现代控制理论基础_周军_第二章状态空间分析法资料
现代控制理论知识点汇总
现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
② 由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
现代控制理论总结
现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。
以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。
随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。
2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。
3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=错误!未找到引用源。
,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。
即无零,极点对消的传函的实现。
三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点错误!未找到引用源。
系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。
控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。
将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。
传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态错误!未找到引用源。
现代控制理论基础第二章习题答案
第二章 状态空间表达式的解3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。
(1) ⎥⎦⎤⎢⎣⎡-=2010A (2) ⎥⎦⎤⎢⎣⎡-=0410A (3) ⎥⎦⎤⎢⎣⎡--=2110A (4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=452100010A (5)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000100001000010A (6)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλ000100010000A 【解】:(1) (2) (3) (4)特征值为:2,1321===λλλ。
由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=421211101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1211321201P线性变换后的系统矩阵为:(5)为结构四重根的约旦标准型。
(6)虽然特征值相同,但对应着两个约当块。
或}0100010000{])[()(1111----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。
【解】:(1) (2)特征方程为: 特征值为:2,1321===λλλ。
由于112==n n ,所以1λ对应的广义特征向量的阶数为1。
求满足0)(11=-P A I λ的解1P ,得:0110000000312111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得:对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==110010001321P P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1100100011P 线性变换后的系统矩阵为:(3)特征值为:2,1321===λλλ。
第二章现代控制理论状态空间表达式
即
(2-11)
(3) 列出状态空间描述iL 1 − ( R + R )C 1 2 R1 L( R1 + R2 ) − R1 1 ( R1 + R2 )C uC ( R1 + R2 )C (2-12) + e(t ) R1 R2 iL R2 − L( R + R ) L( R1 + R2 ) 1 2
§2.1 状态空间描述的概念 2.1.2 控制系统的状态空间描述举例
例2-1 R-L-C系统,求其状态空间描述
R
u
L i
C
uC
解 (1) 确定状态变量 选择电容两端电压 uC (t )、电感通过的电流 i (t ) (2) 列写微分方程并化为一阶微分方程组 基尔霍夫(Kirchhoff)电压定律,
(2-13)
令
1 − ( R + R )C 1 2 A= R1 L( R + R ) 1 2
1 ( R + R )C 2 b= 1 R2 L( R + R ) 1 2
−
R1 ( R1 + R2 )C R1 R2 − L( R1 + R2 )
n 维列向量,状态向量
a12 a1n a22 a2 n an 2 ann
n×n方阵,系统矩阵(或状态矩阵), 反映系统状态的内在联系
§2.1 状态空间描述的概念
第二章 现代控制理论基础
微分方程组可以改写为
di (t ) R uC (t ) u (t ) = i (t ) + dt L L L
duC (t ) 1 = i (t ) dt C
并且写成矩阵形式: 并且写成矩阵形式:
di (t ) R dt L du (t ) = 1 C dt C 1 i (t ) 1 L + L u (t ) 0 uC (t ) 0
0 0 an 1 an 2
则式(2.4)可以写成
x = Ax + Bu
输出方程可写成
y = x1
写成矩阵方程形式为
x1 x y = [1 0 0] 2 = Cx xn
例2.1 设某控制系统的动态特性可用下述微分方程描述
y + 5 + 6 y + 12 y = u y
系统闭环传递函数为
Y ( s) 1 1 = = 3 U ( s ) s( s + 2)( s + 3) + 1 s + 5s 2 + 6s + 1
通过拉普拉斯逆变换,可求得系统运动微分方程为
(2.4)
记
x1 0 x 0 2 x = , A = xn 1 0 xn an 1 0 0 1 0 x1 0 x 0 0 2 , x = , B = 1 xn 1 0 xn 1 a1
输出方程为: 输出方程为:
x1 y = [1 0] x2
[例2] 机械平移系统. 如图为一加速度仪的原理结构图。它可以指示出其 例 壳体相对于惯性空间(如地球)的加速度。
设: xi 为壳体相对于惯性空间的位移; x0 为质量m相对于惯性空间的位移; y= xi - x0 为质量m相对于壳体的位移. 根据牛顿第二定律,系统的运动方程为: xi x0
现代控制理论第二章
第二章 控制系统状态空间表达式的解建立了控制系统状态空间表达式之后,就是讨论求解的问题,本章重点讨论状态转移矩阵的定义,性质和计算方法,从而导出状态方程的求解公式并讨论连续时间系统状态方程的离散化的问题。
§2-1线性定常齐次状态方程的解(自由解)所谓自由解是指系统输入为零时,由初始状态引起的自由运动。
状态方程为齐次矩阵微分方程:AX X= (2-1)若初始时刻0t 时的状态给定为00)(x t x =,则式(2-1)有唯一确定解。
0)(0)(x e t x t t A -=,0t t ≥(2-2)若初始时刻从0=t 开始,即0)0(x x =,则其解为:0)(x e t x At =, 0t t ≥(2-3)证:先假设式(2-1)的解)(t x 为t 的矢量幂级数形式,即:+++++=k k t b t b t b b t x 2210)((2-4)对上式求导: ++++=-1232132)(k k t kb t b t b b t x代人式(2-1)得:A x= ( +++++kk t b t b t b b 2210) (2-5)既然式(2-4)是(2-1)的解,则式(2-5)对任意时刻t 都成立,故t 的同次幂项的系数应相等,有:01Ab b =,0212!2121b A Ab b ==,0323!3131b A Ab b ==,… 01!11b A k Ab kb k k k ==-,… 在式(2-4)中,令0=t ,可得:00)0(x x b == 将以上结果代人式(2-4),故得:022)!1!211()(x t A k t A At t x k k +++++= (2-6)括号内的展开式是n n ⨯矩阵,它是一个矩阵指数函数,记为At e221112!!At k ke At A t A t K =+++++ (2-7)式(2-6)可表示为:0()At x t e x =再用)(0t t -代替)0(-t ,即在代替t 的情况下,同样证明0)(0)(x e t x t t A -=的正确性。
现代控制理论知识点汇总
1.状态空间表达式n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯:r n B ⨯:n m C ⨯:rm D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3.模拟结构图(积分器加法器比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4.状态空间表达式的建立1由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
2由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。
实现是非唯一的。
方法:微分方程→系统函数→模拟结构图→状态空间表达式。
现代控制理论-第二章 控制系统的状态空间描述
DgXu
2.2.1.由物理机理直接建立状态空间表达式: 例2.2.1 系统如图所示
L
R2
u
iL
R1
uc
选择状态变量:
x1 iL , x2 uC ,
13 中南大C diL 1 iL (u L ) C dt R1 dt duC diL L uC C R2 u dt dt
y(s) [C(sI A) B D]U (s)
1
1
得
9
G(s) C (sI A) B D
命题得证
中南大学信息学院自动化系
1
DgXu
例2.1.3
已知系统的状态空间描述为
x1 0 1 0 x1 0 x 0 1 1 x 1 u 2 2 x3 0 0 3 x3 1
28 中南大学信息学院自动化系
DgXu
故有(n-1) 个状态方程:
对xl求导数且考虑式 (2.3.12),经整理有:
则式 (2.3.12) bn=0 时的动态方程为:
(2.3.16)
式中:
29 中南大学信息学院自动化系
DgXu
30 中南大学信息学院自动化系
DgXu
3)
化输入-输出描述为状态空间描述
11 中南大学信息学院自动化系
DgXu
2.3. 线性定常连续系统状态空间表达式的建立
建立状态空间表达式的方法主要有两种: 一是直接根据系统的机理建立相应的微分方程或差分方 程,继而选择有关的物理量作为状态变量,从而导出其状态 空间表达式; 二是由已知的系统其它数学模型经过转化而得到状态达 式。由于微分方程和传递函数是描述线性定常连续系统常用 的数学模型,故我们将介绍已知 n 阶系统微分方程或传递函 数时导出状态空间表达式的一般方法,以便建立统一的研究 理论,揭示系统内部固有的重要结构特性。
现代控制理论基础_周军_第二章状态空间分析法
2.1 状态空间描述的基本概念系统一般可用常微分方程在时域内描述,对复杂系统要求解高阶微分方程,这是相当困难的。
经典控制理论中采用拉氏变换法在复频域内描述系统,得到联系输入-输出关系的传递函数,基于传递函数设计单输入-单输出系统极为有效,可从传递函数的零点、极点分布得出系统定性特性,并已建立起一整套图解分析设计法,至今仍得到广泛成功地应用。
但传递函数对系统是一种外部描述,它不能描述处于系统内部的运动变量;且忽略了初始条件。
因此传递函数不能包含系统的所有信息。
由于六十年代以来,控制工程向复杂化、高性能方向发展,所需利用的信息不局限于输入量、输出量、误差等,还需要利用系统内部的状态变化规律,加之利用数字计算机技术进行分析设计及实时控制,因而可能处理复杂的时变、非线性、多输入-多输出系统的问题,但传递函数法在这新领域的应用受到很大限制。
于是需要用新的对系统内部进行描述的新方法-状态空间分析法。
第一节基本概念状态变量指描述系统运动的一组独立(数目最少的)变量。
一个用阶微分方程描述含有个独立变量的系统,当求得个独立变量随时间变化的规律时,系统状态可完全确定。
若变量数目多于,必有变量不独立;若少于,又不足以描述系统状态。
因此,当系统能用最少的个变量完全确定系统状态时,则称这个变量为系统的状态变量。
选取状态变量应满足以下条件:给定时刻的初始值,以及的输入值,可唯一确定系统将来的状态。
而时刻的状态表示时刻以前的系统运动的历史总结,故状态变量是对系统过去、现在和将来行为的描述。
状态变量的选取具有非唯一性,即可用某一组、也可用另一组数目最少的变量。
状态变量不一定要象系统输出量那样,在物理上是可测量或可观察的量,但在实用上毕竟还是选择容易测量的一些量,以便满足实现状态反馈、改善系统性能的需要。
状态向量把描述系统状态的个状态变量看作向量的分量,则称为状态向量,记以,上标为矩阵转置记号。
若状态向量由个分量组成,则称维状态向量。
现代控制理论-2-控制系统状态空间描述-第2、3讲[1]
Page: 8
求系统的传递函数 G (s) 是输出。
Y(s) U(s)
,其中 U( s)是输入,Y( s)
解:根据求传递函数的公式 G (s)Y(s)C(sIA)1BD U(s)
s 00 0 1 0 s sIA 0s 0 0 0 1 0
00s 123 1
1 0 s 1 2 s3
d3y9d2y18 dy2y 72u 0 dt3 dt2 dt
Page: 14
(1) 选择状态变量
x1 y dy
x2 dt
(2) 对(1)中各式两边求导x ,3 并 代dd 2t入2y 微分方程,有
x1
dy dt
x2
d2y x2 dt2 x3
x3
27
y
18
dy dt
9
d2y dt2
20u
输出方程为 y x1 2 7 x1 1 8 x 2 9 x 3 2 0 u
为 (sI-A) 的 伴随矩阵
为 (sI-A) 的 行列式
系统状态空间表达式的特征方程: sIA 0
系统状态空间表达式的特征根或特征值: sIA 0 的根
Page: 4
y s C s A I 1 B D u s G s u s
其展开式为
mr
矩阵函数
y1s y2s
g11s g1rs
U2 (s)
G12 (s) G22 (s)
Y2 (s)
Page: 6
Y1(s)G 11(s)U1(s)G 12(s)U2(s) Y2(s)G21(s)U1(s)G22(s)U2(s)
用矩阵方程表示:
Y Y1 2((ss))G G1 21 1((ss))
G12(s)U1(s) G22(s)U2(s)
现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版
(2-18)
解之,得向量-矩阵形式的状态方程
(2-19)
输出方程为
(2-20)
(5) 列写状态空间表达式
将式(2-19)和式(2-20)合起来即为状态空间表达式,若令
则可得状态空间表达式的一般式,即
(2-21)
例2.2 系统如图
取状态变量:
得:
系统输出方程为:
写成矩阵形式的状态空间表达式为:
1.非线性系统
用状态空间表达式描述非线性系统的动态特性,其状态方程是一组一阶非线性微分方程,输出方程是一组非线性代数方程,即
(2-7)
2. 线性系统的状态空间描述
若向量方程中 和 的所有组成元都是变量 和 的线性函数,则称相应的系统为线性系统。而线性系统的状态空间描述可表示为如下形式: (2-8) 式中,各个系数矩阵分别为 (2-9)
4.线性定常系统的状态空间描述
式中的各个系数矩阵为常数矩阵
当系统的输出与输入无直接关系(即 )时,称为惯性系统;相反,系统的输出与输入有直接关系(即 )时,称为非惯性系统。大多数控制系统为惯性系统,所以,它们的动态方程为
(2-11)
1.系统的基本概念 2. 动态系统的两类数学描述 3. 状态的基本概念
2.2 状态空间模型
2.2.1状态空间的基本概念
1.系统的基本概念
■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。 ■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。 ■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。
现代控制理论_第2章_状态空间分析法
(2-7)
其向量-矩阵形式为 式中
y1 y 2 y yq
y Cx Du
(2-8)
c11 c12 c11 c c c 21 22 2n C c c c qn q1 q 2
d11 d12 d1 p d d 22 d 2 p 21 D d d d q 1 q 11 qp
0 D0 1 m
例2-2 设空间飞行器如图 2-3所示。利用本体坐标系
和飞行器本地垂线参考坐
标系,试求空间飞行器的
动态方程。
图2-3 空间飞行器 点击观看
解:空间飞行器相对于参考坐标系进行姿态定向,用一组旋 转Euler角即俯仰角、偏航角和滚动角可以唯一的确定飞 行器的定向。 利用动力矩定理和动量定理,同时考虑姿态偏移小、速度 低、动量小及忽略惯量直积的情况下,可得俯仰轴方向的 线性化方程为 :
若状态向量由n个分量组成,则称n维状态向量。一旦给 定 t t0 时的初始状态向量 x t0 及 t t0 的输入向量 u t ,则 t t0 的状态由状态向量 x t 唯一确定。
三 状态空间
以n个状态变量作为坐标轴所组成的n维空间称状态空间。 系统在任一时刻的状态由状态空间中一点表示,例如 二阶系统的状态可由 x1 轴、x2 轴组成的状态平面(即相平面) 中一点表示; x2 轴、x3轴组成的三维状态空间中 三阶系统的状态可由 x1轴、 一点来表示; n阶系统的状态则由轴 x1 ,…, xn 轴组成的n维状态空间中 一点来表示。 初始时刻 t0 的状态 x t0 在状态空间中为一初始点;随着时 间推移,系统状态在变化,便在状态空间中描绘出一条轨迹, 称状态轨迹。
现代控制理论-第二章-控制系统的状态空间表达式的解
t
t2
2、状态转移矩阵的基本性质
(1) Φ(0) I (2) Φ (t) AΦ(t) Φ(t)A Φ (0) A (3) Φ(t1 t2 ) Φ(t1)Φ(t2 ) Φ(t2 )Φ(t1) (4) Φ1(t) Φ(t), Φ1(t) Φ(t) 证明: I Φ(0) Φ(t t) Φ(t)Φ(t) Φ(t)Φ(t) 推论: x(t) Φ(t)x(0) x(0) Φ1(t)x(t) Φ(t)x(t)
3、几个特殊的矩阵指数函数
(1)设A diag[,1,即2 ,A为, 对n ]角阵且具有互异元素时,有
e1t
0
(t)
e2t
0
e
nt
(2)若A能通过非奇异变换为对角阵时,即 P-1AP Λ
Φ(t) PΦ(t)P1
e1t
x1
x2
0 0
1 x1
0
x2
x(t) eAtx(0) I At 1 A2t 2 1 Akt k x(0)
2!
k!
A2
0 0
10 00
1 0 0 0
0 0
A3
直接求解法:根据定义 标准型法求解:对角线标准型和约当标准型 拉氏反变换法
1)根据状态转移矩阵的定义求解:
eAt I At 1 A2t 2 1 Akt k
2!
k!
对所有有限的t值来说,这个无穷级数都是收敛的 。
求出的解不是解析形式,适合于计算机求解。
例:求解系统状态方程的解 解:
现代控制理论总结
现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。
以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。
随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。
2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。
3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。
即无零,极点对消的传函的实现。
三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。
控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。
将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。
传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。
现代控制理论(第二章)线性系统的状态空间描述
H[t0 ,)
yc
1
yc
u
t t0 0
容易得到其解
yc
(t )
e
1t
yc
(0)
t
e1
(t
)u(
)d
显然,若其初始条件
yc
0
(0)
不能确定,则不能
唯一地确定其输出。
1.非零初始条件与脉冲输入
零初始条件:系统的初始条件为零是指系统在初 始时刻没有能量储备。
注意:在建立线性系统的输入—输出描述时, 必须假设系统的初始条件为零。
单变量线性时变系统输入-输出关系: y L(u)
用符号 g(t,τ) 表示该系统的单位脉冲响应,即
g(t,τ)L( (t ))
注意: g(t,τ) 是双变量函数; τ— 代表δ函数作用于系统的时刻; t — 代表观测其输出响应的时刻。
结论1:对单变量线性时变系统,u(t)为其输 入变量,g(t,τ)为其单位脉冲响应,在初始
y
kp
u
s3 1s 2 2s 3
若对其参数一无所知,它的控制律设计就会复 杂得多,而稳定性的分析事实上是无法进行的。
系统的输入—输出描述仅在松弛的条件下才能采用。
若系统在t0时刻是非松弛的,输出 y[t0 ,) 并不能单
单由 u[t0 ,) 所决定,即关系式 不成立。考察简单的一阶系统:
y[t0 ,)
初始条件不为零时,可以将非零的初始条件等 效成在初始时刻的一个脉冲输入。
单位脉冲函数(δ函数 )
令
0
(t
t1
)
1
0
t t1 t1 t t1 t t1
当Δ→0时, (t t1) 的极限函数,即
现代控制理论Part2 第二章 控制系统状态空间表达式的解 研究生课件——现代控制理论
的特征值为0和-2(λ1=0,λ2= -2),
故可求得所需的变换矩阵为
e At
1 0
1 eo
2
0
P
1 0
1 2
0 1
e2t
0
1 2
1 2
1 0
1 2
(1
e2t
)
e2t
方法二 由于
s sI A 0
0 0
s
0
1 s 2 0
因此
1
(sI
A)1
s
0
eAt
L1[(sI
A)1 ]
信号保持是指将离散信号 ——脉冲序列转换成连续信号
的过程。用于这种转换的元件为保持器。
H (t)
(t) tnT0 (nT0 ) *(nT0 ) n 0,1,2,
(t)
零阶保持器(zero order holder) t
(nTs ) (nTs )
GH
(S)
1-e-Tss s
一阶保持器
e2 t
•• •
••
•• •
••
0
•• •
••
1 m
IA
2m
A2
m1 m
A m 1
em t e At
§2.3线性定常系统非齐次方程的解
给定线性定常系统非齐次状态方程为
Σ: x(t) Ax(t) Bu(t)
其中, x(t) Rn ,u(t) Rr , A Rnn , B Rnr ,且初始条件为 x(t) x(0) 。 t 0 x(t) Ax(t) Bu(t)
三、状态转移矩阵的基本性质 与线性定常系统的转移矩阵(矩阵指数函数)的性质相似;
四、线性时变非齐次状态方程式的解
现代控制理论-第二章+状态空间描述2讲-561
为 (sI-A) 的 伴随矩阵
为 (sI-A) 的 行列式
系统状态空间表达式的特征方程: sI A 0
系统状态空间表达式的特征根或特征值: sI A 0 的根
Page: 3
ys CsI A 1 B D us Gsus
其展开式为
mr
传递函数矩阵
y1s
y2
s
g11s
g
21 s
一系统动态行为的描述。
Page: 29
2.6 系统状态方程的线性变换
状态向量
x x1, x2 , , xn T
非奇异变 换矩阵
x Ax bu y cx
xPx
x Ax b u
y
cx
新状态
向量
A P1AP b P1b c cP
x P1APx P1Bu
若含有D阵的话, 易知有:
0
0 b
0
1
C 0 , 1 n1
注意:A阵仍为友矩阵;
若状态方程中的A,b具有这种形式,则称为能控
标准型。
Page: 21
2)当
G(s)
bn
N(s) D(s)
即bn 0时
有A,b不变,只是
y Cx b u n
系统{A,b,C,D}称为G(s)的能控标准形 实现。
Page: 22
u
n1
Ts 1
s2 2 s 2
1 b1 a1b2
而b2 0, b1 T , b0 1
a11 2T
0 1 a0 2
Page: 24
y 2 y 2 y Tu u
GS
ys us
s2
Ts 1
2 s
2
x Ax bu y Cx
现代控制理论状态空间分析法
(2-3)
方程(2-3)的向量-矩阵形式为
x&t Axt bu
(2-4)
式中u为p维列向量,B为 n p 输入矩阵,或称控制系数矩阵,
有
a11 a12 L a1n
A a21 a22 L
a2
M M L M
an1 an2 L
ann
b11 b12 L b1p
B b21 b22 L
b2
M
yq
cq1 cq2 L
cqn
d11 d12 L D d21 d22 L
M M dq1 dq11 L
d1p
d
2
p
M
d
qp
u1
u
u2
M
up
C为 (q n) 输出矩阵,D为 (q p) 前馈矩阵。
六 状态空间表达式
状态方程、输出方程的组合称为状态空间表达式,简称动态 方程。状态空间法用状态方程、输出方程来表达输入-输出关 系,提示了系统内部状态对系统性能的影响。
y1 c11x1 L c1n xn d11u1 L d1pup
M
yq cq1x1 L
cqn xn dq1u1 L
d
qpu
p
(2-7)
其向量-矩阵形式为
y Cx Du
(2-8)
式中
y1
yHale Waihona Puke y2Mc11 c12 L C c21 c22 L
M M
c11
c2
n
利用状态分析法,对系统进 行一系列特性分析,来设计状态 反馈和输出反馈。
电机内部工作原理 点击观看
线性系统理论的主要内容: ➢状态空间分析法 ➢线性系统内部特性 ➢线性系统状态空间 的综合设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
zn an1zn1 a1z a0z u
y n1zn1 1z 0z
(2-17)
定义如下一组状态变量
x1 z,x2 z, ,x0 zn1
(2-18)
可得状态方程
x1 x2
x2 x3
xn a0z a1z
它便于在模拟计算机上进行仿真,是向量-矩阵形式状态方 程的展开图形,揭示了系统的详细的内部结构。
状态变量图中仅含积分器、加法器、比例器三种元件及一 些连接线。积分器的输出均为状态变量。输出量可根据输出方 程在状态变量图中形成和引出。
例2-1的状态变量图见图2-3,图中s 为拉普拉斯算子。
图2-3 状态变量图
x2
x3
a2
y
2u
yn2
an1 yn3
un3
n2
an2
yn4
n2un4
a2 y 2u
x1 x2 a1 y 1u yn1 an1yn2 n1un2 an2 yn3 n2un3 a1 y 1u
考虑式(2-11)可得
x1 a0 y 0u a0xn 0u
故有状态方程:
x1 a0xn 0u
线性定常连续系统的动态方程的形式: ➢ 一般形式
x Ax Bu,y Cx Du
➢ 典型形式
一 物理系统动态方程的建立
实际物理系统动态方程的建立的原则: ➢根据所含元件遵循的物理、化学定律,列写其微分方程; ➢选择可以量测的物理量作为状态变量。
例2-1 设机械位移系统如图2-1 所示。力F及阻尼器汽缸速度v 为两种外作用,给定输出量为 质量块的位移x及其速度 x、加
1
b 2
n1
x1
x2
x x3
xn
c 0
0 1
式(2-16)所示动态方程,称能观测标准形实现。
2.能控标准形式实现
将式(2-12)所示传递函数 Gs分解为两部分相串联,并引入中
间变量 z s, 见下图所示 :
由第一个方块可导出以u作为输入、z作为输出的不含输入导数 项的微分方程,由第二个方块可导出系统输出量y可表为z及其 导数的线性组合,即
0 0
A
k
f
m m
0 0
B
1
f
m m
y1
y
y2
y3
1 0
C
0
1
k m
f m
0 0
D
0
0
1 f
m m
例2-2 设空间飞行器如图22所示。利用本体坐标系和 飞行器本地垂线参考坐标 系,试求空间飞行器的动 态方程。
图2-2 空间飞行器 点击观看
解:空间飞行器相对于参考坐标系进行姿态定向,用一组旋 转Euler角即俯仰角、偏航角和滚动角可以唯一的确定飞行 器的定向。
yn an1 yn1 an2 y(n2) a1 y a0 y
u(n1) n1
u(n2) n2
1u 0u
(2-11)
式中y为系统输出量,u为系统输入量,其系统传递函数为
N s G s
D s
y(s) u(s)
sn
s s n1 n1
n2 n2
an1sn1 an2sn2
1s 0
a1s
a0
(2-12)
1. 能观测标准形实现
设
xn y
xi xi1 ai y iu
i 1, ,n 1
其展开式为
(2-13)
xn1 xn an1y n1u y an1y n1u xn2 xn1 an2 y n2u y an1y n1u an2 y n2u
x2 x1 a1xn 1u
xn1
xn2
an2 xn
n2u
xn xn1 an1xn n1u
(2-14)
输出方程为
y xn
(2-15)
其向量-矩阵形式为
x Ax bu,y cx
式中
(2-16)
0 0 1 0 A 0 1 0 0
0 a0
0
a1
0 a2
1 an1
0
1
0
0
3
0
0
0
1
3
3n2
0
1
0
h1
0
0 0 0 0
0 n1
0 0
n1 0 0 0
0 0 0 n
0 0
13
0 1
I1
n
h1
1
0 h3 0
0 1
I3
u1 u2
0
1
h3
其中
1
I2 I3 I1
2
I3 I1 I2
3
I1 I2 I3
状态变量图
将状态方程中的每个一阶微分方程用图解来表示,即每个 一阶微分方程的右端诸项之和,构成了状态变量的导数,经积 分可得该状态变量,最终按照系统中各状态变量的关系连接成 封闭的图形,便是状态变量图。
速度 x。图中m、k、f分别为
质量、弹簧刚度、阻尼系数。 试求该双输入-三输出系统的动
态方程。
图2-1 双输入-三输出机 械位移系统
点击观看
解 据牛顿力学,故有
mx f x v kx F
显见为二阶系统,若已知质量块的初始位移及初始速度,该微
分方程在输入作用下的解便唯一确定,故选 x 和 x 作为状态
变量。设 x1 x,x2 ,x三个输出量为 y1 x,y2 x,,y可3 由x
微分方程导出下列动态方程:
x1 x2
x2
x
1 m
f
x2
v
kx1
F
y1 x1
y2 x2
y3
1 m
f
x2
v
kx1
F
其向量-矩阵形式为
x Ax Bu,y Cx Du
式中
x
x1 x2
u
F
v
第二章 状态空间分析法
经典控制理论的传递函数描述方法的不足之处: ➢ 系统模型为单输入单输出系统; ➢ 忽略初始条件的影响; ➢ 不包含系统的所有信息; ➢ 无法利用系统的内部信息来改变系统的性能。
复杂的时变、非线性、多输入-多输出系统的问题,需 要用对系统内部进行描述的新方法-状态空间分析法。
§2.2 线性定常连续系统动态方程的建立
二 由微分非常或传递函数建立动态方程
1 实现: 对于给定的系统微分方程或系统传递函数,寻求对应的动态 方程而不改变系统的输入-输出特性,称此动态方程是系统的一 个状态空间实现。
由于状态变量的选择不唯一,所以状态空间实现也不唯一, 最小实现也不唯一。
2 典型实现: 设单输入-输出线性定常连续系统的微分方程具有下列一般形式:
利用动力矩定理和动量定理,同时考虑姿态偏移小、速度 低、动量小及忽略惯量直积的情况下,可得俯仰轴方向的 线性化方程为 :
2
01
2
பைடு நூலகம்3n22
0 0
2 0
0
2
1
I
2
u2
h2
0
0
0
h2
1
而滚动轴和偏航轴方向的线性化方程为 :
1
3
0 n
n 0
1 0
0 0 0 1 0