高中数学 轨迹方程教学案 新人教A版选修2
高中数学轨迹与方程教案
高中数学轨迹与方程教案
教学目标:通过本节课的学习,学生将能够理解轨迹与方程的概念,掌握二维平面上各种图形的轨迹和相应的方程,并能够应用这些知识解决实际问题。
教学重点:轨迹与方程的概念、各种图形的轨迹及相应的方程。
教学难点:如何确定各种图形的轨迹方程。
教学准备:教科研教材《数学》必修一,多媒体设备,教学PPT。
教学过程:
一、导入
通过展示一些常见的平面图形及其方程,引导学生思考图形与方程之间的关系,并提出本节课的学习目标。
二、讲解
1. 轨迹和方程的概念:通过具体例子引导学生理解轨迹和方程的含义,区分轨迹与方程的关系。
2. 直线的轨迹与方程:讲解直线的一般方程及斜率截距式,并通过实例展示直线在平面上的轨迹及对应的方程。
3. 圆的轨迹与方程:讲解圆的标准方程及参数方程,并通过实例展示圆在平面上的轨迹及对应的方程。
4. 抛物线、椭圆、双曲线等图形的轨迹与方程:介绍其他二次曲线的标准方程,并通过实例展示不同曲线的轨迹及对应的方程。
三、练习
布置一些相关的数学问题,让学生在课堂上或课后完成,巩固所学知识。
四、实践
通过实际案例,引导学生运用所学知识,解决实际问题,培养学生的数学建模能力。
五、总结
对本节课的内容进行总结,并回顾学生掌握的重点知识,强化学生记忆。
六、作业
布置相关的作业,巩固学生所学知识。
教学反思:
本节课主要围绕轨迹与方程展开,通过讲解、练习和实践等环节,帮助学生深入理解各种图形的轨迹和相应的方程。
在教学中,要注意引导学生探究问题、独立思考,激发学生学习兴趣,提高学生的学习效果。
高中轨迹问题教案模板设计
课时:2课时年级:高中学科:数学教学目标:1. 理解轨迹问题的概念,掌握解决轨迹问题的方法。
2. 培养学生的逻辑思维能力和空间想象能力。
3. 提高学生运用数学知识解决实际问题的能力。
教学重点:1. 轨迹问题的概念和性质。
2. 解决轨迹问题的方法。
教学难点:1. 轨迹问题的概念理解。
2. 解决轨迹问题的方法和技巧。
教学准备:1. 教学课件。
2. 相关习题。
教学过程:第一课时一、导入1. 回顾初中阶段学习的轨迹问题,引导学生思考高中阶段轨迹问题的特点。
2. 提出本节课的学习目标。
二、新课讲解1. 介绍轨迹问题的概念和性质,通过实例讲解轨迹问题的应用。
2. 分析解决轨迹问题的方法,包括:(1)利用几何知识解决轨迹问题;(2)利用解析几何知识解决轨迹问题;(3)利用向量知识解决轨迹问题。
三、课堂练习1. 学生独立完成教材中的例题,教师巡视指导。
2. 学生互相讨论,共同解决问题。
四、课堂小结1. 总结本节课所学内容,强调轨迹问题的概念、性质和解决方法。
2. 提出课后作业。
第二课时一、复习导入1. 回顾上一节课所学内容,引导学生思考如何运用所学知识解决实际问题。
2. 提出本节课的学习目标。
二、新课讲解1. 分析解决轨迹问题的实例,引导学生掌握解决轨迹问题的技巧。
2. 讲解解决轨迹问题的步骤,包括:(1)分析问题,确定解题思路;(2)利用相关数学知识解决问题;(3)检验答案的正确性。
三、课堂练习1. 学生独立完成教材中的习题,教师巡视指导。
2. 学生互相讨论,共同解决问题。
四、课堂小结1. 总结本节课所学内容,强调解决轨迹问题的方法和步骤。
2. 提出课后作业。
教学反思:1. 本节课通过讲解轨迹问题的概念、性质和解决方法,使学生掌握了解决轨迹问题的基本技能。
2. 在课堂练习中,学生能够运用所学知识解决实际问题,提高了学生的逻辑思维能力和空间想象能力。
3. 在今后的教学中,要注重培养学生的实际应用能力,提高学生的数学素养。
高中数学人教A版必修二《与圆有关的轨迹方程 》专题汇编
与圆有关的轨迹方程一.定义法判断动点轨迹满足某种曲线的定义,找出相关量求出标准方程1.已知动点P 到定点)2,1(的距离为2,则动点P 的轨迹方程为 .2.已知点)0,4(-A 与点)0,4(B ,若动点P 满足PB PA ⊥,则点P 的轨迹方程为 .二.相关点法当动点)(y x ,与已知曲线上一点),(00y x 存在某种关系时,可以用含x 的式子表示0x ,用含y 的式子表示0y ,然后将含y x ,的坐标代入已知曲线方程,化简即可1.动点A 在圆422=+y x 上移动,它与定点)0,4(B 连线的中点P 的轨迹方程为 .2.已知定点)0,1(N 与圆:O 222=+y x ,且点P 为圆O 上一动点,若动点M 满足PN MN 2=,则点M 的轨迹方程为 .三.直接法设动点坐标为)(y x ,,利用已知条件,找出y x ,的关系式(距离公式,勾股定理,斜率关系等等) 1.阿波罗尼斯圆:平面内到两定点距离之比为常数)1,0(≠>λλλ的点的轨迹是圆(1)已知两定点)0,1(),0,2(B A -,若动点P 满足PB PA 2=,则点P 的轨迹方程为(2)已知两定点)0,4(),0,1(B A ,若动点P 满足PB PA 21=,则PB PA +的最小值为 (3)若平面内两定点A,B 间的距离为2,动点P 满足2=PB PA ,则22PB PA +的最小值为( ) A.22436- B.22448- C.236 D.224 2.已知)0,5(),0,1(B A -,若动点P 满足2022=+PB PA ,则P 的轨迹方程为 .3.已知圆422=+y x ,过)0,4(A 作圆的割线ABC ,则弦BC 中点的轨迹方程是( )A.4)2(22=+-y xB.)10(4)2(22<≤=+-x y xC.4)1(22=+-y xD.)10(4)1(22<≤=+-x y x四.综合习题1.自圆外一点P 作圆122=+y x 的两条切线PM ,PN (M ,N 为切点),若∠MPN =90°,则动点P 的轨迹方程是 .2.设R m ∈,过定点A 的动直线0=+my x 和过定点B 的动直线03=+--m y mx 交于点),(y x P . 则动点P 的轨迹方程是 ,PB PA ⋅的最大值为 .3.已知点)2,2(P ,圆08:22=-+y y x C ,过点P 的动直线l 与圆C 交于B A ,两点,则线段AB 的中点M 的轨迹方程为 .4.过动点M 作圆:1)2()2(22=-+-y x 的切线MN ,其中N 为切点,若|MN |=|MO |(O 为坐标原点),则M 的轨迹方程为 ,MN 的最小值为 .5.已知定点)1,1(M ,Q P ,为圆422=+y x 上两个动点且QM PM ⊥,则PQ 中点N 的轨迹方程为 ,MN 的最大值为 .6.已知点)0,1(),0,1(m B m A +-,若圆03188:22=+--+y x y x C 上存在一点P ,使得PB PA ⊥,则实数m 的最大值是 .7.已知圆5)2(:22=++y x C ,直线R m m y mx l ∈=++-,021:.(1)求证:对R m ∈,直线l 与圆C 总有两个不同的交点A ,B ;(2)求弦AB 的中点M 的轨迹方程.8.已知圆422=+y x 上一定点)1,1(),0,2(B A 为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若︒=∠90PBQ ,四边形PBQR 为矩形,求点R 的轨迹方程.答案一.1.4)2()1(22=-+-y x 2.1622=+y x二.1.1)2(22=+-y x 2.8)1(22=++y x三.1.(1)4)2(22=+-y x (2)3 (3)A 2.1)2(22=+-y x 3.B 四.1.222=+y x 2.25)23()21(22=-+-y x ,53.2)3()1(22=-+-y x4.0744=-+y x ,8275.23)21()21(22=-+-y x ,226+ 6.6 7.(1)证明r d < (2)41)21()2(22=-++y x8.(1)1)1(22=+-y x (2)622=+y x。
人教A版高中数学选修2-1《2.2椭圆》复习教案
1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。
高中数学_轨迹方程的求法教学设计学情分析教材分析课后反思
轨迹方程的求法考纲点击1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程.考点梳理1.求动点的轨迹方程的一般步骤:2.求动点轨迹方程的基本方法有:诊断自测1.判断正误(请在括号中打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( )(2)方程x2+xy=x的曲线是一个点和一条直线.( )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x2=y2.( )(4)方程y=x与x=y2表示同一曲线.( ) 2、已知点A(-2,0),B(3,0),动点P(x,y)满足PA·PB=x2,则点P的轨迹是()(A)圆(B)椭圆(C)双曲线(D)抛物线3.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( )A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 4.已知△ABC的顶点B(0,0),C(5,0),AB边上的中线长|CD|=3,则顶点A的轨迹方程为________.5.已知⊙O方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB中点P 的轨迹方程为__________.小结:典型例题:例题:已知点P的坐标(2,4),过点P的直线PA与x轴交于点A,过点P且与直线PA垂直的直线PB 与y 轴交于点B.设点M 是线段AB 的中点,求点M 的轨迹方程.能力提升1:已知圆O 1: (x -2)2+y 2=4,动圆M 与圆O 1外切,且与y 轴相切,求动圆圆心M 的轨迹方程.2. 已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,点P 为椭圆C 上的动点,求△PF1F2的重心G的轨迹方程.3.已知点P在直线x=2上移动,直线l通过原点且和OP垂直,通过点A(1,0)及点P 的直线m和直线相交于Q,求点Q的轨迹方程.学情分析学生在新课时普遍对轨迹方程问题感到抽象难理解,基础不扎实,甚至认为内容太难不重要不重视,没有认识到这是高考必考内容,是高考热点之一。
人教版高中数学选修2-1《轨迹方程的求法》
∵PM、PN 是圆 O1、圆 O2 的切线, ∴△PO1M 和△PO2N 是直角三角形. ∵|PM|= |PN|,∴|PM|2=2|PN|2. ∵由两圆的半径均为 1, ∴|PO1|2-1=2(|PO2|2-1). 设 P(x,y).
关键: 找等量关系
∴(x+2)2+y2-1=2[(x-2)2+y2-1],整理,得(x-6)2+y2=33. 故点 P 的轨迹方程为(x-6)2+y2=33.
代入法
(相关点法)
当所求动点的运动很明显地依赖于一已知曲线上 的动点的运动时,可利用代入法,其关键是找出两 动点的坐标的关系,这要充分利用题中的几何条件. 如果轨迹动点P(x,y)的坐标之间的关系不易找 到,也没有相关点可用时,可先考虑将x、y用一 个或几个参数来表示,消去参数得轨迹方程.参数 法中常选角、斜率等为参数.
易漏掉x≠-2的情 形!
x2 2 y 1 【2017 课标 II, 理】 设 O 为坐标原点, 动点 M 在椭圆 C:2
上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 NP 2 NM 。 (1) 求点 P 的轨迹方程;
参数法 ——若动点P (x,y)的横、纵坐标之间 的关系不易找到,则可借助中间变量(参数) 来表示x,y,然后消去参数就得到动点P (x,y) 的轨迹方程
参数法
高考要求
求曲线的轨迹方程是解析几何的基本问题 之一 求符合某种条件的动点的轨迹方程,其 实质就是利用题设中的几何条件,用“坐标化” 将其转化为寻求变量间的关系 。 这类问题除 了考查考生对圆锥曲线的定义,性质等基础知 识的掌握,还充分考查了各种数学思想方法及 一定的推理能力和运算能力,因此这类问题成 为高考命题的热点!
2019-2020年高中数学 轨迹方程的探求教案 新人教A版选修1
2019-2020年高中数学 轨迹方程的探求教案 新人教A 版选修1教学目标:1、知识与技能:求轨迹方程的两种基本方法:直接法、定义法;2、过程与方法:体会求轨迹方程的基本方法与过程;3、情感态度与价值观:培养学生推理化简应用定义的能力。
教学重点:两种求轨迹方程的方法与步骤。
教学难点:定义法求轨迹方程中动点所满足的条件的寻找. 一、 预学检测:1、 动点的轨迹方程即为动点的 横纵坐标 之间的关系。
例如:动点P(x,y)在运动过程中满足横纵坐标互为倒数,则动点P 的轨迹方程为.2、 几种圆锥曲线的定义:椭圆定义:平面内到两定点的距离之和为定值的点的轨迹。
双曲线定义:平面内到两定点的距离之差的绝对值为定值的点的轨迹。
抛物线定义:平面内到定点的距离等于到定直线(F 不在上)的距离的点的轨迹。
3、 求动点轨迹方程的基本步骤:(5步)①建立恰当的坐标系;②设动点;③写出限制条件;④代入坐标运算;;⑤化简得到方程(把不符合要求的点去除)。
二、 新知探究: 1、 自主探究例1、已知的两个顶点A 、B 的坐标分别为(-6,0),(6,0),边BC 、AC 所在直线的斜率之积为,求动点C 的轨迹方程。
y解题小结:1为动点的坐标运算即可。
2、直接法求轨迹方程的基本步骤:“建设限代化” 3、注意把不满足条件的点去除。
讨论:如果把题中改成m (),其轨迹方程如何?安表示什么曲线? 设置意图:能过让学生自主讨论加强几种曲线的联系,同时强化分类讨论思想,为后面例2作简单的准备。
2、 小组合作探究例2、圆的半径为6,是异于圆心且不在圆上的点,A 是圆上的任意一点,线段的垂直平分线和直线相交于P ,当点A 在圆上运动时,讨论点P 的轨迹方程。
探究1、点与圆的位置关系如何? 探究2、垂直平分线上的点有何性质?探究3、动点P(x,y)满足什么关系?讨论轨迹。
探究4、如何建立恰当的坐标系求P 的轨迹方程。
设置意图:通过对位置的不同进行讨论,从而得到不同的曲线,配合动画演示让学生认识更深刻。
2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2
2.1 曲线与方程
2.1.2 求曲线的方程
【学习要求】 1.掌握求轨迹方程时建立坐标系的一般方法,熟悉求曲线方程
的四个步骤以及利用方程研究曲线五个方面的性质. 2.掌握求轨迹方程的几种常用方法. 【学法指导】
通过建立直角坐标系得到曲线的方程,从曲线方程研究曲线的 性质和位置关系,进一步感受坐标法的作用和数形结合思想.
因为曲线在 x 轴的上方,所以 y>0. 虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲线, 所以曲线的方程应是 y=18x2 (x≠0). 小结 (1)求曲线方程时,建立的坐标系不同,得到的方程也 不同.
(2)求曲线轨迹方程时,一定要注意检验方程的解与曲线上点 的坐标的对应关系,对于坐标适合方程但又不在曲线上的点 应注意剔除.
例 2 讨论方程 y2=1-x2x (x≥0)的曲线性质,并画出图形. 解 (1)范围:∵y2≥0,又 x2≥0,∴1-x>0. 解得 x<1,∴0≤x<1. 又当 x=0 时,y=0,∴曲线过原点. 当 x→1 时,y2→+∞,∴y2≥0. 综上可知,曲线分布在两平行直线 x=0 和 x=1 之间.
当堂检测
1.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),BC
边上的中线的长度为 5,则 A 点的轨迹方程是 ( D )
AHale Waihona Puke x2+y2=5B.x2+y2=25
C.x2+y2=5 (y≠0) D.x2+y2=25 (y≠0)
解析 BC 的中点为原点,BC 边上的中线长为 5,即 OA =5.设 A(x,y),则有 x2+y2=25 (y≠0).
知识要点
1.解析几何研究的主要问题: (1)根据已知条件,求出__表__示___曲__线__的__方__程____; (2)通过曲线的方程,研究_曲__线__的___性__质______.
人教版高中数学选修2-1第二章 2.1曲线与方程同步教案(基础)
学生姓名性别年级学科数学授课教师上课时间年月日第()次课共()次课课时:2 课时教学课题人教版选修2-1第二章 2.1曲线与方程同步教案(基础)教学目标知识目标:掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.能力目标:通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养综合运用各方面知识的能力.情感态度价值观:通过对求轨迹方程的常用技巧与方法的介绍,掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.教学重点与难点重点:曲线轨迹方程难点:曲线与方程关系与联系教学过程(一)曲线的方程、方程的曲线知识梳理在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.练习:在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P(x,y)到A的距离是多少?提示:|P A|=x-22+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:x-22+y2=x+22+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.1.求曲线的方程的步骤2.解析几何研究的主要问题(1)根据已知条件,求出表示曲线的方程.(2)通过曲线的方程,研究曲线的性质.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.例题精讲[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.巩固训练1.命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( ) A .方程f (x ,y )=0的曲线是C B .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上 2.方程4x 2-y 2+6x -3y =0表示的图形是( ) A .直线2x -y =0 B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0例题精讲[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M (m2,-m )在此方程表示的曲线上,求m 的值.巩固训练3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________.5.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.例题精讲[例3] 已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.巩固训练6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.7.已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程.【方法技巧】1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.课后作业【基础巩固】1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =-2x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件2.如图,图形的方程与图中曲线对应正确的是( )3.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( ) A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1D .(x +32)2+y 2=14.方程x 2+y 2-3x -2y +k =0表示的曲线经过原点的充要条件是k =________.5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A ―→·PB ―→=x 2,则点P 的轨迹方程是________. 6.求方程(x +y -1)x -y -2=0表示的曲线. 【能力提升】7.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( )A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=08.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.星火教育一对一辅导教案学生姓名性别女年级高二学科数学授课教师贺老师上课时间年月日第()次课共()次课课时:2 课时教学课题人教版选修2-1第二章 2.1曲线与方程(基础)同步复习教案教学目标知识目标:掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.能力目标:通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养综合运用各方面知识的能力.情感态度价值观:通过对求轨迹方程的常用技巧与方法的介绍,掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.教学重点与难点重点:曲线轨迹方程难点:曲线与方程关系与联系教学过程(二)曲线的方程、方程的曲线知识梳理在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.练习:在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P(x,y)到A的距离是多少?提示:|P A|=x-22+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:x-22+y2=x+22+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.1.求曲线的方程的步骤2.解析几何研究的主要问题(1)根据已知条件,求出表示曲线的方程.(2)通过曲线的方程,研究曲线的性质.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.例题精讲[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.巩固训练1.命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是真命题,下列命题中正确的是()A.方程f(x,y)=0的曲线是CB .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上 2.方程4x 2-y 2+6x -3y =0表示的图形是( ) A .直线2x -y =0 B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0例题精讲[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M (m2,-m )在此方程表示的曲线上,求m 的值.巩固训练3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________.5.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.例题精讲[例3] 已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.巩固训练6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.7.已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程.【方法技巧】1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.课后作业【基础巩固】1.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2x”的()A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.如图,图形的方程与图中曲线对应正确的是( )3.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C .(2x -3)2+4y 2=1D .(x +32)2+y 2=1 4.方程x 2+y 2-3x -2y +k =0表示的曲线经过原点的充要条件是k =________.5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A ―→·PB ―→=x 2,则点P 的轨迹方程是________.6.求方程(x +y -1)x -y -2=0表示的曲线.【能力提升】7.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( )A .4x -3y -16=0或4x -3y +16=0B .4x -3y -16=0或4x -3y +24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=08.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.答案:.[例1][思路点拨]按照曲线的方程与方程的曲线的定义进行分析.[精解详析](1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy =5.(3)第二、四象限两轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x +y =0.1.解析:“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A 、C 、D 都不正确,B 正确.答案:B2.解析:方程可化为(2x -y )(2x +y +3)=0,即2x -y =0或2x +y +3=0.∴表示两条直线2x -y =0或2x +y +3=0.答案:C[例2] [精解详析] (1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10,∴点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)∵点M (m 2,-m )在方程x 2+(y -1)2=10表示的曲线上,∴x =m 2,y =-m 适合上述方程, 即(m 2)2+(-m -1)2=10.解之得m =2或m =-185, ∴m 的值为2或-185. 3.解析:将M 点的坐标代入直线l 、曲线C 的方程验证可知点M 在直线l 上,也在曲线C 上. 答案:B4.解析:曲线过A (0,-2),B (12,3)两点, ∴A (0,-2),B (12,3)的坐标就是方程的解. ∴⎩⎪⎨⎪⎧4b =4,14a +3b =4,∴b =1,a =4. 答案:4 15.解:∵曲线y 2-xy +2x +k =0过点(a ,-a ),∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-2(a +12)2+12. ∴k ≤12, ∴k 的取值范围是(-∞,12]. [例3] [思路点拨] 关键是寻找Q 点满足的几何条件.可以考虑圆的几何性质,如CQ ⊥OP ,还可考虑Q 是OP 的中点.[精解详析] 法一:(直接法)如图,因为Q 是OP 的中点,所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2,即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+(y -32)2=94(去掉原点). 法二:(定义法)如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC为直径的圆上,故Q点的轨迹方程为x 2+(y -32)2=94(去掉原点). 法三:(代入法)设P (x 1,y 1),Q (x ,y ),由题意,得 ⎩⎨⎧ x =x 12,y =y 12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y . 又因为x 21+(y 1-3)2=9,所以4x 2+4(y -32)2=9, 即x 2+(y -32)2=94(去掉原点). 6.解:设动点C 的坐标为(x ,y ).∵△ABC 为以A 为顶点的等腰三角形,∴|AB |=|AC |,∴(x -4)2+(y -2)2=(4-3)2+(2-5)2,即(x -4)2+(y -2)2=10(x ≠3,5).所以点C 的轨迹方程为(x -4)2+(y -2)2=10,它表示以(4,2)为圆心,以10为半径且去掉(3,5),(5,-1)的圆.7.解:设△ABC 的重心为G (x ,y ),顶点C 的坐标为(x 1,y 1).由重心坐标公式得⎩⎨⎧ x =-2+0+x 13,y =0-2+y 13,∴⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2.代入y 1=3x 21-1,得 3y +2=3(3x +2)2-1.∴y =9x 2+12x +3即为所求轨迹方程.1.解析:∵y =-2x ≤0,而y 2=4x 中y 可正可负,∴点M 在曲线y 2=4x 上,但M 不一定在y =-2x 上.反之点M 在y =-2x 上时,一定在y 2=4x 上.答案:B2.解析:A 中方程x 2+y 2=1表示的是以(0,0)为圆心,1为半径的圆,故A 错;B 中方程x 2-y 2=0可化为(x -y )(x +y )=0,表示两条直线x -y =0,x +y =0,故B 错;C 中方程lg x +lg y =1可化得y =1x(x >0),此方程只表示第一象限的部分,故C 错;D 中的方程y =|x |去绝对值得y =⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,表示两条射线,所以D 正确. 答案:D3.解析:设动点C 的坐标为(x 0,y 0),P 点坐标为(x ,y ),则由中点坐标公式可得x =x 0+32,y =y 0+02, 即x 0=2x -3,y 0=2y .又动点C (x 0,y 0)在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1.答案:C4.解析:由两点式,得直线AB 的方程是y -04-0=x +12+1, 即4x -3y +4=0,线段AB 的长度|AB |=(2+1)2+42=5.设C 的坐标为(x ,y ),则12×5×|4x -3y +4|5=10, 即4x -3y -16=0或4x -3y +24=0.答案:B5.解析:若曲线过原点,则(0,0)适合曲线的方程,即有k =0.答案:06.解析: uu u r PA =(-x -2,-y ),uu u rPB =(3-x ,-y ), 则uu u r PA ·uu u rPB =(-x -2)(3-x )+(-y )2=x 2,化简得y 2=x +6.答案:y 2=x +67.解:(x +y -1)x -y -2=0写成 ⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,或x -y -2=0.由⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,得⎩⎪⎨⎪⎧ x +y -1=0,x ≥32,∴⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,表示射线x +y -1=0(x ≥32),∴原方程表示射线x +y -1=0(x ≥32)或直线x -y -2=0.8.解:法一:如图,设点M 的坐标为(x ,y ).∵M 为线段AB 的中点,∴A 点坐标是(2x,0),B 点坐标是(0,2y ).∵l 1,l 2均过点P (2,4),且l 1⊥l 2,∴P A ⊥PB .当x ≠1时,k P A ·k PB =-1.而k P A =4-02-2x =21-x ,k PB =4-2y 2-0=2-y1,∴21-x ·2-y1=-1.整理,得x +2y -5=0(x ≠1).当x =1时,A ,B 点的坐标分别为(2,0),(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y ),则A ,B 两点坐标分别是(2x,0),(0,2y ).连接PM ,如图.∵l 1⊥l 2,∴2|PM |=|AB |.而|PM |=(x -2)2+(y -4)2,|AB |=(2x )2+(2y )2,∴2(x -2)2+(y -4)2=4x 2+4y 2.化简,得x +2y -5=0,即为所求轨迹方程.法三:∵l 1⊥l 2,OA ⊥OB ,∴O ,A ,P ,B 四点共圆,且该圆的圆心为M .∴|MP |=|MO |.∴点M 的轨迹为线段OP 的中垂线. ∵k OP =4-02-0=2,OP 的中点坐标为(1,2), ∴点M 的轨迹方程是y -2=-12(x -1), 即x +2y -5=0.。
人教A版高中数学 选修2-1 2-1曲线与方程 学案 精品
2.1曲线与方程2.1.1曲线与方程2.1.2求曲线的轨迹方程一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.二、教材分析1.重点:求动点的轨迹方程的常用技巧与方法.2.难点:作相关点法求动点的轨迹方法.三、活动设计提问、讲解方法、演板、小测验.四、教学过程(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做 .这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上运动时,求点P 的轨迹方程.3.相关点法若动点P(x ,y)随已知曲线上的点Q(x 0,y0)的变动而变动,且x0、y0可用x 、y 表示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种方法称为 . 例3 已知抛物线y2=x+1,定点A(3,1)、B 为抛物线上任意一点,点P 在线段AB 上,且有BP ∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用 求.例4 已知抛物线y2=4x 和以坐标轴为对称轴、实轴在y 轴上的双曲线仅有两个公共点,又直线y=2x 被双曲线截得的线段长等于52,求此双曲线的方程。
人教A版高中数学选修2-1课件圆锥曲线轨迹问题
2021/2/19
数学与统计学学院
O
Px乔琦花5 Nhomakorabeay
①
联立①,②得 代入双曲线方程得
2021/2/19
数学与统计学学院
O
②
乔琦花
x
6
像上题这样:动点所满足的表达
式不易由表达式求出,但形成轨
迹的动点
却随另一个动点
的运动而有规律的运动, 且动点 的轨迹易求得,即可通 过 点来间接求 点的轨迹,这 种方法叫相关点法
数学与统计学学院
乔琦花
10
小结
直接法 定义法
直接法
参数法
交轨法
几何法
2021/2/19
数学与统计学学院
乔琦花
11
P80 第10题 P81 第5题
2021/2/19
数学与统计学学院
乔琦花
12
2021/2/19
13
空白演示
在此输入您的封面副标题
2021/2/19
数学与统计学学院
乔琦花
2
y
N
O
M
Qx
2021/2/19
数学与统计学学院
乔琦花
3
讨论!
方法一:直接法
2021/2/19
数学与统计学学院
乔琦花
4
方法二:定义法
y
M
分析题意,再由抛物线的定义即 可得出圆心(设为 )的轨迹为 一条抛物线。
它的准线,焦点分别是?
方法三:相关点法
针对上题,我们也可以借助几何画 板来直观地看看所求的动点的轨迹
2021/2/19
数学与统计学学院
乔琦花
7
y
O
x
观察几何作图的结
数学新人教A版选修第二讲《参数方程》全部教案
数学新人教A版选修4-4 第二讲《参数方程》全部教案曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动:练习:斜抛运动:2.参数方程的概念(见教科书第22页)说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C的参数方程是 (t 为参数)(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。
A、一个定点B、一个椭圆C、一条抛物线D、一条直线二.圆的参数方程说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?[来源:Z三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
注意,在参数方程和普通方程的互化中,必须使x,y 的取值范围保持一致。
例3.(教科书第25页例3)例4.(教科书第26页例4)2.你能回答教科书第26页的思考吗?四.课堂练习(教科书第26页习题)五.巩固与反思1.本节学习的数学知识2.本节学习的数学方法巩固与提高1.与普通方程xy=1表示相同曲线的参数方程(t为参数)是(D)A. B.C. D.2.下列哪个点在曲线上(C)[来源:]A.(2,7)B.C.D.(1,0)3.曲线的轨迹是(D)A.一条直线B.一条射线C.一个圆D.一条线段4.方程表示的曲线是(D)A.余弦曲线B.与x轴平行的线段C.直线D.与y轴平行的线段5.曲线上的点到两坐标轴的距离之和的最大值是(D)A.B.C.1D.6.方程(t为参数)所表示的一族圆的圆心轨迹是(D)A.一个定点B.一个椭圆C.一条抛物线D.一条直线7.直线与圆相切,那么直线的倾斜角为(A)A.或B.或C.或D.或8.曲线的一个参数方程为。
高中数学 第二章 轨迹方程的求法导学案 人教A版选修2-1
轨迹方程的求法【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。
【学习目标】1.掌握常见的曲线轨迹方程的求法;【重点】常见的曲线轨迹方程的求法【难点】常见的曲线轨迹方程的求法一、复习回顾二、典型例题1.已知ABC-,(5,0),且AC,BC所在直线的∆的两个顶点A,B坐标分别是(5,0)斜率之积等于m(0)m≠,试探求顶点C的轨迹.2.设1F ,2F 分别为椭圆C 的左、右两个焦点.⑴若椭圆C 上的点A 到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程.3.已知动点P 的轨迹为曲线C ,且动点P 到两个定点12(1,0),(1,0)F F -的距离12,PF PF 的等差中项为(1)求曲线C 的方程;(2)直线l 过圆2240x y y ++=的圆心Q 与曲线C 交于,M N 两点,且OM 与ON 垂直 (O 为坐标原点),求直线l 的方程.三、拓展探究4.椭圆C:22221(0)x y a b a b+=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M, 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l 的方程..四、课堂小结1.知识:2.数学思想、方法:五、课后巩固1.教材81页5题2.已知动圆M 与直线y =2相切,且与定圆C :1)3(22=++y x 外切,求动圆 圆心M 的轨迹方程.3.已知抛物线y 2=6x , 过点P(4, 1)引一弦,使它恰在点P 被平分,求这条弦所在的直线l 的方程.4.已知动点P 与平面上两定点(A B 连线的斜率的积为定值12-(Ⅰ)试求动点P 的轨迹方程C.(Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=324时,求直线l 的方程.。
新课标高中数学人教A版选择性必修第一二三册教学方案〖《抛物线及其标准方程》第一课时参考教学方案〗
《抛物线及其标准方程》第1课时本节在教材中的地位和作用:在初中阶段,抛物线为学生学习二次函数提供了直观的图象感觉;在高中阶段也有着广泛的应用,它在一元二次不等式的解法、求最大(小)值等方面有着重要的作用.但学生并不清楚这种曲线的本质,随着学生数学知识的逐渐完备,尤其是学习了椭圆、双曲线之后,已具备了探讨这个问题的能力.因此,这一节的教学既是与初中阶段二次函数的图象遥相呼应,体现了数学的和谐之美,也是解析几何“用方程研究曲线”这一基本思想的再次强化.根据抛物线定义推出的标准方程,也为以后用代数方法研究抛物线的几何性质和实际应用提供了必要的工具和基础.我们在教学中采用“创设情景、激发情感、主动发现、主动发展”的教学模式,具体做法如下:(1)通过图片的形象展示及信息技术应用,由学生通过观察、猜想,从而使学生参与知识的获取、抽象、归纳的全过程,得到了抛物线的定义及其应注意的条件,提高学生的综合分析能力.(2)类比椭圆、双曲线标准方程的求解过程,思考→研究讨论→点拨引导,得到抛物线标准方程.通过教师适时的引导,通过生生间、师生间的交流互动,通过学生自己的发现、分析、探究、反思,使学生真正成为学习的主人,不断完善自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦.课时分配本节内容分两课时完成.第一课时讲解抛物线的定义及其标准方程;第二课时讲解运用抛物线的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法.1.掌握抛物线的定义、几何图形,明确焦点和准线的意义;2.会推导抛物线的标准方程;3.能够利用给定的条件求抛物线的标准方程.教学难点: 抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择).复习旧知在初中,我们学习过了二次函数=a 2+b +c ,知道二次函数的图象是一条抛物线,例如:(1)=42,(2)=-42的图象(展示两个函数图象):并让学生思考抛物线的开口方向、顶点坐标和对称轴. 讲授新课 1.课题引入通过演示课前老师准备的有关图片(交MH 于点M .拖动点H ,观察点M 的轨迹,你能发现点M 满足的几何条件吗?(学生观察画图过程,并讨论)可以发现,点M 随着H 的运动,始终有|MH |=|MF |,即点M 与定点F 和定直线的距离相等.(也可以用几何画板度量|MH |,|MF |的值)(定义引入):我们把平面内与一个定点F和一条定直线(不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线叫做抛物线的准线.(板书)提出问题:定点F与定直线是什么关系?为什么定义里要强调点F不在直线上?如果定点F和定直线之间的距离越来越小,抛物线有什么变化?活动设计:由教师利用多媒体演示,学生观察、讨论.活动结果:发现当点F和直线之间的距离越来越小时,抛物线的开口越来越窄.抛物线的形状实质上是取决于焦距.焦距不同,抛物线就不同.提出问题:定点F越来越靠近直线,并最终落在直线上时,抛物线有什么变化?活动设计:由教师利用多媒体演示,学生观察、讨论.活动结果:曲线退化为一条过点F且垂直于直线的直线.3.抛物线的标准方程探究:从抛物线的定义中我们知道,抛物线上的点M(,)满足到焦点F的距离与到准线的距离相等.那么动点M(,)的轨迹方程是什么,即抛物线的方程是什么呢?提出问题:设焦点F到准线的距离为的坐标为(,),过M作MD⊥轴于D,抛物线的集合为:||MF|=|MD|}.由坐标表示得:错误!错误!的坐标为(,),且设直线的方程为=-作MD⊥于D,抛物线的集合为:||MF|=|MD|}.由坐标表示得:错误!=|+错误!错误!错误!(,)到的距离为d,抛物线是集合||MF|=d}.∵|MF|=错误!错误!错误!错误!错误!错误!到焦点F距离的求解方法:可以转化成点M到准线的距离.4.注重数形结合、分类讨论思想.作业布置课本习题24 A组1,2,3.补充练习1.抛物线2=的准线方程是____________________.2.抛物线=-42上的一点M到焦点的距离为1,则点M的纵坐标是____________.3.若抛物线2=2的焦点与椭圆错误!+错误!=1的右焦点重合,则的值为()A.-2 B.2 C.-4 D.44.已知点P在抛物线2=4上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点的距离之和取得最小值时,点P的坐标为()A.(错误!,-1)B.(错误!,1)C.(1,2)D.(1,-2)5.过抛物线=42的焦点作直线交抛物线于A(1,1),B(2,2)两点,若1+2=5,求线段AB的长.1.=-错误!2.=-错误!3.D4.A5.解:由方程2=错误!得,准线方程为=-错误!,则点A到准线的距离d1=1+错误!.点B到准线的距离d2=2+错误!.又由抛物线的定义可得:|AF|=d1,|BF|=d2.∴|AB|=|AF|+|BF|=1+错误!+2+错误!=错误!.本节先用现实生活中的实例引出课题,借助几何画板的演示功能,使学生通过点的运动,观察到抛物线的轨迹的特征.多媒体创设问题情境,让探究式教学走进课堂,唤醒学生的主体意识,发展学生的主体能力,让学生在参与中学会学习、学会合作、学会创新.学生虽然通过二次函数对抛物线图形有所了解,但只限于感性认识,缺少理性的思考、探索和创新,这与缺乏必要的数学思想和方法密切相关.本节课从实例出发,用多媒体结合。
人教A版高中数学选修2-2课件轨迹方程的求法
2.求轨迹方程的主要方法: (1)直接法(也称“直译法”、“列式法”) (2)定义法 (3)代入法(也称“相关点法”、“转移 法”)
3.轨迹问题还应区别是“求轨迹方程”,还是 “求轨迹”.
主要题型
(一).直接法(也称“直译法”、“列式法”) ---直接将题中所给的几何条件“翻译”成方程式
(1)求椭圆C的方程;
(2)设椭圆C的左顶点为A,
下顶点为B, 动点P满足
PA AB m 4,(m R) 试求点P的轨迹方程, 使点B关 于该轨迹的对称点落在椭圆C上.
[解析] (1)
MF2
x轴,|
MF2
|
1 2
,由
椭圆的定义得
:|
MF1
|
1 2
2a,
|
MF1
|2
(2c)2
(2)因为动圆P过点N ,所以 | PN | 是该圆的半径, 又因为动圆 P与圆M 外切,
所以 | PM || PN | 2 2, 即 | PM | | PN | 2 2. 故点P的轨迹是以M、N为焦点, 实轴长为2 2的双曲线的左支. 因为实半轴长a 2,半焦距c 2. 所以虚半轴长b c2 a2 2. 从而动圆P的圆心的轨迹方程为 x2 y2 1( x 2).
x0
22
2
解得
:
x0
4 4m 5
,
y0
2m 5
3
,
点B '(
x0 ,
y0 )在椭圆上,( 4
4m 5
)2
2m 4(
高中轨迹问题教案模板
教学目标:1. 知识与能力:理解轨迹问题的概念,掌握轨迹问题的解题方法,能够解决简单的轨迹问题。
2. 过程与方法:通过观察、分析、归纳等方法,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生对数学学科的兴趣,培养学生的团队协作精神和自主学习能力。
教学重难点:1. 教学重点:轨迹问题的概念、解题方法。
2. 教学难点:轨迹问题的实际应用和解题技巧。
教学准备:1. 教师准备:多媒体课件、轨迹问题相关习题。
2. 学生准备:笔记本、笔。
教学过程:一、导入新课1. 教师通过展示一些生活中的轨迹问题,引导学生思考什么是轨迹问题。
2. 学生结合生活实际,举例说明轨迹问题的现象。
二、新课讲授1. 教师讲解轨迹问题的概念,强调轨迹问题在数学中的重要性。
2. 教师通过实例,展示轨迹问题的解题方法,如:几何法、代数法等。
3. 学生跟随教师一起分析轨迹问题的解题步骤,并尝试解决一些简单的轨迹问题。
三、课堂练习1. 教师布置一些轨迹问题的习题,让学生独立完成。
2. 学生在完成习题的过程中,教师巡视指导,解答学生的疑问。
3. 学生展示解题过程,教师点评并总结。
四、课堂小结1. 教师引导学生回顾本节课所学内容,强调轨迹问题的概念和解题方法。
2. 学生总结自己在解题过程中的收获和不足。
五、布置作业1. 教师布置一些与轨迹问题相关的课后作业,巩固所学知识。
2. 学生完成作业,教师批改并给予反馈。
教学反思:1. 教师在授课过程中,要注意引导学生积极参与课堂讨论,提高学生的自主学习能力。
2. 教师要注重培养学生的逻辑思维能力,引导学生从不同角度分析问题。
3. 教师在讲解轨迹问题的解题方法时,要结合实际案例,让学生更好地理解知识。
4. 教师要关注学生的学习情况,及时调整教学策略,提高教学效果。
高二数学选修21212轨迹方程教学案
2.1.2 轨迹方程班级姓名小组________第____号评价:_______【学习目标】1.结合实例,了解曲线与方程的对应关系.2.了解求曲线方程的步骤.3.会求简单曲线的方程.【重点难点】重点:了解求曲线方程的步骤.难点:结合多种知识点及等量关系,会求简单曲线的方程.【学情分析】大家对解析几何没有一个整体的结构,所以感觉这一部分内容很难,其实只要找准等量关系这种本质,轨迹方程一类的问题都可以迎刃而解。
【导学流程】一.回顾旧知:1.曲线的方程和方程的曲线的定义2.求曲线方程的一般步骤二.基础知识感知1.总结求轨迹方程的方法三.探究问题探究一:曲线与方程的概念【例1】在△ABC中,B(-1,0),C(1,0),若BC边上的高为2,求垂心H的轨迹方程.四.基础知识拓展与迁移已知圆C:(x-1)2+y2=1,过原点O作圆的任意弦,求所作弦的中点的轨迹方程.提问展示问题预设:过定点A(a,b)任作互相垂直的两条线l1与l2,且l1与x轴交于M点,l2与y轴交于N点,求线段MN中点P的轨迹方程.小组讨论问题预设:已知定长为6的线段,其端点A、B分别在x轴、y轴上移动,线段AB的中点为M,求M点的轨迹方程.课堂训练问题预设:1.等腰三角形的顶点是A(4,2),底边一个顶点是B(3,5),求另一个顶点C的轨迹方程,并说明它的轨迹是什么?2.动点M在曲线x2+y2=1上移动,M和定点B(3,0)连线的中点为P,求P点的轨迹.整理内化1.课堂小结2.本节课学习过程中的问题和疑难2.1.2 轨迹方程第Ⅰ部分 本节知识总结第Ⅱ部分 基础知识达标一、选择题(每小题10分,共30分)1.与点A (-1, 0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( )A .x 2+y 2=3B .x 2+2xy =1(x ≠±1)C . y =1-x 2D .x 2+y 2=9(x ≠0)2.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π3.已知A (-1,0),B (1,0),且MA →·M B →=0,则动点M 的轨迹方程是( )A .x 2+y 2=1B .x 2+y 2=2C .x 2+y 2=1(x ≠±1)D .x 2+y 2=2(x ≠±2)二、填空题(每小题10分,共20分)4.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________.5.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.三、解答题(共30分)6.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →·A B →=1.求P 点的轨迹方程.7.过点P 1(1,5)作一条直线交x 轴于点A ,过点P 2(2,7)作直线P 1A 的垂线,交y 轴于点B ,点M 在线段AB 上,且BM ∶MA =1∶2,求动点M 的轨迹方程.8.点A,B 的坐标分别是(-5,0),(5,0),直线AM,BM 相交于点M,且它们的斜率之积是4/9,试求点M 的轨迹方程,并由点M 的轨迹方程判断轨迹的形状.第Ⅲ部分 答疑解惑本节学习中存在的疑难:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轨迹方程的求法(高二数学)
一、知识目标:
1、掌握轨迹方程的求法包括:直接法、定义法、代入法(相关点法)、参数法
2、掌握求轨迹方程的步骤
3、注意求轨迹方程的完备性和纯粹性
题型一 直接法
【例1】已知圆22
:1C x y +=和点(2,0)Q ,动点M 到圆C 的切线长与||MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程,并说明它表示什么曲线?
练习 :已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为1/2的轨迹方程。
题型二 代入法(相关点法)
【例2】已知点P 是圆x2+y2=16上的一个动点,点A 是x 轴上的定点,坐标为(12,0).当点P 在圆上运动时,求线段PA 的中点M 的轨迹方程。
练习:三角形ABC 的两个顶点A ,B 的坐标分别是A (0,0),B (6,0)顶点C 在曲线y=x2+3上运动,求三角形ABC 的重心G 的轨迹方程。
题型三 定义法
【例3】一条曲线在x 轴上方,它上面的每一个点到点A(0,2)的距离减去它到x 轴的距离的差都是2,求
这条曲线的方程。
练习:已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点
Q 的轨迹是( )
A.圆
B.椭圆
C.双曲线的一支
D.抛物线
题型四 参数法
【例4】求经过抛物线y 2=4x 的焦点的弦中点轨迹方程
练习:过点P (2,4)作两条互相垂直的直线l 1,l 2, l 1交x 轴于A 点,l 2交y 轴于点B ,求线段AB 的中
点M 的轨迹方程。
三、巩固与检测:
1、与两点)0,3(),0,3( 距离的平方和等于38的点的轨迹方程是 ( )
()A 1022=-y x ()B 1022=+y x
()C 3822=+y x ()D 3822=-y x 2、与圆2240x y x +-=外切,又与y 轴相切的圆的圆心的轨迹方程是 ( )
()A 28y x = ()B 28(0)y x x =>和0y = ()C 28y x =(0)x > ()D 28(0)y x x =>和0(0)y x =<
3、P 是椭圆5
92
2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹方程为: ( )
A 、159422=+y x
B 、154922=+y x
C 、12092
2=+y x D 、5
3622y x +=1 4、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( )
A 、双曲线
B 、双曲线左支
C 、一条射线
D 、双曲线右支
5、已知定点(1,1)A 和直线:20l x y +-=,那么到定点A 的距离和到定直线l 距离相等的点的轨迹为
A.椭圆
B.双曲线
C.抛物线
D.直线
6、已知(0,7),(0,7),(12,2)A B C -,以C 为一个焦点作过A B 、的椭圆,椭圆的另一个焦点F 的轨迹方程
是 A.22
1(1)48x y y -=≤- B.221(1)48x y y -=≥ C.22148x y -= D.2
2148x y -=- 7、自圆外一点P 作圆221x y +=的两条切线PM PN 、。
若2MPN π∠=
,则动点P 的轨迹方程是 A.224x y += B.222x y += C.2214x y += D.2
212
x y += 8、12F F 、是椭圆的两个焦点,A 是椭圆上任一点,从任一焦点向12F AF ∠的外角平分线作垂线,垂足为P ,则P 点的轨迹是( )
A.椭圆
B.双曲线
C.圆
D.抛物线
9、P 在以F 1,F 2为焦点的双曲线19
162=-y x 上运动,则ΔF 1F 2P 的重心G 的轨迹方程 是 .
10、已知⎪⎭⎫ ⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝
⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为
11、求与两定圆x 2+y 2=1,x 2+y 2-8x -33=0都外切的动圆圆心的轨迹方程____________
12、过抛物线24y x =的顶点O 作两条互相垂直的直线分别交抛物线于A B 、两点,求线段AB 的中点P 的
轨迹方程。