-1.【解析】【分析】分别求出每一个不等式的解集,根据口诀确定不等式组的解集,再结合-6<x<3得出关于m、n的方程组,解之可得.【详解】解x-1<2n得:x<2n+1,解2x+5>6m-1得:x>3m-3,所以,不等式组的解集为:3m-3<x<2n+1,由已知得:3m-3=-6,2n+1=3,解得m=-1,n=1所以:2m+n=-1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)见解析;(2)(1,2),(3,6).【解析】【分析】(1)根据平移方式作图即可;(2)首先以点A为坐标原点建立平面直角坐标系,然后写出点的坐标即可.【详解】解:(1)如图,△A′B′C′即为所求;(2)如图,以点A为坐标原点建立平面直角坐标系,则B(1,2),B′(3,6).【点睛】本题考查了平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,左右平移改变点的横坐标.21.见解析.【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】∵∠ADE=∠B(已知),∴DE∥BC(同位角相等,两直线平行),∴∠1=∠3(两直线平行,内错角相等);∵CD∥FG(已知),∴∠1=∠2(同位角相等,两直线平行),∴∠2=∠3.(等量代换).【点睛】考查平行线的性质和判定,解题的关键是熟练掌握基本知识.22.(1)样本容量是50;(2)m=16,n=30;(3)补全条形统计图见解析.【解析】【分析】(1)用答对6题的人数除以它所占的百分比得到调查的总人数,即本次抽查的样本容量;(2)用答对7题的人数除以总人数得到A所占的百分比,根据各组所占百分比的和等于单位1得到D所占的百分比,进而求出m、n;(3)用总人数乘以D所占的百分比,得到答对9题的人数,用总人数乘以E所占的百分比,得到答对10题的人数,据此补充条形统计图.【详解】(1)样本容量是:510%=50;(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30(3)答对9题人数:30%×50=15,答对10题人数:20%×50=10,如图,【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)足球的单价是70元,篮球的单价是100元;(2)有2种不同的购买方案.【解析】(1)设足球的单价为x 元/个,篮球的单价为y 元/个,根据“购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 个足球,则购买篮球(24-m )个,根据总价=单价×数量结合购买篮球的个数大于足球个数的2倍且购买球的总费用不超过2220元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出各购买方案.【详解】(1)设购买一个足球需要x 元,一个篮球需y 元,则有x +2y =2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。
人教版七年级下册数学期末考试试卷带答案
人教版七年级下册数学期末考试试题一、单选题1.如图,直线,a b 相交形成四个角,互为对顶角的是( )A .1∠与2∠B .2∠与3∠C .3∠与4∠D .2∠与4∠2.求√83的值,结果是( ) A .2B .−2C .±2D .33.在平面直角坐标系中,点P(−3,4)的位置为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.方程组{x +y =5x −y =1 的解是( )A .{x =4y =1B .{x =1y =4C .{x =3y =2D .{x =2y =35.将方程2x −y =4改成成用含x 的式子表示y 的形式,结果是( ) A .y =2x +4B .y =2x −4C .x =12y +2D .x =12y −26.若a >b ,则下列各式中,不正确的是( ) A .a +2>b +2B .a −3>b −3C .−3a >−3bD .a2>b27.下列命题错误的是( )A .如果AB//CD ,那么∠1=∠4B .如果AB//CD ,那么∠1=∠3C .如果AD//BC ,那么∠3=∠4D .如果AD//BC ,那么∠3+∠2=180°8.调查下列问题,适宜用抽样调查的是( ) A .了解某年级学生的视力情况 B .了解某班学生的身高情况C .检测某城市的空气质量D .选出学校短跑最快的学生参加全市比赛9.如图,把三角形ABC 沿直线AD 平移,得到三角形DEF ,连结对应点BE ,则下列结论中,不一定正确的是( )A .AB//DEB .AD//BEC .AB =DED .AD ⊥AB10.如图,在三角形ABC 中,∠ACB =90°,点D 是AB 上的点,DE ⊥AC 于点E ,则下列结论中,不正确的是( )A .DE//BCB .CD ⊥ABC .∠ADE =∠BD .∠BCD =∠CDE二、填空题11.16的算术平方根是 .12.计算:. 13.不等式22123x x +->的解集是__________. 14.如图,直线AB 与CD 相交于点O ,OE CD ⊥,垂足为O ,55AOE ︒∠=,则DOB ∠的度是__________.x≠,则x的值是__________.15.已知x<,x是整数,且016.一个长方形的长减少5cm,宽增加2cm,就成为一个正方形,并且这两个图形的面积相等,则正方形的边长为__________.三、解答题17.计算:118.画图题,如图,已知三角形ABC,AB=5(1)过点C作CD⊥AB,点D为垂足(2)在(1)的条件下,若DB=2,求点A到CD的距离19.线段AB在直角坐标系中的位置如图所示.(1)写出点A,B的坐标(2)将AB向右平移5个单位,得到线段CD,点A与点C是对应点,请画出线段CD,并写出点C,D 的坐标.20.解方程组415 323x yx y+=⎧⎨-=⎩.21.解不等式组:()32421152x xx x--≥⎧⎪⎨-+<⎪⎩并求该不等式组的非负整数解.22.联合国规定每年6月25日是“世界环境日”,某校编写了关于环境保护的5个问答题让学生学习,为了解学生对5个问答题的掌握情况,随机抽查了部分学生进行答题测试,并根据测试结果得出下面两个不完整的统计图,请根据统计图提供的信息,回答下列问题(其中A、B、C、D、E分别表示答对1个题,答对2个题,答对3个题,答对4个题,答对5个题的人数) :(1)参加测试的学生有多少人?其中“答对个3题”的有多少人数?(2)把条形统计图补充完整;(3)若该校共有2000名学生,估计该校能“答对3个题”以上(含3个题)的人数23.菜矿泉水厂在山脚下筑有水池蓄水,山泉水不停地流入水池,水池底部有大小两个排水口,(1)当蓄水到180吨时,需要截住泉水清理水池。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下学期七年级 数学期末质量检测试卷
一、选择题(本大题满分36分,每小题3分.). 1. 25的算术平方根是
A. 5
B. ±5
C. 5
D. ±5
2. 如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,
已知OE ⊥AB ,∠BOD = 45°,则∠COE 的度数是 A. 125° B. 135° C. 145° D. 155° 3.
等于
A. -3
B. 3
C.
13 D. 1
3
- 4. 如图,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是
A. ∠1
B. ∠2
C. ∠4
D. ∠5 5. 如图,BE 是AB 的延长线,下面说法正确的是
A. 由∠1=∠2,可得到AB ∥CD
B. 由∠2=∠C ,可得到AD ∥BC
C. 由∠1=∠C ,可得到AD ∥BC
D. 由∠1=∠C ,可得到AB ∥CD
D C 2 1 A B E
(第2题图)
(第4题图)
(第5题图)
6. 把不等式x + 1≥0在数轴上表示出来,则正确的是
7. 下列调查中,适合采用全面调查(普查)方式的是
A. 对漓江河水质情况的调查
B. 对端午节期间市场上粽子质量情况的调查
C. 对某班50名同学体重情况的调查
D. 对某类烟花爆竹燃放安全情况的调查
8. 点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为
A. (-4,3)
B. (-3,-4)
C. (-3,4)
D. (3,-4)
9. 要了解某种产品的质量,从中取出300个产品进行检查,在
这个问题中,300个产品的质量叫做 A. 总体 B. 个体 C. 样本 D.
样本的容量
A B C D
10. 下列各组数,既是方程3x + 2y + 1 = 0的解,又是方程5x - y = 7的解的是
A. ⎩
⎨⎧-=-=21
y x B.
⎩
⎨⎧-==21
y x C. ⎩⎨
⎧-==3
2
y x D. ⎩⎨
⎧-==4
3
y x 11. 下列命题正确的是
A. 若∠MON+∠NOP = 90º, 则∠MOP 是直角
B. 若α与β互为补角,则α与β中必有一个为锐角,另一个为钝角
C. 两锐角之和是直角
D. 若α与β互为余角,则α与β均为锐角
12. 点N (-1,3)可以看作由点M (-1,-1)
A. 向上平移4个单位长度所得到的
B. 向左平移4个单位长度所得到的
C. 向下平移4个单位长度所得到的
D. 向右平移4个单位长度所得到的
二、填空题(本大题满分18分,每小题3分)
13. 下列7个实数:
21,16-,3π-,︱-1︱,7
22
,39 ,
0.1010010001……中无理数的个数有 个 14. 在下面的六幅图中,(2)、(3)、(4)、(5)、(6)中的图案
_________可以通过平移图案(1)得到.
15. 右上图是桂林某商厦某个月甲、乙、丙三种品牌彩电的销售
量统计图,则甲、丙两种品牌彩电该月的销售量之和为 台.
16. 用“>”或“<”填空:若 -2a + 1< -2b + 1,则a b.
17. 已知a ,b ,c 满足:⎪⎩
⎪
⎨⎧=++=++=+-.60525,324,0c b a c b a c b a 则a + b + c = .
18. 如图,在直角坐标平面内,线段AB 垂直于y 轴, 垂足为B ,且AB = 2,如果将线段AB 沿y 轴翻折, 点A 落在点C 处,那么点C 的横坐标是 . 三、解答题(本大题8题,共66分).
(1) (2) (3) (4) (5) (6)
(第14题图) (第15题图)
(第18题图)
19.(本小题满分7分)如图,ED∥AB,AF交ED于点C,∠1=138°,求∠A的度数.
20. (本小题满分7分)已知△ABC的
三个顶点的坐标分别为A(2,0)、
B(2,4)、C(6,2),
①在平面直角坐标系内画出△ABC;
②将△ABC向左平移2个单位得到
△A1B1C1,写出△A1B1C1三个顶点
的坐标.
21. (满分7分)用加减法解方程组:
⎪⎩⎪
⎨⎧-=+=+123
2
13
2y x y x
22. (满分7分)用代入法解方程组:
⎩
⎨
⎧=++=-01244
b a b a
23. (本小题满分8分) 解不等式组,并把其解集在数轴上表示出来:
3
32
13(1)8x x x x
-⎧+≥⎪
⎨⎪--<-⎩
24. (本小题满分8分)设面积为5π的圆的半径为r,请回答下列问题:
(1)r是有理数吗?请说明你的理由;
(2)估计r的值(结果精确到十分位).
25. (本小题满分10分)今年我市某中学开展了形式多样的以
感恩为主题的教育活动. 下面图①,图②分别是某校调查部分学生是否知道母亲生日情况的扇形统计图和条形统计图.
根据图上信息,解答下列问题:
(1)求本次被调查学生的人数,并补全条形统计图;
(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?
(3)通过对以上数据的分析,你有何感想?(用一句话回答)
26. (本小题满分12分)某货运码头,有稻谷和棉花共2680t,其中稻谷比棉花多380t.
(1)求稻谷和棉花各是多少?
(2)现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地. 已知稻谷35t和棉花15t可装满
一个甲型集装箱;稻谷25t和棉花35t可装满一个乙型
集装箱. 按此要求安排甲、乙两种集装箱的个数,有哪
几种方案?。