温室大棚环境的湿度监测和控制问题研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温室大棚环境的湿度监测和控制问题研究
——湿度检测元件的改进及设计
1前言
1.1课题背景
农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与作物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。目前湿度参数,直接关系到蔬菜和水果的生长。国外的温室设施已经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,而且缺乏与我国气候特点适应的测控软件。而当今大多数对大棚湿度检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地监测大棚内湿度的变化,并实时调节大棚内湿度的含量,使大棚内形成有利于蔬菜,水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。
1.2国内外温室控制系统的研究状况
温室是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的场所。它以采光覆盖材料作为全部或部分结构材料,可在冬季或其他不适宜露地植物生长的季节栽培植物。温室生产以达到调节
产期,促进生长发育,防治病虫害及提高质量、产量等为目的。而温室设施的关键技术是环境控制,该技术的最终目标是提高控制与作业精度。
1.2.1国外温室控制系统的研究状况
世界发达国家如荷兰、美国、英国等大力发展集约化的温室产业,温室内温度、光照、水、气、肥实现了计算机调控,从品种选择、栽培管理到采收包装形成了一整套完整的规范化技术体系。
美国是最早发明计算机的国家,也是将计算机应用于温室控制和管理最早、最多的国家之一。美国有发达的设施栽培技术,综合环境控制技术水平非常高。环境控制计算机主要用来对温室环境 (气象环境和栽培环境)进行监测和控制。以花卉温室为例,温室内监控项目包括室内气温、水温、土壤温度、锅炉温度、管道温度、相对空气湿度、保温幕状况、通窗状况、泵的工作状况、二氧化碳浓度、EC调节池和回流管数值、pH调节池和回流管数值;室外监控目包括大气温度、太阳辐射强度、风向风速、相对湿度等。温室专家系统的应用给种植者带来了一定的经济效益,提高了决策水平,减轻了技术管理工作量,同时也为种植带来了很大方便。
20世纪70年代,国外的温室生产开始以较快的速度发张,特别是欧美发达国家,如荷兰、美国等国家实现了机械化。当时由于水平的限制,对于生态环境因素采用单因子控制,即对温度、湿度、光照和二氧化碳浓度进行单独分别控制的方法,主要是控制温度,其次是湿度(空气湿度、土壤湿度)。例如,在控制温度时,控制的只是温度的改变,而不影响到其他因素,要改变其他因素,则要实施另外的控制过程,才能达到一定温度条件下其他相关环境因素的配合。但是,外界气候的变化随时影响到温室内的小气候,靠人工指令随时进行相应改变难以办到,并且各控制变量之间相互影响、相互耦合,如阴雨天需要补光,补光又会带来温度上升和相对湿度下降,要达到拟定的控制效果,又涉及到几个执行机构,这是一个复杂的控制过程。随着计算机技术的发展,20世纪80年代采取多因素综合控制方法,这是利用计算机控制温室环境因素的方法。此方法是将各种作物在不同生长发育阶段需要的适宜环境条件要求输入计算机程序,当某一环境因素发生改变时,其余因素自动做出相应修正或调整。一般以光照条件为始变因素,温度、湿度和二氧化碳浓度为随便因素,使这4个主要环境因素随时处于最佳配合
状态。20世纪90年代,在多因子环境控制中,采用了模糊控制、多变量控制等先进技术,并采用这些先进技术开发环境自动控制的计算机软件系统。目前日本人、荷兰、以色列、美国等发达国家可以根据作物的要求和特点,对温室内光照、温度、湿度等诸多因子进行自动控制。
随着科学技术的进一步发展,温室控制技术也在发生日新月异的变化。一些国家在实现了作业和控制自动化的同时,也在进行人工智能的广泛应用研究,开发用于温室管理、决策、咨询等方面的专家系统软件,利用遥测技术、网路技术进行温室的远程控制、管理诊断、实时环境监控,为用户提供各类信息服务,如产品购销市场、信息技术支持与服务、气象信息,真正做到无人值班、远程控制、完全自动化。
1.2.2国内温室控制系统的研究状况
我国是一个历史悠久的农业大国,早在两千多年前就有蔬菜、花卉的温室栽培。可见我国的温室产业源远流长。20世纪30年代,我国辽宁南部和北京地区就已经开始在冬季利用不进行人工加热的“日光温室”生产新鲜蔬菜。但局限于当时的技术水平,严冬季节这种温室内的光、热环境只能维持耐寒性强的野菜类和葱蒜类蔬菜生长,而不能产生喜温的黄瓜、番茄等果菜。我国对于温室控制技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温室控制技术的基础上,才掌握了人工气候室内微机控制技术,该技术仅限于温度、湿度和CO2浓度等单项环境因子的控制。之后,我国的温室控制技术得到了迅速发展。1995年,北京农业大学研制成功了“WJG-1型实验温室环境监控计算机管理系统”,此系统属于小型分布式数据采集控制系统。1996年,江苏理工大学毛罕平等研制成功了使用工控机进行管理的植物工厂系统。中国农业机械化科学研究院研制成功了新型智能温室系统。该系统由大棚本体及通风降温系统、太阳能贮存系统、燃油热风加热系统、灌溉系统、计算机环境参数测控系统等组成。1997年以来,中国农业大学在温室环境的自动控制技术方面也取得了一定的成果。90年代末,河北职业技术师范学院的闰忠文研制了蔬菜大棚,其能够对温、湿度进行实时测量与控制。但由于我国农业现代化水平较低,农业劳动力大量过剩,温室的一次性投资大,资金短缺以及对操作人员的素质要求比较高等因素,限制了温室控制技术在温室系统的扩展。