【数学】九年级全册期末复习试卷测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【数学】九年级全册期末复习试卷测试卷(含答案解析)
一、选择题
1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3
B .2:3
C .4:9
D .16:81
2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人
B .6人
C .4人
D .8人
3.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O
的位置关系是( ) A .点P 在
O 上
B .点P 在
O 外
C .点P 在
O 内 D .无法确定
4.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )
A .4.4
B .4
C .3.4
D .2.4
5.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )
A .7 : 12
B .7 : 24
C .13 : 36
D .13 : 72
6.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3
B =; B .2cos 3
B =
; C .2tan 3
B =
; D .以上都不对;
7.如图,
点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( )
A .80°
B .40°
C .50°
D .20°
8.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )
A .2
B .3
C .4
D .6
9.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是
( )
A .向左平移1个单位
B .向右平移3个单位
C .向上平移3个单位
D .向下平移1个单位
10.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为
( )
A .40°
B .45°
C .60°
D .70°
11.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )
A .40°
B .50°
C .80°
D .100°
12.一元二次方程x 2﹣3x =0的两个根是( )
A .x 1=0,x 2=﹣3
B .x 1=0,x 2=3
C .x 1=1,x 2=3
D .x 1=1,x 2=﹣3
13.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .
14
B .
13
C .
12
D .
23
14.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度
15.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )
A .
4233
π
- B .
8433
π
- C .
8233
π
- D .
843
π
- 二、填空题
16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.
18.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.
19.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为
2
3
,则袋中应再添加红球____个(以上球除颜色外其他都相同). 20.如图,在ABCD 中,1
3
BE DF BC ==
,若1BEG S ∆=,则ABF S ∆=__________.
21.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣
3
m
+2010的值为_____. 22.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.
23.一组数据:2,5,3,1,6,则这组数据的中位数是________.
24.二次函数2
y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)
25.已知⊙O 半径为4,点,A B 在⊙O 上,213
90,sin 13
BAC B ∠=∠=,则线段OC 的最大值为_____.
26.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ . 27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =12
13
,BC =12,则AD 的长_____.
28.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.
29.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.
30.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则
1212x x x x +-•=__________.
三、解答题
31.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;
(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为; (3)在所给坐标系中画出该二次函数的图象; (4)根据图象,当-3<x <2时,y 的取值范围是.
32.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己
的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为
1.6m,求路灯杆AB的高度.
33.如图,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),
(1)半径 BP 的长度范围为;
(2)连接 BF 并延长交 CD 于 K,若 tan ∠KFC = 3 ,求 BP;
(3)连接 GH,将劣弧 HG 沿着 HG 翻折交 BD 于点 M,试探究PM
BP
是否为定值,若是求出
该值,若不是,请说明理由.
34.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若CE=16
3
,AB=6,求⊙O的半径.
35.如图,抛物线y =﹣13
x 2
+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,与y 轴交于点C ,连接AC ,BC .
(1)求此抛物线的表达式;
(2)求过B 、C 两点的直线的函数表达式;
(3)点P 是第一象限内抛物线上的一个动点.过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点P 的坐标,若不存在,请说明理由;
四、压轴题
36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;
(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.
37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设
移动时间为ts . (1)如图①,
①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当38
83
a t ==
,时,证明:ADF CDF S S ∆∆=.
38.如图,⊙O 的直径AB =26,P 是AB 上(不与点A ,B 重合)的任一点,点C ,D 为⊙O 上的两点.若∠APD =∠BPC ,则称∠DPC 为直径AB 的“回旋角”.
(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由; (2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );
(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长. 39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF
(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.
(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.
40.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据面积比为相似比的平方即可求得结果.
【详解】
解:∵两个相似多边形的面积比为4:9,
∴它们的周长比为4
92 3 .
故选B.
【点睛】
本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.
2.B
解析:B
【解析】
【分析】
找出这组数据出现次数最多的那个数据即为众数. 【详解】
解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】
本题考查众数的概念,出现次数最多的数据为这组数的众数.
3.B
解析:B 【解析】 【分析】
求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】
解:∵()8,6P -,
∴10= , ∵
O 的直径为10,
∴r=5, ∵OP>5, ∴点P 在O 外.
故选:B. 【点睛】
本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.
4.D
解析:D 【解析】 【分析】
直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴
AB DE
BC EF
=, ∵AB =1.5,BC =2,DE =1.8,

1.5 1.8
2EF = , ∴EF=2.4 故选:D . 【点睛】
本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.
5.B
解析:B 【解析】 【分析】
根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】
解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,1
2
BG BE DG AD ==, ∴
1
3DH BG BD BD ==, ∴BG=GH=DH ,
∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,
∴1
2EF BD =, ∴
1
4
EFC BCDD S S =, ∴
18
EFC
ABCD
S S =四边形, ∴
1176824
AGH
EFC
ABCD
S
S
S +=
+=四边形=7∶24, 故选B. 【点睛】
本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.
6.C
解析:C 【解析】 【分析】
根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】
由勾股定理得:AB=22222133AC BC ++== ,
所以cosB=
313BC AB =,sinB=21233AC AC tanB AB BC ==,= ,所以只有选项C 正确; 故选:C .
【点睛】
此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键. 7.C
解析:C
【解析】
∵∠BOC=2∠BAC ,∠BAC=40°
∴∠BOC=80°,
∵OB=OC ,
∴∠OBC=∠OCB=(180°-80°)÷2=50°
故选C .
8.C
解析:C
【解析】
【分析】
如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答.
【详解】
如图,作直径BD ,连接CD ,
∵∠BDC 和∠BAC 是BC 所对的圆周角,∠BAC =30°,
∴∠BDC =∠BAC =30°,
∵BD 是直径,∠BCD 是BD 所对的圆周角,
∴∠BCD =90°,
∴BD =2BC =4,
故选:C .
本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.
9.D
解析:D
【解析】
A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
D.平移后,得y=x2−1图象不经过A点,故D符合题意;
故选D.
10.A
解析:A
【解析】
【分析】
先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.
【详解】
解:∵AC是圆O的切线,AB是圆O的直径,
∴AB⊥AC,
∴∠CAB=90°,
又∵∠C=70°,
∴∠CBA=20°,
∴∠AOD=40°.
故选:A.
【点睛】
本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.
11.A
解析:A
【解析】
试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.
解:连结BC,如图,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠BAC=50°,
∴∠B=90°﹣50°=40°,
∴∠ADC=∠B=40°.
故选A.
考点:圆周角定理.
12.B
解析:B
【解析】
【分析】
利用因式分解法解一元二次方程即可.
【详解】
x2﹣3x=0,
x(x﹣3)=0,
x=0或x﹣3=0,
x1=0,x2=3.
故选:B.
【点睛】
本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
13.C
解析:C
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.
【详解】
根据题意画图如下:
共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,
则2次抽出的签上的数字的和为正数的概率为
6
12

1
2

故选:C.
【点睛】
本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,
14.D
解析:D
【解析】
分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.
详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.
故选D.
点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.
15.C
解析:C
【解析】
【分析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
【详解】
解:连接OD,
在Rt△OCD中,OC=1
2
OD=2,
∴∠ODC=30°,CD=2223
OD OC
+=
∴∠COD=60°,
∴阴影部分的面积=
2
60418
223=23 36023
π⨯
-⨯⨯π-,
故选:C.
【点睛】
本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题
16.a>0.
【解析】
试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.
解析:a>0.
【解析】
试题分析:∵方程20
+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.
x a
考点:根的判别式.
17.【解析】
试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
由平均数的公式得:(1+2+3+4+5)÷5=3,
∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4
解析:【解析】
试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
由平均数的公式得:(1+2+3+4+5)÷5=3,
∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.
考点:方差.
18.2或1.5
【解析】
【分析】
根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.
【详解】
解:设半径为r,
∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=
解析:2或1.5
【解析】
【分析】
根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】
解:设半径为r,
∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6
∴GC=r,BG=BF=6-r,
∴AF=5-(6-r)=r-1=AE
∴ND=6-(r-1)-r=7-2r,
在Rt△NDC中,NC2+ND2=CD2,
(7-r)2+(2r)2=52,
解得r=2或1.5.
故答案为:2或1.5.
【点睛】
本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.
19.3
【解析】
【分析】
首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.
【详解】
解:设应在该盒子中再添加红球x个,
根据题意得:,
解得:x=3,
经检验,x=3是原分
解析:3
【解析】
【分析】
首先设应在该盒子中再添加红球x个,根据题意得:
12
123
x
x
+
=
++
,解此分式方程即可求
得答案.
【详解】
解:设应在该盒子中再添加红球x个,
根据题意得:
12
123
x
x
+
=
++

解得:x=3,
经检验,x=3是原分式方程的解.
故答案为:3.
【点睛】
此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.6
【解析】
【分析】
先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.
解:∵四
解析:6
【解析】
【分析】
先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.
【详解】
解:∵四边形ABCD 是平行四边形,
∴AD=BC ,AD ∥BC ,
∴△BEG ∽△FAG , ∵13BE DF BC ==
, ∴12
EG BE AG AF ==, ∴211,24
BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,
∴2ABG S ∆=,4AFG S ∆=,
∴6ABF ABG AFG S S S ∆∆∆=+=.
故答案为:6.
【点睛】
本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 21.2019
【解析】
【分析】
根据m 是方程5x2﹣3x ﹣1=0的一个根代入得到5m2﹣3m ﹣1=0,进一步得到5m2﹣1=3m ,两边同时除以m 得:5m ﹣=3,然后整体代入即可求得答案.
【详解】

解析:2019
【解析】
【分析】
根据m 是方程5x 2﹣3x ﹣1=0的一个根代入得到5m 2﹣3m ﹣1=0,进一步得到5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m
=3,然后整体代入即可求得答案.
解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,
∴5m2﹣1=3m,
两边同时除以m得:5m﹣1
m
=3,
∴15m﹣3
m
+2010=3(5m﹣
1
m
)+2010=9+2010=2019,
故答案为:2019.
【点睛】
本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.
22.4
【解析】
【分析】
根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.
【详解】
解:由图可知,
第一行1个数,
第二行2个数,

解析:4
【解析】
【分析】
根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.
【详解】
解:由图可知,
第一行1个数,
第二行2个数,
第三行3个数,
…,
则第n行n个数,
故前n个数字的个数为:1+2+3+…+n=
(1)
2
n n+

∵当n=63时,前63行共有6364
2

=2016个数字,2020﹣2016=4,
∴2020在第64行左起第4个数,
故答案为:64,4.
【点睛】
本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.
23.3
【解析】【分析】根据中位数的定义进行求解即可得出答案.
【详解】将数据从小到大排列:1,2,3,5,6,
处于最中间的数是3,
∴中位数为3,
故答案为:3.
【点睛】本题考查了中位数的定义,中
解析:3
【解析】【分析】根据中位数的定义进行求解即可得出答案.
【详解】将数据从小到大排列:1,2,3,5,6,
处于最中间的数是3,
∴中位数为3,
故答案为:3.
【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.
24.>
【解析】
【分析】
根据题意直接利用二次函数的图象与a 的关系即可得出答案.
【详解】
解:因为二次函数的图像开口方向向上,
所以有>0.
故填>.
【点睛】
本题主要考查二次函数的性质,掌握二次
解析:>
【解析】
【分析】
根据题意直接利用二次函数的图象与a 的关系即可得出答案.
【详解】
解:因为二次函数2
y ax bx c =++的图像开口方向向上,
所以有a >0.
故填>.
【点睛】
本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0.
25.【解析】
【分析】
过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出. 解析:41383
+ 【解析】
【分析】
过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23
OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.
【详解】
解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,
∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩
, ∴ABC AEO ∆∆,
∴tan AC AO B AB AE ∠=
=, ∵13sin 13
B ∠=, ∴2213313cos 11313B ⎛⎫∠=-= ⎪ ⎪⎝⎭
,
∴sin 2tan cos 3
B B n B ∠∠===∠, ∴
23
AO AE =, 又∵4AO =,
∴6AE =,
∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵
AC AO AB AE
=, ∴AEB AOC ∆∆, ∴23
OC AC BE AB ==, ∴23
OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,
∵OE =
==,
∴4OE OB +=,
∴BE
的最大值为:4,
∴OC
的最大值为:
(
)
28433=. 【点睛】
本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 26.4
【解析】
【分析】
先列举出所有上升数,再根据概率公式解答即可.
【详解】
解:两位数一共有99-10+1=90个,
上升数为:
共8+7+6+5+4+3+2+1=36个.
概率为36÷90=
解析:4
【解析】
【分析】
先列举出所有上升数,再根据概率公式解答即可.
【详解】
解:两位数一共有99-10+1=90个,
上升数为:
共8+7+6+5+4+3+2+1=36个.
概率为36÷90=0.4.
故答案为:0.4.
27.8
【解析】
【分析】
在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=
13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A
解析:8
【解析】
【分析】
在Rt△ADC中,利用正弦的定义得sin C=AD
AC

12
13
,则可设AD=12x,所以AC=13x,利
用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=12
13
,接着在Rt△ABD中利用
正切的定义得到BD=13x,所以13x+5x=12,解得x=2
3
,然后利用AD=12x进行计算.
【详解】
在Rt△ADC中,sin C=AD
AC

12
13

设AD=12x,则AC=13x,∴DC22
AC AD
=5x,
∵cos∠DAC=sin C=12 13

∴tan B =1213
, 在Rt △ABD 中,∵tan B =
AD BD =1213, 而AD =12x ,
∴BD =13x ,
∴13x +5x =12,解得x =
23
, ∴AD =12x =8.
故答案为8.
【点睛】 本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.
28.【解析】
【分析】
通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求
【解析】
【分析】
通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.
【详解】
过点C 作CF ⊥AE ,垂足为F ,
在Rt △ACD 中,CD =
由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,
∴CF =AC •sin45°, 由AC ∥BD 可得△ACE ∽△BDE , ∴13
CE AC DE BD ==,
∴CE =
14CD =4,
在Rt △ECF 中,sin ∠AEC =
25CF CE ==,
故答案为:
25

【点睛】
考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.
29.【解析】
【分析】
△ABF和△ABE等高,先判断出,进而算出,△ABF和
△ AFD等高,得,由,即可解出.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵E是▱
解析:
2
5
【解析】
【分析】
△ABF和△ABE等高,先判断出
2
3
ABF
ABE
S AF
S AE


==,进而算出6
ABCD ABF
S S

=,△ABF和△ AFD等高,得2
ADF
ABF
S DF
S BF


==,由
5
=
2
ABE ADF ABF
ECDF
S S S S S
∆∆∆
=--
四边形平行四边形ABCD
,即可解出.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵E是▱ABCD的BC边的中点,

1
2
BE EF BF BE
AD AF DF BC
====,
∵△ABE和△ABF同高,

2
3
ABF
ABE
S AF
S AE
∆==,
∴S △ABE =32
S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =
12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32
S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF
∆∆==, ∴S △ADF =2S △ABF ,
∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =
52S △ABF , ∴25
ABF
ECDF S S ∆=四边形, 故答案为:
25
. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.
30.2
【解析】
【分析】
根据根与系数的关系确定和,然后代入计算即可.
【详解】
解:∵
∴=-3, =-5
∴-3-(-5)=2
故答案为2.
【点睛】
本题主要考查了根与系数的关系,牢记对于(a≠
解析:2
【解析】
【分析】
根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.
【详解】
解:∵2350x x +-=
∴12x x +=-3, 12x x •=-5
∴1212x x x x +-•=-3-(-5)=2
故答案为2.
【点睛】
本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a
•=是解答本题的关键. 三、解答题
31.(1)b =2,c =3;(2)(0,3),(1,4)(3)见解析;(4)-12<y ≤4
【解析】
【分析】
(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;
(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;
(3)根据二次函数的定点、对称轴及所过的点画出图象即可;
(4)直接由图象可得出y 的取值范围.
【详解】
(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得
3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩
, 故答案为:b=2,c=3;
(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),
二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).
(3)解:如图所示

(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.
【点睛】
本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线
的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.
32.4m
【解析】
【分析】
由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故
CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312
AB =; 【详解】
解:∵CD ∥EF ∥AB ,
∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴
CD DF AB BF =,EF FG AB BG
=, 又∵CD=EF , ∴DF FG BF BG
=, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴
3437
BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312
AB = 解得,AB=6.4m
因此,路灯杆AB 的高度6.4m .
【点睛】
考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.
33.(1)
95102BP <<;(2)BP=1;(3)1125PM BP = 【解析】
【分析】
(1)当点G 和点E 重合,当点G 和点D 重合两种临界状态,分别求出BP 的值,因为任意点都不重合,所以BP 在两者之间即可得出答案;
(2)∠KFC 和∠BFE 是对顶角,得到tan =3BE BFE EF
∠=,得出EF 的值,再根据△BEF ∽△FEG ,求出EG 的值,进而可求出BP 的值;
(3)设圆的半径,利用三角函数表示出PO ,GO 的值,看PP G '∆用面积法求出P Q ',在P GQ '∆中由勾股定理得出MQ 的值,进而可求出PM 的值即可得出答案.
【详解】
(1)当G 点与E 点重合时,BG=BE ,如图所示:
∵四边形ABCD 是矩形,AB=4,BC=3,
∴BD=5,
∵CE ⊥BD ,
∴1122
BC CD BD CE ⋅=⋅, ∴125CE =
, 在△BEC 中,由勾股定理得:
221293()55
BE =-=, ∴910
BP =, 当点G 和点D 重合时,如图所示:
∵△BCD 是直角三角形,
∴BP=DP=CP ,
∴52
BP =, ∵任意两点都不重合,
∴95102
BP <<, (2)连接FG ,如图所示:
∵∠KFC=∠BFE ,tan ∠KFC = 3,
∴tan 3BFE ∠=,
∴3BE EF
=, ∴335
BE EF =
=, ∵BG 是圆的直径,
∴∠BFG=90°, ∴∠GFE+∠BFE=90°,
∵CE ⊥BD ,
∴∠FEG=∠FEB=90°,
∴∠GFE+∠FGE=90°,
∴∠BFE=∠FGE
∴△BEF ∽△FEG ,
∴2EF BE EG =⋅, ∴99255
EG =, ∴15EG =
, ∴BG=EG+BE=2,
∴BP=1,
(3)
PM BP
为定值, 过P '作P Q BD '⊥,连接P G ',P M ',P P '交GH 于点O ,如下图所示:
设5BP x PG P G P M ''====,
则3PO P O x '==,4GO x =, ∴1122
P Q PG GO PP ''⋅=⋅, ∴245
P Q x '=, ∴2275MQ GQ P G P Q x ''==
-=, ∴145
MG x =, ∴115PM PG MG x =-=
, ∴1111:5525
PM x x BP == 【点睛】
本题考查了动圆问题,矩形的性质,面积法的运用,三角函数,相似三角形的判定和性质等知识点,属于圆和矩形的综合题,难度中等偏上,利用数形结合思想和扎实的基础是解决本题的关键.
34.(1)DE 与⊙O 相切;理由见解析;(2)4.
【解析】
【分析】
(1)连接OD ,由D 为AC 的中点,得到AD CD =,进而得到AD=CD ,根据平行线的性质得到∠DOA =∠ODE =90°,求得OD ⊥DE ,于是得到结论;
(2)连接BD ,根据四边形对角互补得到∠DAB =∠DCE ,由AD CD =得到∠DAC =∠DCA =45°,求得△ABD ∽△CDE ,根据相似三角形的性质即可得到结论.
【详解】
(1)解:DE 与⊙O 相切
证:连接OD ,在⊙O 中
∵D 为AC 的中点
∴AD CD
=
∴AD=DC
∵AD=DC,点O是AC的中点
∴OD⊥AC
∴∠DOA=∠DOC=90°
∵DE∥AC
∴∠DOA=∠ODE=90°
∵∠ODE=90°
∴OD⊥DE
∵OD⊥DE,DE经过半径OD的外端点D ∴DE与⊙O相切.
(2)解:连接BD
∵四边形ABCD是⊙O的内接四边形
∴∠DAB+∠DCB=180°
又∵∠DCE+∠DCB=180°
∴∠DAB=∠DCE
∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°
∵AD CD
=,
∴∠ABD=∠CBD=45°
∵AD=DC,∠ADC=90°
∴∠DAC=∠DCA=45°
∵DE∥AC
∴∠DCA=∠CDE=45°
在△ABD和△CDE中
∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE。

相关文档
最新文档