辽宁省大连市2019年高中生学业水平考试模拟数学试题一参考答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中学生学业水平考试大连地区模拟测试(一)
数学参考答案与评分标准
说明:
一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.
四、只给整数分数,选择题和填空题不给中间分.
一、选择题
(1)(A );(2)(B );(3)(B );(4)(D );(5)(C );(6)(A );(7)(C );
(8)(B );(9)(D );(10)(A );(11)(D );(12)(C ).
二、填空题 13.40 14.34 15.2 16.32
三、解答题
17.解:由题意得22sin 2cos sin 2)(+=+=x x x x f , ···························3分 (Ⅰ)函数)(x f 的最小正周期ππ==2
2T .············································6分 (Ⅱ)当12sin -=x 时,)(x f 有最小值1,此时)(222Z k k x ∈-
=ππ,············8分 即)(4Z k k x ∈-=ππ,1)(min =∴x f ,此时x 的集合为⎭
⎬⎫⎩⎨⎧∈-=Z k k x x ,4ππ.····10分 18.证明:(Ⅰ),D E 分别为线段CB AB ,中点, AC DE //∴,AC ⊄平面PDE ,
⊂DE 平面PDE , ∴//AC 平面PDE .·················································5分 (Ⅱ)由(1)可知AC DE //,且AC AB ⊥,AB DE ⊥∴, PA ⊥平面ABC ,⊂DE 平面ABC ,PA DE ⊥∴,又PA AB A =,⊥∴DE 平面PAB .·················10分
19.解:(Ⅰ),,·······················································2分
则数列是首项为2,公比为2的等比数列,.····················5分
(Ⅱ),······························································6分
.····························································10分 12a =12n n a a +={}n a 1222n n n a -=⨯=2n n n b n a n =+=+()()()()()234551222324252S =+++++++++()()23451234522222=+++++++++()5155
22277212
+⨯-⨯=+=-
20.解:(Ⅰ)(2)cos cos 0a c B b A --=,
∴ 0cos sin cos )sin sin 2(=--A B B A C ,·
···········································2分 0)sin(cos sin 2=+-∴B A B C ,·······················································3分
A B C π+=-且0sin ≠C ,0sin cos sin 2=-∴C B C ,即21cos =B .··········4分 (0,)B π∈,3π
=∴B .································································5分 (Ⅱ)11sin 22
S ab C BD b ==,a b 37=∴,······································6分 由余弦定理a a ABC ac c a b 24cos 22222-+=∠-+=,01892=+-∴a a , 7,3==b a 或72,6==b a ,·····················································8分 又ABC 是锐角三角形,222b c a +<∴,3=∴a ,
233sin 21=∠=
∴ABC ac S .···························································10分 21.(本小题满分10分)
解:(Ⅰ)⎩
⎨⎧≥-+<++-=-⋅-+=a x a x a a x a x a x a x x x x f ,)1(,)1(2)1()(2,·····················2分 ()f x 在R 上单调递减,⎪⎩⎪⎨⎧≥+<+∴a a a 4
101,1-<⇒a .···································5分 (Ⅱ)由222<⇒+<a a a ,
当1-<a 时,)(x f 在R 上单调递减,则22)2()()(2min ++=+==a a a f x f a g , 当01<≤-a 时,此时22+<≤a a a ,a a >+4
1,)(x f 在[]a a x ,2∈上单调递减,在[]2,+∈a a x 上单调递增,则2min )()()(a a f x f a g ===,·
······················8分 当20<≤a ,)(x f 在[]2,2+a a 上单调递增,则()a a a f x f a g +===2
min 2)2()(, 综上,⎪⎩
⎪⎨⎧<≤+<≤--<++=20,201,1,22)(222a a a a a a a a a g .····················································10分。

相关文档
最新文档