2019-2020学年北师大版数学五年级下册第二单元《长方体(一)》单元夺冠金卷(A卷)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.正方体有(______)个面,每个面都是(______)的正方形。
3.一个长方体长7cm、宽5cm、高4cm,它的表面积是(______) ,它的棱长总和是(______)cm。
4.一个正方体的棱长是5 dm,则它的棱长总和是(______)dm,它的表面积是(______) 。
5.下面是一个火柴盒拆开后的平面图。请你仔细观察,在火柴盒未拆开前,A的对面是(______),B的对面是(______),E的对面是(______)。
8.8 34
【解析】
【分析】
正方体的各棱长都相等。这个大正方体的边长至少为2cm,至少要用(2×2×2)个棱长是1cm的小正方体。如果把这些小正方体摆成一行,摆成的长方体的长是8cm,宽和高都是1cm。再根据长方体的表面积公式即可求解。
【详解】
(1)2×2×2=8(个);
(2)长方体的表面积:(8×1+8×1+1×1)×2
正方体的表面积:5×5×6
=25×6
=150(cm²)
【点睛】
熟练掌握正方体的表面积公式是解题的关键。
24.168cm²
【解析】
【分析】
长方体表面积=(长×宽+长×高+宽×高)×2,代入数据即可求解。
【详解】
长方体表面积:(9×6+9×2+6×2)×2
=(54+18+12)×2
=84×2
=168(cm²)
【点睛】
此题考查的目的是掌握长方体的特征。
2.6相同
【解析】
【分析】
根据正方体的结构特征,正方体的6个面是完全相同的正方形,据此解答。
【详解】
正方体有(6)个面,每个面都是(相同)的正方形。
【点睛】
此题考查的目的是掌握正方体的特征。
3.166 64
【解析】
【分析】
长方体表面积=(长×宽+长×高+宽×高)×2,长方体棱长总和=(长+宽+高)×4。将数据代入公式计算即可。
【详解】
选项A:拐角相连的两条边不一样长,无法无缝衔接,无法围成长方体;
选项B:本应为上下两个底面,但在同一侧,无法围成长方体;
选项C:长方体有6个面,它只有5个面,无法围成长方体;
选项D:条件都满足,可以围成长方体。
故答案选择:D。
【点睛】
此题考查了平面图形的折叠及立体图形的表面展开图的特点。
19.B
此题考查对生活中立体图形的分类。
7.96
【解析】
【分析】
正方体棱长总和=棱长×12,正方体表面积=棱长×棱长×6,先求出棱长为(48÷12)cm,进而求出表面积即可。
【详解】
棱长:48÷12=4(cm),
表面积:4×4×6
=16×6
=96(cm²)
【点睛】
此题考查正方体表面积和棱长总和的公式及计算。
【点睛】
此题考查长方体的展开图,需熟练掌握长方体的特征。
6.牙膏盒(答案不唯一)香皂盒(答案不唯一)魔方(答案不唯一)色子(答案不唯一)
【解析】
【分析】
联系生活中常见的生活用品,结合长方体和正方体的特征即可作答。
【详解】
近似是长方体的有牙膏盒,香皂盒等,近似是正方体的有魔方,色子等。(答案不唯一)
【点睛】
12.√
【解析】
【详解】
略
13.×
【解析】
【详解】
略
14.×
【解析】
【详解】
略
15.C
【解析】
【分析】
正方体棱长总和=棱长×12,代入数据即可求解。
【详解】
棱长:36÷12=3(dm)
故答案选择:C。
【点睛】
熟练掌握正方体的棱长总和公式是解题的关键。
16.A
【解析】
【分析】
根据长方体的特征和长方体的表面积公式即可解答。
27.
【解析】
【分析】
因为这个鱼缸无盖,所以只需要选择5个长方形玻璃并且有4个长方形是两两一致的,同时不同的长方形之间,它们的长或者宽必须相等,这样子才能使其拼成个长方体,据此解答。
【详解】
【点睛】
熟练掌握长方体的结构特征。
28.(1)320平方厘米
(2)64克
【解析】
【分析】
(1)长方体表面积=(长×宽+长×高+宽×高)×2,将数据代入计算即可;
【解析】
【分析】
长方体总共有(长×宽)、(长×高)和(宽×高)3种大小的6个面。长方体与桌面接触的面积最小,应为两条较短边围成的面积。即(宽×高)的面积。
【详解】
5×6=30(cm²)
故答案选择:B。
【点睛】
此题考查了长方体的特征,需熟练掌握。
20.C
【解析】
【分析】
两个棱长是3dm的正方体拼成一个长方体,将两个正方体上下叠在一起,此时长方体的长宽高分别为3dm,3dm,(3×2)dm。长方体表面积=(长×宽+长×高+宽×高)×2,将长、宽和高的数据带入计算即可。
22.C
【解析】
【分析】
表面积:所有立体图形外面的面积之和。据此判断。
【详解】
将切去的长方体,新产生的三个面平移至刚好补全的原来的正方体可知,表面积没有变。
故答案选择:C。
【点睛】
此题考查了切割前后表面积的变化。
23.150cm²
【解析】
【分析】
正方体的表面积=棱长×棱长×6,代入数据即可求解。
【详解】
6.(______)、(______)可以近似看成长方体;(______)、(______)可以近似看成正方体。(填生活中的物体)
7.一个棱长总和是48cm的正方体,它的表面积是(______) 。
8.至少要用(______)个棱长是1cm的小正方体才能摆成一个大正方体。如果把这些小正方体摆成一行,摆成的长方体的表面积是(______) 。
32.下面是一个长方体的展开图,请根据图中信息求这个长方体的表面积。(单位:cm)
参考答案
1.86相同12相等
【解析】
【分析】
根据长方体的结构特征,可以拿一个长方体的橡皮擦,数一数顶点,面,棱的数量即可。
【详解】
长方体有(8)个顶点,有(6)个面,相对面的大小、形状都(相同),有(12)条棱,相对的棱长度(相等)。
【详解】
如果一个长方体有两个面是正方形,正方形面一定是相对的,假设这个面是底面,可知长与宽相等。其余四个面两个面为(长×高),两个面为(宽×高),四个面大小、形状完全相同。
故答案选择:A。
【点睛】
熟练掌握长方体的特征和表面积是解题的关键。
17.C
【解析】
【详解】
略
18.D
【解析】
【分析】
根据长方体的展开图以及长方体的特征进行逐一判断。
A.一定是大小、形状都相同的长方形B.可能是大小、形状都相同的长方形
C.不可能是大小、形状都相同的长方形D.无法确定
17.笑笑想用小棒搭一个棱长总和是56 cm的长方体框架,已经选了8 cm和2 cm的小棒各4根,还要选择()堆小棒才能搭成这样的长方体。
A. B.
C. D.
18.下面图形中,沿虚线折叠后能围成长方体的是()。
2019-2020学年北师大版数学五年级下册第二单元《长方体(一)》单元夺冠金卷(A卷)
学校:___________姓名:___________班级:___________考号:___________
1.长方体有(______)个顶点,有(______)个面,相对面的大小、形状都(______),有(______)条棱,相对的棱长度(______)。
29.学校新建了一个游泳池,已知游泳池长25m、宽12 m。深2m,要给游泳池的四周和底面铺上一层瓷砖。
(1)游泳池占地多少平方米?
(2)铺瓷砖的面积是多少平方米?
30.爸爸要用铁条焊接一个长4 分米的铁条?
31.在一个长方体木块上截下一个最大的正方体木块,怎样截?先在图中画一画,再求截下的正方体木块的表面积是多少平方厘米。
【详解】
选项A:露在外面的面:(5+2)×2+4=18(个);
选项B:露在外面的面:(5+2)×2+3=17(个);
选项C:露在外面的面:(4+3)×2+4=18(个);
选项D:露在外面的面:(5+3)×2+3=19(个);
故答案选择:B。
【点睛】
此题考查的是计算露在外面的面的个数,需熟练掌握三视图的方法才可快速判断。
(2)总共需要油漆=单位面积所需油漆×总面积。
【详解】
(1)表面积:(12×7+12×4+7×4)×2
=(84+48+28)×2
=160×2
=320(平方厘米)
(2)总共需要油漆:320×0.2=64(克)
答:每块积木刷油漆的面积320平方厘米,刷一块积木要用64克油漆。
【点睛】
此题熟悉掌握长方体的表面积计算公式是解题的核心。
=(8+8+1)×2
=17×2
=34(cm²)
【点睛】
此题考查正方体的特征和长方体的表面积。
9.10 10
【解析】
【详解】
略
10.×
【解析】
【分析】
棱长总和是长度单位,表面积是面积单位,不能进行大小比较,据此解答。
【详解】
根据分析可得:棱长2分米的正方体,它的棱长总和与它的表面积相等。说法错误,故答案为:×。
【详解】
正方体棱长总和:5×12=60(dm);
正方体表面积:5×5×6
=25×6
=150(dm²)
【点睛】
此题考查正方体表面积和棱长总和的公式及计算。
5.C D F
【解析】
【分析】
可以复原火柴盒,也可以根据长方体相对的面大小形状完全相同据此进行解答。
【详解】
A的对面是C,B的对面是D,E的对面是F。
A. B. C. D.
19.把一个长7cm、宽5cm、高6cm的长方体平放在桌面上,长方体与桌面接触的面积最小是() 。
A.35B.30C.42D.210
20.把两个棱长是3dm的正方体拼成一个长方体,拼成的长方体的表面积是()dm²。
A.54B.108C.90D.126
21.用5个相同的小正方体搭成了不同的立体图形,()露在外面的面最少。
27.张强要做一个无盖的长方体鱼缸。你能帮他在下面的长方形玻璃中选择合适的玻璃吗?(在选择的玻璃上画“√”)
28.工厂要做一批长方体积木,每块积木长12cm、宽7cm、高4cm,要将每块积木表面刷上绿色油漆,已知每平方厘米要用0.2g油漆。
(1)每块积木刷油漆的面积是多少平方厘米?
(2)刷一块积木要用多少克油漆?
【详解】
长方体表面积:(7×5+7×4+5×4)×2
=(35+28+20)×2
=83×2
=166(cm²)
长方体棱长总和:(7+5+4)×4
=16×4
=64(cm)
【点睛】
此题考查长方体表面积和棱长总和的公式及计算。
4.60 150
【解析】
【分析】
正方体棱长总和=棱长×12,正方体表面积=棱长×棱长×6,将数据代入公式计算即可。
【点睛】
熟练掌握长方体的表面积公式是解题的关键。
25.
【解析】
【分析】
根据上下两个底面相对,相对的面不相邻的方法即可作图。
【详解】
【点睛】
此题考查正方体展开图的复原。
26.
【解析】
【分析】
底面长的棱为长,短的棱为宽,垂直地面的棱为高。据此即可作图。
【详解】
【点睛】
此题考查了长方体的特征,属于基础知识,需熟练掌握。
13.正方体的表面积一定比长方体的表面积小。(____)
14.一个长方体如果相邻的两个面的面积相等,那么它一定是正方体。(____)
15.一个正方体的棱长总和是36dm,每条棱长是()。
A.1dmB.2dmC.3dmD.9dm
16.如果一个长方体有两个面是正方形,那么对于其余四个面的描述正确的是()。
9.把5个棱长是1 cm的正方体纸箱放在墙角处(如下图),有(____)个面露在外面,露在外面的面积是(____)cm²。
10.棱长2分米的正方体,它的棱长总和与它的表面积相等。(______)
11.只要是由六个完全一样的正方形组成的图形就一定能折叠成正方体。(____)
12.如果两个正方体的表面积相等,那么它们的形状一定相同。(____)
A. B. C. D.
22.在一个棱长是5dm的正方体的一角,切去一个长方体(如图),剩下的图形的表面积和原正方体相比,()。
A.增加了B.减少了C.不变D.无法确定
23.计算下图的表面积。
24.计算下图的表面积。
25.下面是一个正方体的展开图,请你在相对的面上画上相同的符号。
26.请你在下面的长方体上分别标出两组长、宽、高。
【详解】
长方体的高为:3×2=6(dm),
拼成的长方体的表面积:(3×3+3×6+3×6)×2
=(9+18+18)×2
=45×2
=90(dm²)
故答案选择:C。
【点睛】
此题需熟练掌握拼组的方法以及长方体表面积公式才是解题的关键。
21.B
【解析】
【分析】
用三视图的方法,将正面图和侧视图看到的面数的和乘2,俯视图看到的面数算一次,加起来即可。
【点睛】
本题考查学生对棱长和概念和表面积概念的理解,注意不同的概念量不能直接比较。
11.错误
【解析】
【分析】
六个完全一样的正方形组成的图形不一定能折叠成正方体,还主要看这六个正方形是怎样排列的,如果一行排6个,就不能折叠成正方体。
【详解】
只要是由六个完全一样的正方形组成的图形就一定能折叠成正方体。说法错误。故答案为:错误
3.一个长方体长7cm、宽5cm、高4cm,它的表面积是(______) ,它的棱长总和是(______)cm。
4.一个正方体的棱长是5 dm,则它的棱长总和是(______)dm,它的表面积是(______) 。
5.下面是一个火柴盒拆开后的平面图。请你仔细观察,在火柴盒未拆开前,A的对面是(______),B的对面是(______),E的对面是(______)。
8.8 34
【解析】
【分析】
正方体的各棱长都相等。这个大正方体的边长至少为2cm,至少要用(2×2×2)个棱长是1cm的小正方体。如果把这些小正方体摆成一行,摆成的长方体的长是8cm,宽和高都是1cm。再根据长方体的表面积公式即可求解。
【详解】
(1)2×2×2=8(个);
(2)长方体的表面积:(8×1+8×1+1×1)×2
正方体的表面积:5×5×6
=25×6
=150(cm²)
【点睛】
熟练掌握正方体的表面积公式是解题的关键。
24.168cm²
【解析】
【分析】
长方体表面积=(长×宽+长×高+宽×高)×2,代入数据即可求解。
【详解】
长方体表面积:(9×6+9×2+6×2)×2
=(54+18+12)×2
=84×2
=168(cm²)
【点睛】
此题考查的目的是掌握长方体的特征。
2.6相同
【解析】
【分析】
根据正方体的结构特征,正方体的6个面是完全相同的正方形,据此解答。
【详解】
正方体有(6)个面,每个面都是(相同)的正方形。
【点睛】
此题考查的目的是掌握正方体的特征。
3.166 64
【解析】
【分析】
长方体表面积=(长×宽+长×高+宽×高)×2,长方体棱长总和=(长+宽+高)×4。将数据代入公式计算即可。
【详解】
选项A:拐角相连的两条边不一样长,无法无缝衔接,无法围成长方体;
选项B:本应为上下两个底面,但在同一侧,无法围成长方体;
选项C:长方体有6个面,它只有5个面,无法围成长方体;
选项D:条件都满足,可以围成长方体。
故答案选择:D。
【点睛】
此题考查了平面图形的折叠及立体图形的表面展开图的特点。
19.B
此题考查对生活中立体图形的分类。
7.96
【解析】
【分析】
正方体棱长总和=棱长×12,正方体表面积=棱长×棱长×6,先求出棱长为(48÷12)cm,进而求出表面积即可。
【详解】
棱长:48÷12=4(cm),
表面积:4×4×6
=16×6
=96(cm²)
【点睛】
此题考查正方体表面积和棱长总和的公式及计算。
【点睛】
此题考查长方体的展开图,需熟练掌握长方体的特征。
6.牙膏盒(答案不唯一)香皂盒(答案不唯一)魔方(答案不唯一)色子(答案不唯一)
【解析】
【分析】
联系生活中常见的生活用品,结合长方体和正方体的特征即可作答。
【详解】
近似是长方体的有牙膏盒,香皂盒等,近似是正方体的有魔方,色子等。(答案不唯一)
【点睛】
12.√
【解析】
【详解】
略
13.×
【解析】
【详解】
略
14.×
【解析】
【详解】
略
15.C
【解析】
【分析】
正方体棱长总和=棱长×12,代入数据即可求解。
【详解】
棱长:36÷12=3(dm)
故答案选择:C。
【点睛】
熟练掌握正方体的棱长总和公式是解题的关键。
16.A
【解析】
【分析】
根据长方体的特征和长方体的表面积公式即可解答。
27.
【解析】
【分析】
因为这个鱼缸无盖,所以只需要选择5个长方形玻璃并且有4个长方形是两两一致的,同时不同的长方形之间,它们的长或者宽必须相等,这样子才能使其拼成个长方体,据此解答。
【详解】
【点睛】
熟练掌握长方体的结构特征。
28.(1)320平方厘米
(2)64克
【解析】
【分析】
(1)长方体表面积=(长×宽+长×高+宽×高)×2,将数据代入计算即可;
【解析】
【分析】
长方体总共有(长×宽)、(长×高)和(宽×高)3种大小的6个面。长方体与桌面接触的面积最小,应为两条较短边围成的面积。即(宽×高)的面积。
【详解】
5×6=30(cm²)
故答案选择:B。
【点睛】
此题考查了长方体的特征,需熟练掌握。
20.C
【解析】
【分析】
两个棱长是3dm的正方体拼成一个长方体,将两个正方体上下叠在一起,此时长方体的长宽高分别为3dm,3dm,(3×2)dm。长方体表面积=(长×宽+长×高+宽×高)×2,将长、宽和高的数据带入计算即可。
22.C
【解析】
【分析】
表面积:所有立体图形外面的面积之和。据此判断。
【详解】
将切去的长方体,新产生的三个面平移至刚好补全的原来的正方体可知,表面积没有变。
故答案选择:C。
【点睛】
此题考查了切割前后表面积的变化。
23.150cm²
【解析】
【分析】
正方体的表面积=棱长×棱长×6,代入数据即可求解。
【详解】
6.(______)、(______)可以近似看成长方体;(______)、(______)可以近似看成正方体。(填生活中的物体)
7.一个棱长总和是48cm的正方体,它的表面积是(______) 。
8.至少要用(______)个棱长是1cm的小正方体才能摆成一个大正方体。如果把这些小正方体摆成一行,摆成的长方体的表面积是(______) 。
32.下面是一个长方体的展开图,请根据图中信息求这个长方体的表面积。(单位:cm)
参考答案
1.86相同12相等
【解析】
【分析】
根据长方体的结构特征,可以拿一个长方体的橡皮擦,数一数顶点,面,棱的数量即可。
【详解】
长方体有(8)个顶点,有(6)个面,相对面的大小、形状都(相同),有(12)条棱,相对的棱长度(相等)。
【详解】
如果一个长方体有两个面是正方形,正方形面一定是相对的,假设这个面是底面,可知长与宽相等。其余四个面两个面为(长×高),两个面为(宽×高),四个面大小、形状完全相同。
故答案选择:A。
【点睛】
熟练掌握长方体的特征和表面积是解题的关键。
17.C
【解析】
【详解】
略
18.D
【解析】
【分析】
根据长方体的展开图以及长方体的特征进行逐一判断。
A.一定是大小、形状都相同的长方形B.可能是大小、形状都相同的长方形
C.不可能是大小、形状都相同的长方形D.无法确定
17.笑笑想用小棒搭一个棱长总和是56 cm的长方体框架,已经选了8 cm和2 cm的小棒各4根,还要选择()堆小棒才能搭成这样的长方体。
A. B.
C. D.
18.下面图形中,沿虚线折叠后能围成长方体的是()。
2019-2020学年北师大版数学五年级下册第二单元《长方体(一)》单元夺冠金卷(A卷)
学校:___________姓名:___________班级:___________考号:___________
1.长方体有(______)个顶点,有(______)个面,相对面的大小、形状都(______),有(______)条棱,相对的棱长度(______)。
29.学校新建了一个游泳池,已知游泳池长25m、宽12 m。深2m,要给游泳池的四周和底面铺上一层瓷砖。
(1)游泳池占地多少平方米?
(2)铺瓷砖的面积是多少平方米?
30.爸爸要用铁条焊接一个长4 分米的铁条?
31.在一个长方体木块上截下一个最大的正方体木块,怎样截?先在图中画一画,再求截下的正方体木块的表面积是多少平方厘米。
【详解】
选项A:露在外面的面:(5+2)×2+4=18(个);
选项B:露在外面的面:(5+2)×2+3=17(个);
选项C:露在外面的面:(4+3)×2+4=18(个);
选项D:露在外面的面:(5+3)×2+3=19(个);
故答案选择:B。
【点睛】
此题考查的是计算露在外面的面的个数,需熟练掌握三视图的方法才可快速判断。
(2)总共需要油漆=单位面积所需油漆×总面积。
【详解】
(1)表面积:(12×7+12×4+7×4)×2
=(84+48+28)×2
=160×2
=320(平方厘米)
(2)总共需要油漆:320×0.2=64(克)
答:每块积木刷油漆的面积320平方厘米,刷一块积木要用64克油漆。
【点睛】
此题熟悉掌握长方体的表面积计算公式是解题的核心。
=(8+8+1)×2
=17×2
=34(cm²)
【点睛】
此题考查正方体的特征和长方体的表面积。
9.10 10
【解析】
【详解】
略
10.×
【解析】
【分析】
棱长总和是长度单位,表面积是面积单位,不能进行大小比较,据此解答。
【详解】
根据分析可得:棱长2分米的正方体,它的棱长总和与它的表面积相等。说法错误,故答案为:×。
【详解】
正方体棱长总和:5×12=60(dm);
正方体表面积:5×5×6
=25×6
=150(dm²)
【点睛】
此题考查正方体表面积和棱长总和的公式及计算。
5.C D F
【解析】
【分析】
可以复原火柴盒,也可以根据长方体相对的面大小形状完全相同据此进行解答。
【详解】
A的对面是C,B的对面是D,E的对面是F。
A. B. C. D.
19.把一个长7cm、宽5cm、高6cm的长方体平放在桌面上,长方体与桌面接触的面积最小是() 。
A.35B.30C.42D.210
20.把两个棱长是3dm的正方体拼成一个长方体,拼成的长方体的表面积是()dm²。
A.54B.108C.90D.126
21.用5个相同的小正方体搭成了不同的立体图形,()露在外面的面最少。
27.张强要做一个无盖的长方体鱼缸。你能帮他在下面的长方形玻璃中选择合适的玻璃吗?(在选择的玻璃上画“√”)
28.工厂要做一批长方体积木,每块积木长12cm、宽7cm、高4cm,要将每块积木表面刷上绿色油漆,已知每平方厘米要用0.2g油漆。
(1)每块积木刷油漆的面积是多少平方厘米?
(2)刷一块积木要用多少克油漆?
【详解】
长方体表面积:(7×5+7×4+5×4)×2
=(35+28+20)×2
=83×2
=166(cm²)
长方体棱长总和:(7+5+4)×4
=16×4
=64(cm)
【点睛】
此题考查长方体表面积和棱长总和的公式及计算。
4.60 150
【解析】
【分析】
正方体棱长总和=棱长×12,正方体表面积=棱长×棱长×6,将数据代入公式计算即可。
【点睛】
熟练掌握长方体的表面积公式是解题的关键。
25.
【解析】
【分析】
根据上下两个底面相对,相对的面不相邻的方法即可作图。
【详解】
【点睛】
此题考查正方体展开图的复原。
26.
【解析】
【分析】
底面长的棱为长,短的棱为宽,垂直地面的棱为高。据此即可作图。
【详解】
【点睛】
此题考查了长方体的特征,属于基础知识,需熟练掌握。
13.正方体的表面积一定比长方体的表面积小。(____)
14.一个长方体如果相邻的两个面的面积相等,那么它一定是正方体。(____)
15.一个正方体的棱长总和是36dm,每条棱长是()。
A.1dmB.2dmC.3dmD.9dm
16.如果一个长方体有两个面是正方形,那么对于其余四个面的描述正确的是()。
9.把5个棱长是1 cm的正方体纸箱放在墙角处(如下图),有(____)个面露在外面,露在外面的面积是(____)cm²。
10.棱长2分米的正方体,它的棱长总和与它的表面积相等。(______)
11.只要是由六个完全一样的正方形组成的图形就一定能折叠成正方体。(____)
12.如果两个正方体的表面积相等,那么它们的形状一定相同。(____)
A. B. C. D.
22.在一个棱长是5dm的正方体的一角,切去一个长方体(如图),剩下的图形的表面积和原正方体相比,()。
A.增加了B.减少了C.不变D.无法确定
23.计算下图的表面积。
24.计算下图的表面积。
25.下面是一个正方体的展开图,请你在相对的面上画上相同的符号。
26.请你在下面的长方体上分别标出两组长、宽、高。
【详解】
长方体的高为:3×2=6(dm),
拼成的长方体的表面积:(3×3+3×6+3×6)×2
=(9+18+18)×2
=45×2
=90(dm²)
故答案选择:C。
【点睛】
此题需熟练掌握拼组的方法以及长方体表面积公式才是解题的关键。
21.B
【解析】
【分析】
用三视图的方法,将正面图和侧视图看到的面数的和乘2,俯视图看到的面数算一次,加起来即可。
【点睛】
本题考查学生对棱长和概念和表面积概念的理解,注意不同的概念量不能直接比较。
11.错误
【解析】
【分析】
六个完全一样的正方形组成的图形不一定能折叠成正方体,还主要看这六个正方形是怎样排列的,如果一行排6个,就不能折叠成正方体。
【详解】
只要是由六个完全一样的正方形组成的图形就一定能折叠成正方体。说法错误。故答案为:错误