分数的基本性质教学设计 分数的性质教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的基本性质教学设计分数的性质教学设计【篇一】分数的基本性质教学设计分数的基本性质公开课教案
【篇二】分数的基本性质教学设计人教版《分数的基本性质》教学设计《分数的基本性质》的教学设计
学习内容:教材第75、76页。

学习目标:
1.理解和掌握分数的基本性质。

2.运用分数的基本性质把一个分数化成分母(或分子)而大小
不变的分数,并能应用这一规律解决简单的实际问题。

3.培养乐于探究的学习态度。

学习重点:理解和掌握分数的基本性质。

学习难点:应用分数的基本性质解决简单的实际问题。

学习过程:
一、温故知新、导入新课(2至3分钟)
1、12÷4 = ( 12×3 )÷(4 ×3 ) =
( 12 ÷2 )÷(4 ÷2 ) =
在整数除法中,被除数和除数( )或者( )相同的数(0除外),( )不变。

2、9÷17= ()/() 7/16=()÷()()÷8= 5/8
根据分数与除法的关系,我们知道分子可以看成(),分数线可以看成(),分母可以看成),分数值相当于除法中的()。

3、引入课题:除法有商不变性质,那分数有什么基本性质呢?我们今天就来学习分数的基本性质。

(板书:分是的基本性质)
二、展标:
先来看看本节课的教学目标:
1.理解和掌握分数的基本性质。

2.运用分数的基本性质把一个分数化成分母(或分子)而大小不变的分数,并能应用这一规律解决简单的数学问题。

3.培养乐于探究的学习态度。

三、自主学习,完成练习。

1、通过刚才商不变性质,及其分数和除法关系的复习,谁能完
成我们第一个教学目标呢?
分数的分子和分母()乘上或者除以相同的数(零除外),
分数的大小不变这叫做分数的基本性质。

2. 1/4=( )/8 10/25=( )/5
1/6=6/( ) 3/( )=12/28
四、小组合作,完成下面练习
1、下面是三张同样大小的三张长方形纸,按要求涂色。

分数的基本性质教学设计
1/2 2/4 4/8
经过观察会发现,涂色部分的面积(
),所以1/2=()=
()
2、它们的分子、分母各是按照什么规律变化的?
这叫做分数的基本性质。

为什么“0除外”?
3、和 4/5
4、回顾结论,提问。

分数的分子和分母()乘上或者除以相同的数(零除外),分数的大小不变。

这叫做分数的基本性质。

分数的基本性质与商的不变规律有关系?
五、当堂检测
(独立练习,组长批阅)
一、填空
1.把13/15 的分子扩大3倍,要使分数的大小不变,它的分母应该();4/7的分母增加14,要使分数的大小不变,分子应该增加()。

2、
二、判断(对的打“√”,错的打“×” )
1、分数的分子和分母乘上或除以一个数,分数的大小不变.
2、分数的分子和分母都乘上或除以一个相同的自然数,分数的大小个变.
3、分数的分子和分母加上同一个数,分数的大小不变.
4、一个分数的分子不变,分母扩大3倍,分数的值就扩大4倍.
三、选择题
1.一个分数的分子不变,分母除以4,这个分数().①扩大4倍②缩小4倍③不变
2.一个分数的分子乘上5,分母不变,这个分数()①缩小5倍②扩大5倍③不变
3. 3/5的分子增加6,要使分数大小不变,它的分母应该()
①增加6 ②增加15 ③增加10
四、在○内填“>”、“<”“=”。

5/12○25/60 5/6○ 11/9○ 课后反思
1.你的学习有效吗?有什么经验或教训?
2.你学到了什么?
【篇三】分数的基本性质教学设计《分数的基本性质》教学设计及反思分数的基本性质
教学内容:人教版版小学数学教材五年级下册第57至58页。

一、教学目标:
1、经历探索分数的基本性质的过程,理解分数的基本性质。

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2、培养学生的观察、比较、归纳、总结概括能力。

分数的基本性质教学设计
3、激发学生积极主动的情感状态,养成注意倾听的习惯,在实践操作中体验成功的快乐。

二、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。

而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。

探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。

教材安排了两个学习活动让学生寻找相等的分数,通过两个活动使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。

然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。

教学中要注意的几个问题:
1、在充分利用教材的基础上,充分利用多种手段,节省课堂教学时间,提高学生理解的效率。

2、通过创设机会,让学生动手折一折,画一画,充分调动学生的感官直觉,使学生的认识由感性上升到理性。

3、发掘孩子们敏锐的直觉,引导学生认真进行观察、比较、归纳提升,学生能动口说的,动手做的,教师决不能包办代替。

4、发挥学生之间的互帮作用,引导学生多看、多听,多给与学生激励性评价,使每一名学生都能得到不同的发展。

【篇四】分数的基本性质教学设计《分数的基本性质》教学设计及反思《分数的基本性质》教学设计
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。

设计思路:
《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。

它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。

这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。

教材共安排了两道例题、“做一做1、2题”等。

教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。

通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受
学习数学的乐趣,培养学生乐于探究的人生态度。

教学目标:
1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。

教学重点:
理解和掌握分数的基本性质。

分数的基本性质教学设计
教学难点:
应用分数的基本性质解决实际问题。

教学方法:直观演示法、讨论法等。

学法:合作交流、自主探究。

教学准备:每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。

教学过程:
一.创设情景,激发兴趣
(课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
( )( ) ( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( ) ( )
二.大胆猜想,揭示课题
学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。

三 .探索研究,验证猜想
1. 动手操作,验证性质。

(1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12
份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。

图(略)…………引导学生观察、思考:你发现了什么?
(2)小组合作:①观察、分析、比较在组内交流你的发现。

②合作交流,各抒己见。

123③选代表全班汇报、交流,师相机板书:4812
123(3)合作讨论: 为什么相等? 4812
①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的?②观察它们的分子、分母的变化规律,在组内用自己的话说一说。

2.分组汇报,归纳性质。

a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

(根据学生回答
b.从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答

c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?
d.综合刚才的探究,你发现什么规律?
(4)引导学生概括出分数的基本性质,回应猜想。

(……这叫做板书:分数的基本性质)
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?

(5)齐读分数的基本性质。

在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。

为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)
33×263(1)==(生: 的分子与分母没有同时乘以2,分数的大小改变。

)555555÷515(2)==(生:的分子除以5,分母除以6,除数的大小不同,分数1212÷6212
的大小改变。

)11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)
分数的大小改变。

)22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。

)55×x5x
四.回归书本,探源获知
1.浏览课本第75—78页的内容。

2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)
3.分数的基本性质与商不变性质的比较。

(1)小组合作:讨论分数的基本性质与商不变性质的异同。

(2)小组内交流。

(3)选代表全班交流、汇报。

(4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!
4.自主学习并完成例2,请二名学生说出思路。

五.巩固深化,拓展思维(PPT演示文稿出示下列题目)
1.想一想,填一填。

33×( )988÷( )( ) 55×( )( )2424÷( )3
学生口答后,要求说出是怎样想的?
2.在下面()内填上合适的数。

要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

3.思维训练(选择你喜爱的一道题完成)
3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5
(2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4……时,b分别等于几?
讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。

思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

六.全课小结
本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)
七.布置作业
P77—78练习十四第1、5、8题。

教学反思
“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。

这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。

这不仅对学生提出了挑战,而且对教师也提出了挑战。

教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。

通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

本节课教学设计突出的特点是学法的设计。

从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。

通过教学总结了自己的得与失如下:
1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。

因为兴趣是最好的老师!
2.学生在操作中大胆猜想。

新课标积极倡导学生“主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。

因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜
想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。

教师在教学过程成为学生学习的引导者、支持者、服务者。

同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。

并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。

3.学生在自主探索中科学验证。

【篇五】分数的基本性质教学设计分数的基本性质教学设计
《分数的基本性质》教学设计
【教材背景】
义务教育课程标准实验教科书北师大版五年级数学上册第43-44页内容。

【教材分析】
《分数的基本性质》一课是在学习了商不变性质及分数与除法的关系的基础上进行教学的。

它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。

学生应该很感兴趣。

这些都是学好本课的优势条件。

【设计理念】
让学生主动参与验证是本节课的核心理念,学生动手折纸验证以后,在引导学生用数学的思路来思考问题,通过学生的观察和比较来发现分数之间的关系,从而得出分数的基本性质。

全课都是在学生主动探究的环境下进行,这样
学生掌握住了分数基本性质以后,也能较好的进行实际运用,解决一些实际的问题。

【教学目标】
一.知识与技能目标:
1.经历探索分数的基本性质的过程,理解分数的基本性质。

2.能运用分数的基本性质进行分数的转化并能解决实际问题。

二.过程与方法目标:
1. 让学生通过观察、操作和讨论等学习活动的开展,在探索过程中进
行有条理的思考,能对分数的基本性质作出简要的、合理的说明。

2.培养学生的观察、比较、归纳、总结概括能力
3.能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

三.情感态度与价值观目标:
1.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

2.鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质
【教学重点】
分析、归纳、理解分数的基本性质,并能应用分数的基本性质解决问题。

【教学难点】
探索和理解分数的基本性质
【教学方法】
分数的基本性质的内容学生记忆起来并不困难,但也正因此很容易使学习流于记住,而不是真正的理解掌握,所以在教学设计中设计了猜想,然后自主探究,操作验证的环节,让学生通过折纸、涂色,知识迁移等方法,在充分经历推理学习的过程基础上,总结归纳出分数的基本性质。

从而,达到学会、掌握、运用的目标。

【课前准备】
多媒体课件、圆形纸片等
【教学课时】
1课时
【教学过程】
一、复习旧知,情境导入。

复习:在括号里填上适当的数。

30÷6=15÷()=10÷()=()÷1
24÷12=48÷()=4÷()=()÷3
()÷15=6÷3=()÷1=90÷()
你能说出商不变的性质吗?
创设情境:有两张一样大的饼,现在要平均分给甲、乙、丙、丁四位同学,要求分得公平,每人分到的份数不一样而得到的饼又一样多,你能分开吗?每个同学吃到了一张饼的几分之几?请同学们试一试。

今天我们继续来学习有关分数的知识。

二.自主探究,感悟新知。

学生讨论交流后汇报。

师强调明确。

三.梳理分析,归纳规律。

教学情景三:
出示课前提出的问题并组织完成。

动手操作、形象感知。

学生独立操作验证。

回答下列问题:
①怎样去分呢?仔细想一想。

②说说你的想法。

③说说你发现了什么?
2.梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?
3.即时练习。

=7()() 12= 4=8 9271647()
四.拓展练习,总结全课。

数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。

你们想挑战吗?
【篇六】分数的基本性质教学设计分数的基本性质教学设计
《分数的基本性质》教学设计
教学内容:人教版小学数学五年级第75页例1。

教材分析:
学习“分数的基本性质”这一节课的内容是探索规律性知识。

学习好这一部分的内容对今后学习约分、通分起着关键的作用,影响着学生计算能力的形成;同时它与除法中商不变的性质、比的基本性质有着密切的内在联系。

学习目标:
1、通过学习使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生观察、比较、抽象概括的逻辑思维能力。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德,同时渗透“事物之间是相互联系的发展变化的”辩证唯物主义观点。

教学重点:
理解分数基本性质的含义,掌握分数基本性质的推导过程。

教学难点:
理解分数基本性质零除外的道理,归纳分数的基本性质。

教具准备:课件、写有分数的卡片。

学具准备:3个同样大小的圆形纸片、彩笔、各种卡片。

教学过程:
●课前交流:
教师讲故事:猴山上的猴子最喜欢吃猴王做的饼了。

有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成2块,分给猴大一块。

猴二见到说:“太小了,我要两块。

”猴王就把第二块饼平均切成4块,分给猴二两块。

猴三更贪,它抢着说:“我要四块,我要四块。

”于是,猴王又把第三块饼平均切成8块,分给猴三四块。

这时三个小猴争执起来,认为猴王这
样分的不公平。

同学们想知道猴王这样分到底公平与不公平的呢?学习了“分数的基本性质”就清楚了。

(板书课题)
一、创设情境,大胆猜测
师:同学们,上星期吕老师在我班里布置同学们设计一份数学报,在检查过程中我发现了一个有趣的问题。

大家想听听吗?(生答:“想!”)我班有三个同学,他们分别在三张同样大的纸张上设计了活动乐园这个栏目。

其中小芳的活动乐园占整个版面的1/3,文强的活动乐园占整个版面的2/6,志达的活动乐园占整个版面的4/12。

(师边说边演示课件)请大家观察这三个分数,帮忙想想谁的版面占的面积大呢?
学生猜测。

……
二、小组合作,验证猜想
师:到底谁的猜想是正确地呢?让我们一起来验证一下。

1、折一折,画一画
教师提出要求(课件出示):
(1)三人为一个小组,每人选择一个不同的分数,先折一折,再用画一画的方法把它表示出来。

(2)三人做好之后,将三幅图进行比较,看看能发现什么?为什么?
学生动手折画,而后进行比较。

师:哪一小组的同学愿意上来说说你们的发现?
生:通过比较,三副图阴影部分面积一样,因而三个分数一样大。

(师适时将学生小组绘图贴在黑板上。


师:请同学们观察上面三幅图形,它们平均分的份数和取出的份数有什么变化吗?从左往右看,你发现了什么?从右往左看,你又发现了什么?
生:从左往右看,平均分的份数每次扩大了2倍,取出的份数每次也跟着扩大2倍。

从右往左看,平均分的份数每次缩小2倍,取出的份数每次也跟着缩小2倍。

师:你们其他组是不是赞成他们组的看法?(生:同意。

)师:也就是说,当平均分的份数发生变化的时候,取出的份数也发生了同样地变化。

2、算一算
师:刚才大家借助图形发现三个分数是一样大的。

那么,你们还有其它的方法来验证它们的大小吗?请大家仔细观察这三个相等分数的分子和分母,你又能发现什么呢?
学生先独立思考,后小组里讨论交流想法。

指名汇报:
生①:1/3的分子和分母都乘2得到2/6,2/6的分子和分母都乘2得到
4/12。

师:是不是一定都要乘2?1/3与4/12之间又是怎样变化的?生①:1/3的分子和分母都乘4得到4/12。

生②:4/12的分子和分母都除以2得到2/6,2/6的分子和分母都除以2得到1/3。

(师根据生回答适时板书)
师:你们其他组有相同的发现吗?
生③:分数的分子相当于被除数,分母相当于除数,根据商不变的规律,同样可以使它们相等。

师:能不能结合分数具体讲一讲?
生③:1/3=1÷3=(1×2)÷(3×2)=2÷6=2/6
4/12=4÷12=(4÷2)÷(12÷2)=2÷6=2/6
师:你能用我们学过的旧知识来解释新知识,真棒!
3、达成共识,得出结论分数的基本性质教学设计
引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。

不完善的互相补充。

师:哪位同学能用一句话概括刚才的发现呢?
生①:分子和分母同时乘或除以相同的数,它们已然能相等。

生②:分子和分母同时乘或除以相同的数,分数的大小不变。

生③:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要说“0除外”?
分数的分子、分母到底能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。

通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。

分数里分母不能为0,所以分数的分子、分母不能同时乘以0。

在除法里0不能做除数,所以分数的分子、分母也不能同时除以0。

(课件出示分数的基本性质,全班齐读一遍。

)师:这就是我们今天要学习的“分数的基本性质”。

(教师板书课题)
4、加深对“分数基本性质”这一结论的理解
“分数的基本性质”在课本第75页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。

师:谁愿意来提醒大家该注意什么?
生:同时、相同、0除外、大小不变。

(师随生回答将课件中重点字词凸显。

)全班齐读一遍分数的基本性质。

师:我们以前学过了什么规律和分数的基本性质相似?
生:商不变的规律。

师:谁来说说什么是商不变的规律?
生:被除数和除数同时乘或除以相同的数(0除外),商不变。

师:商不变
的规律和分数的基本性质之间又有什么联系呢?(课件同时出现商不变的规律和分数的基本性质,引导学生观察。


生:被除数相当于分子,除数相当于分母,除法中是商不变,分数中是分数的大小不变。

其它都一样。

(师随生回答将课件中重点字词凸显。


师:数学知识中有很多知识是紧密相关的,大家以后要像刚才那个会思考的同学一样,多注意新旧知识的联系,这对于我们学习新知识很有帮助。

三、巩固应用,深化认知
师:同学们,学习了分数的基本性质,你们都懂得用吗?让我们来试一试吧!
请同学们回想一下课前老师讲的故事猴王这样分到底公平与不公平的呢?
让学生发表自己的意见,运用分数的基本性质得出结论:三只猴子分得的饼一样多。

教师板书:1/2=2/4=4/8。

教师课件出示三块大小一样的饼,通过师生分饼、观察和验证。

1、教材第76页试一试的第1题。

师:观察分母(或分子)发生了什么变化,然后在括号里填上适当的数。

学生独立完成后,指名回答,着重要让学生说说第1、2小题的想法。

(略)
2、教材练习十四的第4题。

相关文档
最新文档