三角形全等的判定1_模板
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等的判定1_模板
课题:全等三角形的判定(一)教学目标:
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等.
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
教学重点:学会运用公理证明两个三角形全等.
教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图.
(2)实验
让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里一定要让学生动手操作.
(3)公理
启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
作用:是证明两个三角形全等的依据之一.
应用格式:
强调:
1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.
3、平面几何中常要证明角相等和线段相等,其证明常用方法:
证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.
证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.
2、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.
分析:(设问程序)
“SAS”的三个条件是什么?
已知条件给出了几个?
由图形可以得到几个条件?
解:(略)
(2)讲解例2
投影例2:
例2如图2,AE=CF,AD∥BC,AD=CB,
求证:
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.(3)讲解例3(投影)
证明:(略)
学生分析思路,写出证明过程.
(投影展示学生的作业,教师点评)
(4)讲解例4(投影)
证明:(略)
学生口述过程.投影展示证明过程.
教师强调证明线段相等的几种常见方法.
(5)讲解例5(投影)
证明:(略)
学生思考、分析、讨论,教师巡视,适当参与讨论.
师生共同讨论后,让学生口述证明思路.
教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明. 3、课堂小结:
(1)判定三角形全等的方法:SAS
(2)公理应用的书写格式
(3)证明线段、角相等常见的方法有哪些?
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.
6、布置作业
a书面作业P56#6、7
b上交作业P57B组1
思考题:
板书设计:
探究活动
如图,A、B两地隔山相望,要测它们之间的距离,可先在平地上取一个可直接到达A 和B的点C,连结AC并延长到D,使CD=CA;连结BC并延长到E,使CE=CB,最后再连结DE,这时量得DE长就是A、B的距离,说明为什么.
提示: 利用三角形全等的判定(一)来说明.
石佛镇素质教育研讨会
教研课
教案设计
教者:龙秀明
教学课题:合比性质和等比性质
教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形
2、会将合比性质、等比性质用于比例线段。
3、提高学生类比联想、推广命题的能力。
教学重、难点:
熟练地、灵活地运用合比性质与等比性质。
课前准备:
小黑板、幻灯机及幻灯片。
教学过程():
一、复习引入:
我们在前边学习了线段的比,比例的有关概念及性质,那么请同学们回忆
1、什么叫线段的比?
2、什么叫成比例线段?
我们还学习了比例的基本性质,那么,除此之外,比例还有一些什么性质呢?
这就是本节课我们将要研究的比例的合比性质与等比性质。
(出示课题:合比性质与等比性质)
那么,通过本节课的学习我们要达到一个什么样的要求呢?(出示小黑板)看学习目标1、2,(全班同学齐读)
下边请同学们再回忆,我们在上一章学习的平等线等分线段定理是如何叙述的?(抽同学回答)
请看幻灯(投影显示)
二、(用特殊化方法)探索合比性质。
1、复习,已知:一组平行线在直线l上截得的线段AB=BC=CD=DE=EF则由平行线等分线段定理可得一个结论:即A´B´=B´C´=C´D´=D´E´=E´F´。
2、将上述结论改写成比例式,由此猜想得出结论,引导学生思考:如果设在l上截得的每一份为k,问AD=?DF=?
?
又设在l1上截得的一等份为m,问A´D´=?D´F´=?
观察以上分析,可得出一个什么样的结论?
又观察与有什么关系?对于一般的比例
式都有这一个关系吗?请猜一猜。
猜想:学生口述(同学间可相互讨论、研究)
教师根据学生口述、写出:
如果
3、证明猜想,得出合比性质,
我们这个猜想,是否正确呢?
(1)启发学生观察,已知与未知的关系,寻找证明思路,证法一:(设比法)
设
∵
∴
证法二、(利用等比性质2)
∵∴∴
(2)类比联想,得到分比性质。
如果
学生自由讨论,可仿上边自己证明结论。
在今后,这两种情形都叫合比性质,即
如果
(3)理解合比性质的内容,师生一起用文字语言叙述。
4、类比联想,将合比性质推广。
在合比性质的表达式中,
(1)比例的二、四项保持不变,
(2)比例的前后磺对应求和或差,作为新比例式的第一、三比例项。
由此,可作出以下类比联想,并使用比例的基本性质进行证明。
猜想一,(教师引导)如果
二……如果
三……如果等等。
对这几个猜想出来的问题,其基本思考方法有两种:
(1)通过一定的方法,将它们变形利用合比性质的结果,证明时,可灵活运用以下变形方法。
①同时交换比例的内或外项,(更比)
如果
②同时交换比例的前后项,(反比)
如果
比如证明猜想三,如果
(2)对原合比性质的证明方法进行类比、联想来进行证明(设比法)
三、利用合比性质来证明等比性质的特例,并推广。
1、练习(投影显示)
证明:
2、观察上述练习的两个结论,并对一般情况作出猜想,对练习中相等的比值的比个数进行推广。
如果
3、利用设比法进行证明,得出等比性质,同学们自己练习,后与教材P20对比。
4、强调证明方法“设比法”。
设几个相等的比值为k,用它们表示出每个比的前项(或后项)利用代数运算证明比例问题,这种思想方法在比例问题中经常用到。
四、简单运用(出示小黑板)
(1)已知:,
(2)已知:
(3)已知:=
注意:①合比性质与等比性质的证明方法和结论都很重要,都可用来证明有关比例式的问题。
如第三题一问
解法1、
解法2、
第二问可用解法2。
②还常以另一种形式出现,即x:y:z=4:3:6但此时不能设。
五、师生共同小结,看书完成P203练习
1、合比性质,等比性质及常用变形,尤其注意等比性质的使用条件。
2、证明两个性质时所用到的“设比法”的证明方法。
3、类比联想,推广命题,由特殊到一般,再进行证明的方法。
六、练习:(1)已知求的值;
(2)已知求的值;
(3)已知求的值;
(4)已知试求的值。
由(4)题思考通过作第(4)题得出结论,结合前边所学内容猜想,你能得出什么结论,并试证之。
板书设计:
合比性质与等比性质
1、合比性质:
2、等比性质:小黑板①②③
内容内容小结1、
证明:证明:2、
推广①推广
②
初中数学教学教案与反思
辉南县抚民中学丛广杰
一、教学目标:
1、知道一次函数与正比例函数的定义;
2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。
3、弄清一次函数与正比例函数的区别与联系;
4、掌握直线的平移法则简单应用;
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:
重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学媒体:大屏幕。
四、教学设计简介:
因为这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。
为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标,然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。
例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。
这样,使无味的复习课变得活跃一些,增强学习气氛。
随后教师就用大屏幕展示出标准答案,然后教师组织学生以比赛的形式做一些针对性的练习。
为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。
五、教学过程:
1、一次函数与正比例函数的定义:
一次函数:一般地,若y=kx+b (其中k,b 为常数且k ≠0 ),那么y 是x 的一次函数正比例函数:对于y=kx+b ,当b=0, k ≠0 时,有y=kx, 此时称y 是x 的正比例函数,k 为正比例系数。
2、一次函数与正比例函数的区别与联系:
(1 )从解析式看:y=kx+b(k ≠0 ,b 是常数) 是一次函数;而y=kx(k ≠0 ,b=0) 是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2 )从图象看:正比例函数y=kx(k ≠0) 的图象是过原点(0 ,0 )的一条直线;而一次函数y=kx+b(k ≠0) 的图象是过点(0 ,b )且与y=kx 平行的一条直线。
基础训练一:
1、指出下列函数中的正比例函数和一次函数:①y = x +1 ;②y = - x/5 ;
③y = 3/x ;④y = 4x ;⑤y =x (3x+1 )-3x ;⑥y=3 (x-2 );⑦y=x/5-1/2 。
2、下列给出的两个变量中,成正比例函数关系的是:A、少年儿童的身高和年龄;B、长方形的面积一定,它的长与宽;C、圆的面积和它的半径;D、匀速运动中速度固定时,路程与时间的关系。
3、对于函数y = (m+1 )x + 2- n ,当m、n 满足什么条件时为正比例函数?当m、n 满足什么条件时为一次函数?
3、正比例函数、一次函数的图象和性质:
7、k,b 的符号与直线y=kx+b(k ≠0) 的位置关系:
k 的符号决定了直线y=kx+b(k ≠0 );b 的符号决定了直线y=kx+b 与y 轴的交点。
当k>0 时,直线;当k<0 时,直线。
当b >0 时,直线交于y轴的;当b <0 时,直线交于y轴的。
为此直线y=kx+b(k ≠0) 的位置有4 种情况,分别是:
当k>0 ,b >0 时,直线经过;当k>0 ,b <0 时,直线经过;
当k<0 ,b >0 时,直线经过;当k<0 ,b <0 时,直线经过。
基础训练二:
1、写出一个图象经过点(1 ,- 3 )的函数解析式为。
2、直线y =- 2X - 2 不经过第象限,y 随x 的增大而。
3、如果P (2 ,k )在直线y=2x+2 上,那么点P 到x 轴的距离是。
4、已知正比例函数y =(3k-1)x,, 若y 随x 的增大而增大,则k 的取值范围是。
5、过点(0 ,2 )且与直线y=3x 平行的直线是。
6、若正比例函数y = (1-2m )x 的图像过点A (x1 ,y1 )和点B (x2 ,y2 )当x1 <x2 时,y1 >y2, 则m 的取值范围是。
7、若函数y = ax+b 的图像过一、二、三象限,则ab 0 。
8、若y-2 与x-2 成正比例,当x=-2 时,y=4, 则x= 时,y = -4 。
9、直线y=- 5x+b 与直线y=x-3 都交y 轴上同一点,则b 的值为。
10、将直线y = -2x-2 向上平移2 个单位得到直线;
将它向左平移2 个单位得到直线。
六、教学反思:
本节课是我这学期做的一节汇报课。
教学任务基本完成,最后剩下一道综合训练题没来得及探讨,留作了课后作业。
从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。
因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。
应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。
可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。
我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。
以致于面对简单的问题都卡,思维不连续。
纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。
课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
课后我找到了学委和科代表,请他们协助我一同反思本节课的优缺点,并把在以往的章末复习时曾采取过的另一种复习方案阐述给他们听,就是课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。
再由小组长组织小组成员汇编,在汇编过程中要去粗取精。
课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。
台上他们是主角,台下他们也是主角。
但是在初三总复习时,我理解学生的忙,所以能包办的我就一律代做,以为这就是帮学生减轻负担,学生自己去做的事是少了,可是需要学生被动记忆的知识多;教师把一节设计的井井有条,想要学生在这一节课里收获更多,但被动的学生并没有全身心的投入到学生中去,降低了课堂效率,又把好多任务压到课下,最后教师减轻学生的课后负担的想法还是落空了。
反比例函数的意义的教学设计
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:理解和领会反比例函数的概念.
教学难点:领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k 的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.。