【数学】培优 易错 难题一元二次方程辅导专题训练附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以
3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?
(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?
【答案】(1)PQ=62cm;(2)8
5
s或
24
5
s;(3)经过4秒或6秒△PBQ的面积为
12cm2.
【解析】
试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;
(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;
(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.
则根据题意,得
EQ=16-2×3-2×2=6(cm),PE=AD=6cm;
在Rt△PEQ中,根据勾股定理,得
PE2+EQ2=PQ2,即36+36=PQ2,

cm;
∴经过2s时P、Q两点之间的距离是
;(2)设x秒后,点P和点Q的距离是10cm.
(16-2x-3x)2+62=102,即(16-5x)2=64,
∴16-5x=±8,
∴x1=8
5
,x2=
24
5

∴经过8
5
s或
24
5
sP、Q两点之间的距离是10cm;
(3)连接BQ.设经过ys后△PBQ的面积为12cm2.
①当0≤y≤16
3
时,则PB=16-3y,
∴1
2PB•BC=12,即
1
2
×(16-3y)×6=12,
解得y=4;
②当16
3
<x≤
22
3
时,
BP=3y-AB=3y-16,QC=2y,则
1 2BP•CQ=
1
2
(3y-16)×2y=12,
解得y1=6,y2=-2
3
(舍去);
③22
3
<x≤8时,
QP=CQ-PQ=22-y,则
1 2QP•CB=
1
2
(22-y)×6=12,
解得y=18(舍去).
综上所述,经过4秒或6秒△PBQ的面积为 12cm2.
考点:一元二次方程的应用.
2.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.
(1)求平均每次下调的百分率;
(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?
【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.
【解析】
【分析】
(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.
【详解】
(1)设平均每次下调x%,则
7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);
答:平均每次下调的百分率为10%.
(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.
∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.
3.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.
(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)
(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程
中,“大众点评”网上的购买价格比原有价格上涨5
2
m%,购买数量和原计划一样:“美团”网
上的购买价格比原有价格下降了9
20
m元,购买数量在原计划基础上增加15m%,最终,在
两个网站的实际消费总额比原计划的预算总额增加了15
2
m%,求出m的值.
【答案】(1)120;(2)20.
【解析】
试题分析:(1)本题介绍两种解法:
解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;
解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;
(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”
网上的购买实际消费总额:120a(1﹣25%)(1+5
2
m%),在“美团”网上的购买实际消费
总额:a[120(1﹣25%)﹣9
20
m](1+15m%);根据“在两个网站的实际消费总额比原计划
的预算总额增加了15
2
m%”列方程解出即可.
试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).
答:每个礼盒在花店的最高标价是120元;
(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:
120×0.8a(1﹣25%)(1+5
2
m%)+a[120×0.8(1﹣25%)﹣
9
20
m](1+15m%)=120×0.8a
(1﹣25%)×2(1+ 15
2
m%),即72a(1+
5
2
m%)+a(72﹣
9
20
m)(1+15m%)=144a
(1+ 15
2
m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),
m2=20.
答:m的值是20.
点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.
4.已知:关于的方程有两个不相等实数根.
(1)用含的式子表示方程的两实数根;
(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.

由求根公式,得
.∴或
(II),∴.
而,∴,.
由题意,有
∴即(﹡)
解之,得
经检验是方程(﹡)的根,但,∴
【解析】
(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.
一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措
施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.
请你解答下列问题:
5.解下列方程:
(1)2x 2-4x -1=0(配方法);
(2)(x +1)2=6x +6.
【答案】(1)x 1=16x 2=161=-1,x 2=5. 【解析】
试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;
(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =
12,∴x 2-2x +1=32. ∴(x -1)2=
32. ∴x -1=326. ∴x 1=16x 2=16 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.
∴x +1=0或x +1-6=0.
∴x 1=-1,x 2=5.
6.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.
()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.
【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .
【解析】
【分析】
(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.
【详解】
解:(1)由题意可得k=-15,则原方程为x2-15x+56=0,则(x-7)·(x-8)=0,解得x1=7,x2=8.
(2)第n个方程为x2-(2n-1)x+n(n-1)=0,(x-n)(x-n+1)=0,解得x1=n-1,x2=n.【点睛】
本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.
7.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.
(1)求实数a的取值范围;
(2)若x12x22+4x1+4x2=1,求a的值.
【答案】(1)a≤3;(2)a=﹣1.
【解析】
试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;
(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.
试题解析:(1)∵方程有两个实数根,
∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;
(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,
∵x12x22+4x1+4x2=1,
∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,
∵a≤3,
∴a=﹣1.
8.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.
(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.
【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.
【解析】
【分析】
(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.
(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.
【详解】
(1)假设能,设AB 的长度为x 米,则BC 的长度为(32﹣2x )米,
根据题意得:x(32﹣2x)=126,
解得:x 1=7,x 2=9,
∴32﹣2x=18或32﹣2x=14,
∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
(2)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣2y )米,
根据题意得:y(36﹣2y)=170,
整理得:y 2﹣18y+85=0.
∵△=(﹣18)2﹣4×1×85=﹣16<0,
∴该方程无解,
∴假设不成立,即若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2.
9. ∵1.7×35=59.5,1.7×80=136<151
∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),
五月份用水量超过m 吨(或水费是按
来计算的) 则有151=1.7×80+(80-m )×
即m 2-80m+1500=0
解得m 1=30,m 2=50.
又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.
∴m=50
【解析】
10.解方程:(x +1)(x -1)=2x.
【答案】x 123,x 223
【解析】
试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可. 试题解析:(x +1)(x -1)=2
x 2-22x-1=0
∵a=1,b=-22c=-1
∴△=b 2-4ac=8+4=12>0
∴x=242b b c a
a -±-23 ∴x 123x 223.。

相关文档
最新文档