山东省高考数学一模试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省高考数学一模试卷及答案
山东省高考数学一模试卷选择题
本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合M={0,1,2},N={x|﹣1≤x≤1,
x∈Z},则( )
A.M⊆N
B.N⊆M
C.M∩N={0,1}
D.M∪N=N
2.如果复数z= (b∈R)的实部和虚部相等,则|z|
等于( )
A.3
B.2
C.3
D.2
3.“log2(2x﹣3)<1”是“4x>8”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
4.函数y=x2+ln|x|的图象大致为( )
A. B.
C. D.
5.函数f(x)=Acos(ωx+φ)(A>0,
ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象( )
A.向左平移个单位长度
B.向左平移个单位长度
C.向右平移个单位长度
D.向右平移个单位长度
6.甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( )
A.210
B.84
C.343
D.336
7.已知变量x,y满足::,则z=( )2x+y的最大值为( )
A. B.2 C.2 D.4
8. 公元263年左右,我国数学家刘徽发现当圆内接正
多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精
确到小数点后两位的近似值3.14,这就是著名的“徽率”.
如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )
(参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
9.已知O为坐标原点,F是双曲线的左焦点,A,B分
别为Γ的左、右顶点,P为Γ上一点,且PF⊥x 轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则 Γ的离
心率为( )
A.3
B.2
C.
D.
10.曲线的一条切线l与y=x,y轴三条直线围成三角形记为△OAB,则△OAB外接圆面积的最小值为( )
A. B. C. D.
山东省高考数学一模试卷非选择题
二、填空题:本大题共5小题,每小题5分,共25分.
11.设的值为.
12.设随机变量ξ服从正态分布N(2,9),若
P(ξ>c+1)=P(ξ
13.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值
为.
14.有下列各式:,,,…则按此规律可猜想此类不等式的一般形式为:.
15.在,点M是△ABC外一点,BM=2CM=2,则AM的最大值与最小值的差为.
三、解答题:本大题共6小题,共75分.
16.(12分)已知函数f(x)= sin2x﹣2cos2x﹣1,
x∈R.
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.
17.(12分)一袋中有7个大小相同的小球,其中有2个
红球,3个黄球,2个蓝球,从中任取3个小球.
(I)求红、黄、蓝三种颜色的小球各取1个的概率;
(II)设X表示取到的蓝色小球的个数,求X的分布列和数学期望.
18.(12分)如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且FD= .
(I)求证:EF∥平面ABCD;
(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.
19.(12分)已知数列{an}满足a1=1,an+1=1﹣,其中n∈N*.
(Ⅰ)设bn= ,求证:数列{bn}是等差数列,并求出{an}的通项公式an;
(Ⅱ)设Cn= ,数列{CnCn+2}的前n项和为Tn,是否存在正整数m,使得Tn< 对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.
20.(13分)已知左、右焦点分别为F1(﹣c,0),F2(c,0)的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点.
(I)求椭圆C的离心率和标准方程.
(II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且
直线F1R的斜率大于1,求|PF1||QF1|的取值范围.
21.(14分)设f(x)=xex(e为自然对数的底数),
g(x)=(x+1)2.
(I)记,讨论函F(x)单调性;
(II)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点.
(i)求参数a的取值范围;
(ii)设x1,x2是G(x)的两个零点,证明x1+x2+2<0.。