九年级锐角三角形的简单应用备课案

合集下载

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。

【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。

【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。

二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。

三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。

【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。

【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。

【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。

九年级数学锐角三角函数教案

九年级数学锐角三角函数教案

九年级数学锐角三角函数教案九年级数学锐角三角函数教案篇1二次根式的乘除法教学目标1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。

2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式.3、培养学生合情推理能力。

教学过程一、复习提问1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?2、二次根式有哪些性质?计算下列各题:()2二、提出问题,导入新知1、试一试计算: (1) _=( )=( )=( )=( )(2) _=( )=( )=( )=( )提问:观察以上计算结果,你能发现什么?2、思考_与是否相等?提问:(1)你将用什么方法计算?(2)通过计算,你发现了什么?是否与前面试一试的结果一样?3、概括让学生观察以上计算结果、归纳得出结论:_=(a≥0,b≥0)注意,a,b必须都是非负数,上式才能成立。

三、举例应用例1、计算。

__说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。

等式_=(a≥0,b≥0),也可以写成=_(a≥0,b≥0)利用它可以进行二次根式的化简,例如:=_==a2例2、化简说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。

四、课堂练习1、计算下列各式,将所得结果化简:_ _2、P12页练习1(1)、(2)、2五、想一想1、__与是否相等?a、b、c有什么限制?请举一个例子加以说明。

2、等于__吗?3、化简:六、小结这节课我们学习了以下知识:1、二次根式的乘法运算法则,即_= (a≥0,b≥0)2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a≥0,b ≥0)……)要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么?3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a≥ 0),加深了对非负数a的算术平方根的性质的认识七、作业习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题九年级数学锐角三角函数教案篇2配方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点关键1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+___ __=(x+____)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x 换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3=,x+3=-所以,方程的两根x1=-3+,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+)2=2.56,即(x+)2=2.56x+=±1.6,即x+=1.6,x+=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p0则方程无解六、布置作业1.教材复习巩固1、2.九年级数学锐角三角函数教案篇3配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0(2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±;如果q0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2) 求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.九年级数学锐角三角函数教案篇4二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。

九年级数学锐角三角函数教案

九年级数学锐角三角函数教案

一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。

2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。

3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。

二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。

2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。

三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。

2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。

(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。

3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。

(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。

4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。

(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。

5.总结(5分钟)(1)对本节课的内容进行总结概括。

(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。

第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。

《锐角三角函数的简单应用》说课稿

《锐角三角函数的简单应用》说课稿

《锐角三角函数的简单应用》说课稿一、教学内容与学情分析1.本课内容在教材、新课标中的地位和作用《锐角三角函数的简单应用》是初中数学九年级上册第一章第六节的内容。

本节课是《锐角三角函数的简单应用》的第三课时,是继前面学习了三角函数应用中的有关旋转问题和测量问题后的又一种类型的应用:即有关工程中的坡度问题。

三种类型的问题只是问题的背景不同,事实上解决问题所用的工具都相同,即直角三角形的边角关系。

因此本节课沿用前两节课的教学模式。

直角三角形是最简单、最差不多的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用.《锐角三角函数的简单应用》是解直角三角形的连续,渗透着数形结合思想、方程思想、转化思想。

因此本课不管是在本章依旧在整个初中数学教材中都具有重要的地位。

关于锐角三角函数的简单应用,《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(把握)。

2、学生已有的知识基础和学习新知的障碍通过前几节课的学习,学生差不多经历过了建立三角函数模型解决问题的过程,把握了一定的解题技巧和方法,具备了一定的分析问题、解决问题的能力。

这为本节课的学习奠定了良好的基础。

由于坡度问题涉及梯形的有关性质和解题技巧,而学生对此遗忘严峻,再次面对梯形的问题情境,会产生思维上的障碍。

另外坡度问题的运算较复杂,而学生的运算能力较弱,运算器使用不熟练,专门角的三角函数值还没记牢,这些对整个问题的解决都会起到延缓的作用。

二、目标的设定基于以上分析,将本节课教学目标设定为:1.应用三角函数解决有关坡度的问题,进一步明白得三角函数的意义。

2.经历探究实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用。

3.经历实际问题数学化的过程,在独立摸索探究解决问题方法的过程中,不断克服困难,增强应用数学的意识和解决问题的能力。

三、重、难点的确立及依据1、重点:有关坡度问题的运算。

九年级数学下册锐角三角形教案

九年级数学下册锐角三角形教案

斜边c对边abC BA 当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值?任意画Rt △ABC 和Rt △A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA =A aA c∠=∠的对边的斜边例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= . 例1 如图,在Rt △ABC 中, ∠C=90°,求sinA 和sinB 的值.三、课堂训练 课本第64页练习. 补充:1.如图,在直角△ABC 中,∠C =90o ,若AB =5,AC =4,则sinA =( )•∠A 的对边与斜边的比都是一个固定值.教师给出锐角的正弦概念,学生理解认识.学生理解认识30°和45°的正弦值,尝试独立完成例1,两名学生板书,并解释做题依据与过程,师生评议,达成一致. 教师组织学生进行练习,学生独立完成,之后,由学生口答,说明依据. 学生谈本节课收获,教师 完善补充强调.小如何,•∠A 的对边与斜边的比都是一个固定值。

”为基础给出锐角正弦概念,结合图形,便于学生理解认识和应用.巩固加深对锐角正弦的理解和应用,培养学生应用意识以及综合运用知识的能力,并为此获得成功的体验. 加强教学反思,将知识进行系统整理,总结方法,形成技能,提高学生的学习效果.A.35B.45C.34D.432.在△ABC中,∠C=90°,BC=2,sinA=23,则边AC的长是( )A.13 B.3 C.43D. 53.如图,已知点P的坐标是(a,b),则sinα等于()A.abB.baC.2222.a bDa b a b++四、课堂小结1.锐角的正弦概念;2.会求一个锐角的正弦值。

苏科版数学九年级下册7.6《锐角三角函数的简单应用》教学设计

苏科版数学九年级下册7.6《锐角三角函数的简单应用》教学设计

苏科版数学九年级下册7.6《锐角三角函数的简单应用》教学设计一. 教材分析苏科版数学九年级下册7.6《锐角三角函数的简单应用》这一节主要讲述了锐角三角函数的概念以及在实际问题中的应用。

通过本节课的学习,学生能够掌握锐角三角函数的定义,了解其在实际问题中的应用,提高解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了锐角三角函数的定义,对锐角三角函数有一定的了解。

但如何在实际问题中应用锐角三角函数,解决实际问题,是学生需要进一步掌握的内容。

三. 教学目标1.理解锐角三角函数的定义,掌握锐角三角函数的基本性质。

2.学会将实际问题转化为锐角三角函数问题,提高解决实际问题的能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.重点:锐角三角函数的定义,锐角三角函数在实际问题中的应用。

2.难点:如何将实际问题转化为锐角三角函数问题,解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究,提高学生的动手实践能力和团队协作能力。

六. 教学准备1.准备相关的实际问题,用于引导学生应用锐角三角函数解决问题。

2.准备多媒体教学设备,用于展示实际问题和教学案例。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量金字塔的高度、计算电视屏幕的面积等,引导学生思考如何利用锐角三角函数解决这些问题。

2.呈现(10分钟)讲解锐角三角函数的定义,通过示例让学生理解并掌握锐角三角函数的基本性质。

3.操练(10分钟)让学生分组讨论,如何将导入环节中的实际问题转化为锐角三角函数问题,并尝试解决问题。

教师巡回指导,为学生提供帮助。

4.巩固(10分钟)选取一些典型的实际问题,让学生独立解决,巩固所学知识。

教师选取学生解答中的典型错误进行讲解,提高学生的解题能力。

5.拓展(10分钟)让学生思考如何将锐角三角函数应用到生活中,举例说明。

教师引导学生进行思考,分享自己的经验。

九年级数学下册《锐角三角函数》教案、教学设计

九年级数学下册《锐角三角函数》教案、教学设计
(3)锐角三角函数的应用:解决实际问题,如测量物体的高度、计算物体之间的距离等。
2.教学方法:
采用讲解法、示例教学法,结合几何画板演示,帮助学生形象地理解锐角三角函数的定义和性质。
3.教学过程:
(1)通过回顾勾股定理,引导学生发现锐角三角函数的定义。
(2)利用几何画板,动态演示锐角三角函数随角度变化的规律,帮助学生理解其性质。
(4)注重情感教育,关注学生的学习情感,激发学生的学习兴趣和内在动力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,全面评价学生的学习过程。
(2)终结性评价:通过测试、作业等方式,评价学生对本章知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生自我评价,激发学生的学习潜能。
九年级数学下册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其相互关系。
2.学会使用计算器或手工计算方法,解决直角三角形中锐角三角函数值的问题。
3.掌握用锐角三角函数解决实际问题的方法,如测量物体的高度、计算物体之间的距离等。
4.能够运用锐角三角函数的性质,解决一些简单的几何问题,如求角的度数、证明线段相等等。
3.利用计算器、几何画板等教学辅助工具,帮助学生直观地理解锐角三角函数的图像和变化规律,提高学生的数学思维能力。
4.设计丰富的例题和练习题,巩固学生对锐角三角函数知识的掌握,培养学生分析问题、解决问题的能力。
5.通过课堂小结,引导学生总结本章所学内容,形成知识体系,提高学生的概括和表达能力。
(三)情感态度与价值观
3.思考题:
(1)思考锐角三角函数的定义在解决实际问题中的作用,举例说明。

苏科版数学九年级下册7.6《锐角三角函数的简单应用》讲教学设计

苏科版数学九年级下册7.6《锐角三角函数的简单应用》讲教学设计

苏科版数学九年级下册7.6《锐角三角函数的简单应用》讲教学设计一. 教材分析苏科版数学九年级下册7.6《锐角三角函数的简单应用》这一节主要介绍了锐角三角函数的概念和简单应用。

学生通过学习这一节内容,可以进一步理解锐角三角函数的定义和性质,并能运用到实际问题中。

教材通过例题和练习题的形式,帮助学生掌握锐角三角函数的应用方法。

二. 学情分析学生在学习这一节内容前,已经学习了锐角三角函数的定义和性质,但对函数的应用可能还不够熟悉。

因此,在教学过程中,需要帮助学生理解和掌握锐角三角函数的应用方法,并能够将其运用到实际问题中。

三. 教学目标1.知识与技能:学生能够理解锐角三角函数的概念,掌握其应用方法,并能够解决实际问题。

2.过程与方法:学生通过观察、分析和实践,培养解决问题的能力。

3.情感态度价值观:学生能够积极参与学习,增强对数学的兴趣和信心。

四. 教学重难点1.重点:学生能够理解锐角三角函数的概念,掌握其应用方法。

2.难点:学生能够将锐角三角函数运用到实际问题中,解决问题。

五. 教学方法1.情境教学法:通过设置实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。

2.案例教学法:通过分析例题和练习题,让学生掌握锐角三角函数的应用方法。

3.小组合作学习:通过小组讨论和合作,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教具准备:准备多媒体教学设备,如投影仪和计算机等。

2.教学资源:准备相关的例题和练习题,以及教学PPT。

七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度等,引入锐角三角函数的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示锐角三角函数的定义和性质,引导学生观察和分析。

3.操练(10分钟)让学生独立完成教材中的例题,教师进行个别指导,帮助学生理解和掌握锐角三角函数的应用方法。

4.巩固(10分钟)学生分组讨论,共同完成教材中的练习题,教师巡回指导,巩固学生对锐角三角函数应用的理解和掌握。

初三教案设计.锐角三角形

初三教案设计.锐角三角形

例1 如图,在Rt△ABC中,
∠C=90°,求sinA和sinB的
值.
三、课堂训练
课本第64页练习.
补充:
1.如图,在直角△ABC中,∠C=90o,若AB=5,AC=4,则sinA=(

A.
B.
C.
D.
2. 在△ABC中,∠C=90°,BC=2,sinA=,则边AC

长是( )
A.
B.3
C.
D.
在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正
教师给出锐角的正
以“在直角三角形
中,当锐角3A9的度 数一定时,不管三Biblioteka *,记作s弦in,A,记作sinA,
A的 对 边
a
即sinA= A的 斜 边
c
例如,当∠A=30°时,我们有sinA=sin30°= ;
当∠A=45°时,我们有sinA=sin45°= .
二、自主探究 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺 设水管,• 在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜 坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备 多长的水管? 思考:1.如果使出水口的高度为50m,那么需要准备多长的水管? 2.如果使出水口的高度为a m,那么需要准备多长的水管?
教学难点
理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值.
教学过程设计
教学程序及教学内容
一、复习引入 1.回忆直角三角形有哪些特殊性质? 2.在Rt△ABC中,∠C=90°,∠A=30°,若BC=10m,• 求AB; 3.在Rt△ABC中,∠C=90°,∠A=30°,若BC=20m,• 求 AB.

初中数学《锐角三角函数的应用》教案

初中数学《锐角三角函数的应用》教案

初中数学《锐角三角函数的应用》教案教案:锐角三角函数的应用一、教学目标1.知识与技能目标:(1)理解锐角三角函数的定义及其性质。

(2)学会利用锐角三角函数计算实际问题。

2.过程与方法目标:(1)培养学生的观察能力和应用能力。

(2)通过实际问题的讨论,提高学生的合作能力和创新思维。

二、教学重点与难点1.教学重点:(1)锐角三角函数的定义及其性质。

(2)利用锐角三角函数计算实际问题。

2.教学难点:锐角三角函数的应用及解题方法。

三、教学过程1.导入活动(10分钟)(1)利用图片展示一个矩形房间的平面图。

(2)引导学生思考:如何测量矩形房间的对角线长度?(3)引导学生利用勾股定理,解答该问题。

2.学习新知(30分钟)(1)通过示意图,引入锐角三角函数的概念。

(2)分别介绍正弦函数、余弦函数、正切函数以及它们的定义。

(3)通过讲解示例题,帮助学生理解锐角三角函数的性质。

3.问题解决(40分钟)(1)分组研究讨论:利用锐角三角函数计算实际问题。

(2)学生自主提出问题,并利用所学知识进行解答。

(3)学生展示解题思路和解题方法。

(4)教师点评和补充。

4.小结归纳(10分钟)(1)教师对学生的表现进行总结评价。

(2)引导学生对今天的学习内容进行归纳。

5.课后拓展(20分钟)(1)学生复习所学知识,完成相应的练习题。

(2)学生可以根据自己的兴趣,进行更多的实际问题探究。

1.教学资源:(1)PPT课件。

(2)图片资源。

(1)《初中数学(新)》人民教育出版社。

(2)《数学课程标准》人民教育出版社。

五、教学评价1.教师评价:(1)观察学生在课堂中的参与度,包括提问、回答等。

(2)针对学生的解题思路和解题方法,给予评价和指导。

(3)对学生的课堂表现进行总结和评价。

2.学生评价:(1)学生可以通过小组讨论、展示等方式展示自己的成果。

(2)学生可以通过解答问题的准确性和速度来评价自己的学习效果。

(3)学生可以通过课后练习的结果来评价自己的掌握程度。

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。

重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。

从图形可以看出ACBCCACB'''',即tanA l>tanA。

在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。

新授:坡度的概念,坡度与坡角的关系。

如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。

坡面与水平面的夹角叫做坡角。

从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。

和坝底宽AD。

(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。

问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。

坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。

(名师整理)最新中考数学专题复习《锐角三角函数的应用》精品教案

(名师整理)最新中考数学专题复习《锐角三角函数的应用》精品教案

俯角水平线中考数学人教版专题复习:锐角三角函数的应用一、教学内容锐角三角函数的应用1.利用锐角三角函数解决与直角三角形有关的实际问题.2.了解方向角,仰角、俯角,坡度,水平距离、垂直距离等概念,并能在具体问题中正确运用.二、知识要点1.方向角如图所示,过观测点作一条水平线(向右为东)和一条铅垂线(向上为北),则从观测点出发的视线与铅垂线或与水平线的夹角叫做方向角.若∠1=30°,则称方向角为北偏东30°,若∠2=60°,则称方向角为北偏西60°,若∠3=45°,则称东南方向.北21西3东南2.仰角和俯角在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角,如图所示.视线铅垂线仰角视线13.坡角、坡度(1)坡角:坡面与水平面的夹角.(2)坡度:地面的铅直高度h与水平宽度l的比叫做坡度(或坡比),用字母i表示.如h.坡度一般写成1∶m的形式(比例的前项为1,后项可以是小数).图所示,i=l(3)坡度与坡角的关系h=tanα.坡度越大,则α角越大,坡面越陡.若坡角为α,坡度为i,则有i=li=h∶lhαl三、重点难点重点是能够把实际问题转化为数学问题,能够进行有关三角函数的计算.难点是能够将实际问题转化为解直角三角形的问题,正确选用直角三角形的边角关系.四、考点分析三角函数广泛应用于解各种多边形,如等腰三角形、平行四边形、梯形和正多边形,是初中几何的重要组成部分,其主要命题热点如下:(1)会计算特殊角的三角函数以及与三角函数有关的代数式的值的问题.(2)能正确运用sin A、cos A、tan A表示直角三角形中两边的比,并借助直角三角形边角之间的关系解证三角问题.(3)会运用勾股定理,直角三角形的两个锐角互余,及锐角三角函数解直角三角形,并会用解直角三角形中的有关知识来解决某些简单的实际问题.【典型例题】2∴BC = .tan 30° 3 评析:本题是一类典型问题,因为 BC = 、BD = ,所以 - =CD .例 1. 如图所示,河对岸有铁塔 AB ,在 C 处测得塔顶 A 的仰角为 30°,向塔前进 14 米到达 D 处,在 D 处测得 A 的仰角为 45°,求铁塔 AB 的高.ACD B分析:本题主要考查利用解直角三角形的知识去解决实际问题. 设 AB =x ,则可用 x 的代数 式表示 BC 和 BD ,再利用 BC =CD +DB 列关于 x 的方程,可解出 x .AB解:在 R t △ACB 中,∠C =30°,tan C =BC ,ABtan 30°在 R t △ADB 中,∠ADB =45°,∴AB =BD .∵BC -BD =CD =14,设 AB =x ,x x则 -x =14,即 -x =14,3解得 x =7( 3+1).∴AB =7( 3+1)米,即铁塔 AB 的高为 7( 3+1)米.AB AB AB ABtan 30° tan 45° tan 30° tan 45°例 2. 某水库大坝某段的横截面是等腰梯形,坝顶宽 6m ,坝底宽 126m ,斜坡上的坡比为 1∶ 3,试求此处大坝的坡角和高.=1∶ 3D 6 CAE F B3故可得A E=BF=AB-DC∵i=1∵tan A=i=13,∴AE=DE1分析:构造直角三角形,过D、C作DE⊥AB,CF⊥AB,在R t△ADE中,利用坡比即AE=可求DE.解:如图所示,由题意可知CD=6,AB=126且AD=BC,AE=BF且EF=CD=6.2=60.DE133,33∴DE=3AE=3×60=203.33=3,∴∠A=30°.答:坡角是30°,坝高为203m.例3.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.E C F30°60°A D B分析:把已知条件和所求的AB间的距离转化到直角三角形中,运用三角函数相关知识求解.解:根据题意,∠A=∠ECA=30°,∠B=∠FCB=60°.CD在R t△ACD中,CD=90米,tan A=AD.CD3∴AD=tan A=90÷3=903米.同理,在R t△BCD中,BD=CD÷tan B=303米.AB=AD+BD4A1C=903+303=1203米所以,建筑物A、B间的距离为1203米.例4.(1)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5mB.6mC.7mD.8m(1)(2)(2)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了__________m.分析:根据题意构造直角三角形.B1B BA(1)CA(2)解:(1)A(2)2(3-2)例5.如图所示,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500m为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°.已知MB=400m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区.5tan∠AMC tan30°北M东B ACN分析:欲求输水线路是否穿过居民区,可通过点A作AC⊥MN于C,比较AC与500m的大小,若AC>500m,则输水线路不会穿过居民区,反之,会穿过居民区,解此类问题要弄清方向角,把解斜三角形问题转化成解直角三角形问题.解:过点A作AC⊥MN于C,设AC=x.由题意可知∠AMC=30°,∠ABC=45°.AC在R t△AMC中,tan∠AMC=MC,AC x所以MC===3x.在R t△ABC中,∠ABC=45°,所以BC=AC=x.因为MC-BC=MB=400,所以3x-x=400,所以x=200(3+1)(m).因为x=200(3+1)≈546(m)>500m,所以不改变方向,输水路线也不会穿过居民区.【方法总结】在学习中应注意两个转化(1)把实际问题转化成数学问题.这个转化分为两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图;二是将已知条件转化为图中的边角或它们之间的关系.6D .米(2)把数学问题转化成锐角三角函数问题,如果示意图不是直角三角形,可添加适当的辅助线,作出直角三角形确定合适的边角关系,细心推理,按要求的精确度作近似计算,最后写出答案并注明单位.【模拟试题】(答题时间:50 分钟)一、选择题1. 在 R t △ABC 中,∠C =90°,如果∠A =30°,那么 sin A +cos B 等于()A . 1+ 3 2B . 1+ 2 21C . 4D . 142. 如图所示,△ABC 中,∠C =90°,cos B =5,则 AC ︰BC ︰AB =()A . 3︰4︰5B . 4︰3︰5C . 3︰5︰4D . 5︰3︰4BAC3. 在直角坐标系中,点 P (4,y )在第一象限内,且 OP 与 x 轴正半轴的夹角为 60°,则 y 的值是( )4A . 3 3B . 4 3C . -3D . -14. 某人沿倾斜角为 β 的斜坡前进 100 米,则他上升的最大高度是( )100A . sin β米100B . 100sin β 米C . cos β米D . 100cos β 米5. 某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成 80°角,房屋朝南的窗子高 AB =1.8 米;要在窗子外面上方安装一个水平挡光板 AC ,使午间光线不能直接射入室 内(如图),那么挡光板 AC 的宽度应为()1.8A . 1.8tan 80°米B . 1.8cos 80°米C . sin 80°米1.8tan 80°7A.33B.C.1111D.A CB*6.如图所示,在△ABC中,BC=10,∠B=60°,∠C=45°,则点A到边BC的距离是()A.10-53B.5+53C.15-53AD.15-103B C**7.如图所示,CD是平面镜,光线从A点出发经CD上点E反射后照射到B点.若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=11,则tanα的值为()119AC αBD E二、填空题1.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.EAOB DC2.在△ABC中,AB=3,AC=4,∠A=60°,则S△ABC=______.83.一出租车从立交桥头直行500米,到达立交桥上25米处,则这段斜坡路的坡度是______.4.如果某人沿坡度i=1∶3的斜坡前进100米后,他所在的位置比原来的位置升高了____米.5.把两块含有30°的相同的直角尺按如图所示摆放,使点C、B、E在同一条直线上,连结CD,若AC=6cm,则ΔBCD的面积是__________.A DC B E**6.△ABC中,AB=AC=3,BC=2,则cos A=______.三、解答题1.如图,某一水库大坝的横断面是梯形ABCD,坝顶宽CD=3米,斜坡AD=16米,坝高8米,斜坡BC的坡度i=1︰3,求斜坡AD的坡角∠A和坝底宽AB.D CA B2.某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A点测得河西岸边的标志物B在它的正西方向,然后从A点出发沿河岸向正北方向行进550米到点C处,测得B在点C的南偏西60°方向上,他们测得的湘江宽度是多少米?(结果保留整数,参考数据:2≈1.414,3≈1.732)北C东B A3.如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高度.现测得树顶C 处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸9计算树的高度(精确到0.1米).A45°60°CB D4.如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70)10∴ ∴【试题答案】一、选择题1. D2. A3. B4. B5. D6. C7. D二、填空题11. 22. 33. 1︰ 3994. 10 10米5. 27cm 276. 9(解析:过点 C 作 CD ⊥AB 于 D ,则 AC 2-AD 2=BC 2-(AB -AD )2,即 32-AD 2=7 722-(3-AD )2,解得 AD =3,cos A =9)三、解答题1. ∠A =30°,AB =AD ·cos A +3+8×3=(27+8 3)米2. 由题意得:△ABC 中,∠BAC =90°,∠ACB =60°,AC =550,AB =AC ·tan ∠ACB≈550 3≈953(米). 答:他们测得湘江宽度为 953 米.3. 过点 A 作 AE ∥BD 交 DC 的延长线于点 E ,则∠AEC =∠BDC =90°. ∵ ∠EAC =AB45°,AE =BD =20, EC =20. ∵ tan ∠ADB =tan ∠EAD =BD , AB =20·tan 60°=20 3,CD =ED -EC =AB -EC =20 3-20≈14.6(米). 答:树高约为 14.6 米.A E45°60°CBD14. 过点 A 作 AE ⊥BC 于点 E ,过点 D 作 DF ⊥BC 于点 F . ∵AB =AC ,∴CE =2BC =0.5. 在111 2AER t△AB E 和 R t △DFC 中,∵tan 78°=EC ,∴AE =EC ×tan 78°≈0.5×4.70=2.35. 又∵sinAE DF DC 3α= AC =DC ,DF =AC ·A E =7×AE ≈1.007. 李师傅站在第三级踏板上时,头顶距地面高度约为: .007+1.78=2.787. 头顶与天花板的距离约为:.90-2.787≈0.11. ∵0.05<0.11<0.20,∴他安装比较方便.12。

九年级数学下册 7.6 锐角三角函数的简单应用教案(2) 苏科版

九年级数学下册 7.6 锐角三角函数的简单应用教案(2) 苏科版




教 学 内 容
个案调整
教师主导活动
学生主体活动
3、思考与探索:大海中某小岛的周围10km范围内有暗礁。一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。如果该海轮继续向东行驶,会有触礁的危险吗?
四、拓展训练:
1、如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高度。
锐角三角函数的简单应用(2)
主备人
用案人
授课时间
月日
总第课时
课题
课型
新授课
教学目标
1.进一步掌握解直角三角形的方法,
2.比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题
3.培养学生把实际问题转化为数学问题的能力。
重点
解决与仰角、俯角有关的实际问题
难点
解决与仰角、俯角有关的实际问题
教法及教具
分析:因为AB=AE+BE,AE=CD=1.20米,所以只要求出BE的长度,问题就得到解决,在△BDE中,已知DE=CA=22.7米,∠BDE=22°,那么用哪个三角函数可解决这个问题呢?显然正切或过

教 学 内 容
个案调整
教师主导活动
学生主体活动
一、给出仰角、俯角的定义
如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。右图中的∠1就是仰角, ∠2就是俯角。
二、例题讲解
例2、为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为40°。若小明的眼睛离地面1.6m,小明如何计算气球的高度呢(精确到0.01m)

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;

人教版九年级下册28.1《锐角三角函数》教案

人教版九年级下册28.1《锐角三角函数》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-锐角三角函数关系的理解:正弦、余弦、正切之间的关系较为复杂,学生难以理解和记忆。
-锐角三角函数图像的掌握:学生可能无法将图像与函数的性质有效联系起来。
举例解释:
-通过对比和实际操作,帮助学生区分正弦、余弦、正切的定义,例如通过直角三角形的模型进行直观展示。
-设计具体的计算题目,指导学生如何根据角度求函数值,强调记忆特殊角度的函数值,如30°、45°、60°等。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过举分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题,如测量旗杆的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量角度和距离,演示锐角三角函数的基本原理。
人教版九年级下册28.1《锐角三角函数》教案
一、教学内容
人教版九年级下册第28章《锐角三角函数》第1节,主要包括以下内容:
1.锐角三角函数的定义:正弦、余弦、正切的概念及其在直角三角形中的应用。
2.锐角三角函数的值:通过具体例子,让学生学会如何求锐角三角函数的值。
3.锐角三角函数的关系:掌握正弦、余弦、正切之间的基本关系,并能运用这些关系解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

数学九年级北师大版锐角三角函数(教案)

数学九年级北师大版锐角三角函数(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是指在直角三角形中,锐角的对边、邻边与斜边之间的比值关系。这些函数包括正弦、余弦和正切函数,它们在解决实际问题中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要测量一座建筑物的高度,通过观察角度和已知距离,运用锐角三角函数可以轻松解决这个问题。
4.培养学生的数据分析观念:在解决实际问题的过程中,培养学生对数据的收集、整理、分析和处理能力,形成数据分析观念。
5.提高学生的数学建模能力:通过构建锐角三角函数模型解决实际问题,使学生掌握数学建模的基本方法,提高数学建模能力。
本节课将紧密围绕核心素养目标,引导学生深入探究锐角三角函数相关知识,培养其学科素养。
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过学习锐角三角函数的定义、图像与性质,使学生掌握推理、论证的方法,提高逻辑思维能力。
2.提升学生的空间观念:通过分析锐角三角函数的图像与性质,培养学生对图形的观察、分析、想象和创造能力,形成良好的空间观念。
3.增强学生的数学应用意识:将锐角三角函数应用于解决实际问题,使学生体会数学与现实生活的联系,提高数学应用意识。
最后,关于课堂总结和回顾,我觉得这部分时间分配得较为合理。在总结时,我强调了锐角三角函数在实际生活中的应用,希望学生们能够将所学知识内化为自己的能力。但同时,我也意识到在课堂总结时,应该更加关注学生的疑问和困惑,鼓励他们大胆提问,及时解答他们的疑惑。
1.采用更生动、直观的教学方法,帮助学生理解锐角三角函数的定义。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案九年级锐角三角函数全章教案一、教学目标:1. 了解锐角三角函数的概念和基本性质。

2. 掌握锐角三角函数的定义和计算方法。

3. 理解锐角三角函数的图像、性质和应用。

4. 能够运用锐角三角函数解决实际问题。

二、教学重点:1. 锐角三角函数的定义和计算方法。

2. 锐角三角函数的图像、性质和应用。

三、教学难点:1. 锐角三角函数的图像和性质。

2. 运用锐角三角函数解决实际问题。

四、教学准备:1. 教材:人教版九年级数学教材。

2. 教具:黑板、粉笔、计算器、投影仪等。

五、教学过程:第一课时:锐角三角函数的定义和计算方法1. 导入(5分钟)通过提问复习九年级学过的三角函数的概念和性质,引出本节课的内容。

2. 介绍(10分钟)讲解锐角三角函数的定义和计算方法,包括正弦、余弦和正切的定义,以及计算方法的示例。

3. 讲解(20分钟)详细讲解正弦、余弦和正切的计算方法,包括利用三角函数表和计算器进行计算的步骤和注意事项。

4. 练习(15分钟)让学生进行一些基础的计算练习,以巩固所学的知识。

5. 小结(5分钟)对本节课的内容进行小结,强调锐角三角函数的定义和计算方法。

第二课时:锐角三角函数的图像和性质1. 导入(5分钟)通过提问复习上节课学过的锐角三角函数的定义和计算方法,引出本节课的内容。

2. 介绍(10分钟)讲解锐角三角函数的图像和性质,包括正弦函数、余弦函数和正切函数的图像特点和周期性。

3. 讲解(20分钟)详细讲解正弦函数、余弦函数和正切函数的图像特点和性质,包括振幅、周期、对称轴等。

4. 练习(15分钟)让学生进行一些图像分析和性质探究的练习,以巩固所学的知识。

5. 小结(5分钟)对本节课的内容进行小结,强调锐角三角函数的图像和性质。

第三课时:锐角三角函数的应用1. 导入(5分钟)通过提问复习上节课学过的锐角三角函数的图像和性质,引出本节课的内容。

2. 介绍(10分钟)讲解锐角三角函数在实际问题中的应用,包括角度的测量、高度的计算等。

九年级数学上册《一般锐角的三角函数》教案、教学设计

九年级数学上册《一般锐角的三角函数》教案、教学设计
-如何利用计算器计算锐角三角函数的值。
2.小组报告:每个小组选派一名代表汇报讨论成果,其他小组成员进行补充。
(四)课堂练习
1.设计具有代表性的练习题,让学生独立完成,巩固所学知识。
-计算给定锐角的正弦、余弦、体的高度、计算斜边长度等。
-分析给定锐角三角函数的性质,如增减性、互余角关系等。
2.学会使用计算器计算锐角三角函数值,并解决实际生活中的问题。
-介绍科学计算器的使用方法,让学生熟练操作,快速计算锐角三角函数值。
-设计一些实际问题,如测量树的高度、建筑物的高度等,让学生运用计算器进行计算,提高解决问题的能力。
3.掌握锐角三角函数的基本性质,如正弦、余弦、正切的增减性,以及互余角的三角函数关系。
二、学情分析
九年级的学生已经在数学学习道路上积累了一定的知识和经验,具备了一定的逻辑思维能力和问题解决能力。在此基础上,针对本章节《一般锐角的三角函数》,学生具备以下特点:
1.知识储备:学生掌握了直角三角形的性质,了解勾股定理,能够运用三角形的边长关系解决简单问题。
2.思维能力:经过前期的数学学习,学生的逻辑思维能力得到了一定程度的培养,能够通过观察、分析、归纳等方法,理解和掌握新的数学概念。
-注重培养学生的数学思维和解决问题的方法,提高学生的数学素养。
四、教学内容与过程
(一)导入新课
1.创设情境:以校园中的一棵树为背景,提出问题:“如何测量这棵树的高度?”引导学生思考,激发学生兴趣。
2.引入课题:通过讨论,学生提出使用直角三角形的知识来解决这一问题。顺势引入本节课的内容——一般锐角的三角函数。
三、教学重难点和教学设想
(一)教学重难点
1.重点:本章节的重点在于让学生理解和掌握锐角三角函数的定义、性质和应用。具体包括:

初中数学初三数学上册《锐角的三角函数值》教案、教学设计

初中数学初三数学上册《锐角的三角函数值》教案、教学设计
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组分配一个讨论题目,如“如何利用三角函数解决测量物体高度的问题”。学生将在小组内部分享自己的想法,共同探讨解决问题的方法。这个环节旨在培养学生的合作精神和交流能力,同时通过讨论加深对三角函数应用的理解。
我会巡回指导各个小组,提供必要的帮助和指导,确保每个学生都能参与到讨论中来,并鼓励学生尝试不同的解题思路。
1.教学策略:
-采用情境导入法,通过实际问题引入锐角三角函数的概念,激发学生的学习兴趣。
-运用直观演示法,结合动态课件和实物模型,帮助学生建立三角函数的直观形象。
-实施分组合作学习,促进学生之间的交流与合作,提高学生的团队协作能力。
-设计分层练习,针对不同层次的学生,提供不同难度的题目,使每个学生都能得到有效的训练。
五、作业布置
为了巩固学生对锐角三角函数的理解和应用,确保学生能够在课后继续深入学习和实践,特布置以下作业:
1.基础巩固题:完成课本第chapter页的练习题1-10,特别关注题目中涉及的锐角三角函数的定义和特殊角的函数值计算。
2.应用拓展题:选取一道与实际生活相关的题目,如测量校园内某一树木的高度或建筑物之间的距离,要求学生运用三角函数知识制定测量方案,并完成测量计算。
作业要求:
1.学生需独立完成基础巩固题和应用拓展题,确保对锐角三角函数知识的巩固。
2.小组合作题要求组内成员共同讨论、分工合作,发挥团队协作精神,提高解决问题的能力。
3.课后阅读和读后感旨在培养学生自主学习、深入思考的习惯,提升学生的数学素养。
4.作业完成过程中,学生应注意解题方法的规范性和逻辑性,培养良好的数学思维品质。
4.通过课堂讲解、例题解析、练习巩固等环节,使学生掌握解题方法,形成自己的解题策略。

初三数学 锐角三角函数的应用(1) 教学案

初三数学   锐角三角函数的应用(1)  教学案

初三数学 锐角三角函数的应用 班级_______ 姓名_________学习目标:1.能把实际问题转化为数学问题,能进行有关三角函数的计算;2.正确理解“旋转角、仰角、俯角、视线、方位角”从而正确理解实际问题,解决实际问题. 生活常识:1、生活实际问题中的角有仰角和俯角.如图,从下往上看,视线与_______的夹角叫做仰角,从上往下看,视线与_______的夹角叫做俯角.2、方位角:知识应用:1AC =1200m ,从飞机上看地面指挥台B 的俯角a =18°,则飞机A 到指挥台B 的距离为_______(精确到1m ,sin 18°≈0.31).2、如图,东西两炮台A 、B 相距2000米,同时发现敌舰C ,炮台A 测得敌舰C 在它的南偏东60°的方向,炮台B 测得敌舰C 在它的正南方,则敌舰与两炮台的距离为__________。

典例分析:1、升国旗时,某同学站在离旗杆底部20m 处行注目礼,当国旗升至旗杆端时,该同学视线的仰角恰为40°,若双眼离地面1.5m ,则旗杆高度为多少m?(sin40°=0.64, tan40°=0.84)北变式1:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为40°。

若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?(精确到0.01m)变式2:水平地面上的甲、乙两楼的距离为30米,从甲楼顶部测得乙楼顶部的仰角为30°,测行乙楼底部的俯角为45°.求甲、乙两楼的高度.2、海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.变式:如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育-----您值得信赖的专业化个性化辅导学校

教师 学生







ggggggggggggangganggang 纲 时间: 2012 年 2 月 4 日 段
一.授课目的与考点分析:1.使学生知道测量中俯角与仰角、方位角、坡度、坡角的概念,掌
握坡度与坡角的关系;2.能利用解直角三角形的知识,解决与俯角与仰角、方位角、坡度有关的实 际问题,进一步培养学生把实际问题转化为数学问题的能力.

[
]A. 1
3
B.
3
+1
C.
3
-1
D.1-
3
2.若
3
tan(α+10°)=0,则锐角α的度数是[ D.50°
]
A.20° B.30° C.40° 3.cos30°
2 3
cos 30 1 sin 30
[
]
3 4 1 2
A.
B.
1 3
C.
D.
4.在△ABC 中,∠C=90°。
(1)已知∠A=30°,BC=8cm,求 AB、AC (2)已知∠A=60°,AC= 二.知识讲解 知识点一 《俯角与仰角》 1.当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角. 2.当从高处观测低处的目标时,视线与水平线
1
3
cm,求 AB 与 BC 的长。
龙文教育-----您值得信赖的专பைடு நூலகம்化个性化辅导学校
C 北 30° A 北 45° B
例 3.如图,A,B 是两座现代城市,C 是一个古城遗址,C 城在 A 城的北偏东 30°,在 B 城的北偏西 45°, 且 C 城与 A 城相距 120 千米,B 城在 A 城的正东方向,以 C 为圆心,以 60 千米为半径的圆形 区域 内有古迹和地下文物,现要在 A,B 两城间修建一条笔直的高速公路.(1)计算公路的长度.(2)请你 分析这条公路有没有可能对文物古迹造成损毁.
2
龙文教育-----您值得信赖的专业化个性化辅导学校
② 如图所示,河堤横断面迎水坡 AB 的坡比是 1∶ 3, 堤高 BC=5m,则坡面 AB 的长度是 .
3.一道常见题型. 如图,水坝的横截面是梯形 ABCD,迎水坡 BC 的坡角为 30°,背水坡 AD 的坡度 i=1:1.2,坝顶宽 DC=2.5 米,坝高 4.5 米,又知堤坝的总长度为 5km. 求:(1)背水坡 AD 的坡角(精确到 0.1°); (2)坝底宽 AB 的长(精确到 0.1 米).
叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是 i= ,显 然, . 1.掌握坡度的概念 ①某人沿着有一定坡度的坡面前进了 10 米,此时他与水平地面的垂直距离为 2 5米,则这个坡面的 坡度为 __________. ②(10 江苏宿迁)小明沿着坡度为 1:2 的山坡向上走了 1000m,则他升高了_________. 2.掌握两个常见的坡度 ① 某水库大坝的横断面是梯形,坝内斜坡的坡度 i1=1∶ 3,坝外斜坡的坡度 i2=1∶1,则两个坡角的 和为 .
三.例题讲解 例 1 . 东西两炮台 A、B 相距 2000 米,同时发现入侵敌舰 C,炮台 A 测得敌舰 C 在它的南偏东 40° 的方向,炮台 B 测得敌舰 C 在它的正南方,试求敌舰与两炮台的距离.(精确到 1 米)(tan 5 0°≈1.192, cos50°≈0.6482)
例 2.为了测量一条河流的宽度,小明在河的岸边选定 A、B 两个目标,在河对面的岸边选定一目标 C, 测得 C 在 A 的北偏东 45°方向 , 在 B 的北偏西 60°方向上, AB=80,试求河的宽度.
2、 学生本次上课情况评价: ○ 好
教师签字:
主任签字: ___________
龙文教育教务处
4
3
龙文教育-----您值得信赖的专业化个性化辅导学校
3.如图所示,一渔船上的渔民在 A 处看见灯塔 M 在北偏东 60°方向,这艘渔船以 28 海里/时的速度向 正东航行,半小时至 B 处,在 B 处看见灯塔 M 在北偏东 15°方向,此时灯塔 M 与渔船的距离是 ( )
北 A
C B

4. 如图,两座灯塔 A 和 B 到海洋观测站 C 的距离相等,灯塔 A 在观测站 C 的北偏东 40°,灯塔 B 在观测 站 C 的南偏东 60°,则灯塔 A 在灯塔 B 的 ( ) A 北偏东 10° B 北偏西 10°C 南偏东 10° D 南偏西 10° m,则坡角为_______.
二.授课重点、难点: 教学重点:重点:俯角与仰角、方位角、坡度、坡角的概念,掌握坡度
与坡角的关系. 难点:能利用解直角三角形的知识,解决与坡度、 俯角与仰角、方位角有关的实际问题.
三.授课方法:讲授法.例题法.解析法
四.授课详细内容
一.温故而知新 1.
(1 3 tan 30 )
2
锐角三角函数的简单应用
5.有一大坝其横截面为一等腰梯形,它的上底为 6 m,下底为 10 m,高为 2 五.总结并布置作业
3
五、教学小结与反思 六、本次课后作业: 七、学生对于本次课的评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 八、教师评定: 1、 学生上次作业评价: ○ 好 ○ 较好 ○ 较好 ○ 一般 ○ 一般 ○ 差 ○ 差
所成的锐角称为俯角. 图中的∠1 就是仰角, ∠2 就是俯角。 练习 1: 如图,测量队为测量某地区山顶 P 的海拔高度,选 M 点作为观测点,从 M•点测量山顶 P 的仰角为 30°,在比例尺为 1:50000 的该地区等高线地形图上,量得这两点的图上距离为 6•厘米, 则山顶 P•的海拔高为________m. (精确到 1m) 练习 2: 飞机在距地面 9km 高空上飞行,先在 A 处测得正前方某小岛 C 的俯角为 30°,飞行一段距离后, 在 B 处测得该小岛的俯角为 60°.求飞机的飞行距离。 练习:3:怎样测量停留在空中的气球高度呢?明明设计了这样一个方案: 先站在地面上某点处观测气球,测得仰角为 30°,然后他向气球方向前进了 50m,此时观测气球,测得仰 角为 45°.若明明的眼睛离地面 1.6m, 如何 计算气球的高度呢? 知识点二 《方位角》 如图,在平面上,过观察点 O 作 一条水平线(向右为东) 和一条铅垂线(向上为北),则从 O 点出发的视线与铅 垂线所成的锐角,叫做观测的方位角(方向角). 例如,图中“北偏东 30°”是一个方位角; 又如“西北”即指正西方向与正北方向所夹直角 的平分线,此时的方位角为“北偏西 45°”. 知识点三 《坡度与坡角》 在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度. 坡度的概念,坡度与坡角的关系. 如右图,这是一张水库拦水坝的横断面的设计图, 叫做坡度(或坡比) . 记作 i,即 i= , 坡度通常用 l∶m 的形式,如右上图,斜坡 AB 的坡度是:i= .
四.提高题冲刺
1.在高 200 米的山顶上测得正东方向两船的俯角分别为 30°和 60°,•则两船间的距离是 ______ 。
2.如图所示,人们从 O 处的某海防哨所发现,在它的北偏东 60°方向,•相距 600m 的 A 处有一艘快 艇正在向正南方向航行,经过若干时间快艇到达哨所东南方向 B 处,则 A、B 间的距离是______ .
相关文档
最新文档