四川省三台中学2021年高考数学高考数学压轴题 导数及其应用多选题分类精编附解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、导数及其应用多选题
1.函数()()3
2
0ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正
确的是( ) A .230b ac ->
B .()f x 在区间()12,x x 上单调递减
C .若()10af x <,则()f x 只有一个零点
D .存在0x ,使得()()()1202f x f x f x +=
【答案】ACD 【分析】
利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛
⎫
⎛⎫-- ⎪ ⎪⎝⎭⎝⎭
对称,可判断D 选项的正误. 【详解】
()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.
对于A 选项,由题意可知,关于x 的二次方程()2
3200ax bx c a ++=≠有两个不等的实
根,
则24120b ac ∆=->,可得230b ac ->,A 选项正确;
对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间
()12,x x 上单调递增,B 选项错误;
对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.
所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,
此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:
由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,
此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:
由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确;
对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223b
x x a +=-
,123c x x a
=, ()()()()()()()()3232
f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤
-++=-+-+-++++++++⎣⎦⎣⎦
()()()()()(322322
322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣
()()322223222a t tx b t x ct d =+++++,
取3b
t a
=-
,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫
⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
3
2
222223333b b b b a b c d f
a a a a ⎛⎫⎛⎫⎛⎫
⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭
,
所以,函数()f x 的图象关于点,33b b f a a ⎛
⎫
⎛⎫-
- ⎪ ⎪⎝⎭⎝⎭
对称, 1223b
x x a
+=-
,()()1223b f x f x f a ⎛⎫
∴+=- ⎪⎝⎭
,D 选项正确. 故选:ACD. 【点睛】
方法点睛:利用导数解决函数零点问题的方法:
(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;
(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.
2.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2
x x a
a
x e e
f x a a a -+⎛⎫=⋅=⋅ ⎪
⎝⎭
,其中a 为非零常数,
在此坐标平面上,过原点的直线与悬链线相切于点()()
00,T x f x ,则0
x a ⎡⎤
⎢⎥⎣⎦
的值可能为
( )(注:[]
x 表示不大于x 的最大整数)
A .2-
B .1-
C .1
D .2
【答案】AC 【分析】
求出导数,表示出切线,令0x t a
=
,可得()()110t t
t e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在
性定理可得021x a -<<-或012x
a
<<,即可求出. 【详解】
()2
x x
a
a
e e
f x a -+=⋅
,()
2
x x a
a
e e
f x --'∴=,
∴切线斜率
002
x x a
a
e e
k -
-=
,
()0
002
x x a
a
e e
f x a -+=⋅,
则切线方程为()000002
2x x x x a
a
a
a
e
e e e
y a x x --+--⋅=
-,
直线过原点,()0000022
x x x x a
a
a a
e e e e
a x --+-∴-⋅=
⋅-
令0x t a
=
,则可得()()110t t
t e t e --++=, 令()()()11x
x
h x x e x e -=-++,则t 是()h x 的零点,
()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,
()()x x h x x e e -'=-+,
当0x >时,()0h x '<,()h x 单调递减,
()1120h e -=>,()22230h e e -=-+<,
()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,
且根据单调性可得()h x 仅有这两个零点,
021x a ∴-<
<-或012x
a
<<, 02x a ⎡⎤
∴=-⎢⎥⎣⎦
或1. 故选:AC. 【点睛】
本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令
0x t a
=
,()()110t t t e t e --++=,求()()()11x x
h x x e x e -=-++的零点问题.
3.已知函数()3
2
f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ). A .函数()f x 一定存在极大值和极小值
B .若函数()f x 在1()x -∞,、2()x ,
+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形
D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】
首先求函数的导数2
()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333
a a a
f x f x f -
++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.
【详解】
A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,
令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,
∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,
+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223a
x x +=-
,1213
x x ⋅=-,易知12x x <,
∴213
x x -==≥
,B 对, C 选项,易知两极值点的中点坐标为(())33
a a f --,,又
23()(1)()333
a a a f x x x f -+=-+++-,
∴()()2()333
a a a
f x f x f -
++--=-, ∴函数()f x 的图像关于点(())3
3
a
a f --,成中心对称,C 对,
D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,
处切线方程为y x =-, 且3
y x
y x x =-⎧⎨=-⎩
有唯一实数解, 即()f x 在(0)0,
处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】
方法点睛:解决函数极值、最值综合问题的策略:
1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;
2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;
3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.
4.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2
⎡⎤-⎢⎥⎣
⎦上的平均变化率为
194
B .当1a =时,函数()f x 的图像与直线4
27
y =
有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称
D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】
运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,
先得出1x ,2x 为方程()2
3210x a x a -++=的两个实数根,结合韦达定理可分析D 选
项. 【详解】
对于A ,当4a =-时,()()()14f x x x x =-+,
则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()
119
123
192221412
⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;
对于B ,当1a =时,()()2
3212f x x x x x x =-=-+,
()()()2341311f x x x x x '=-+=--,
可得下表:
因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227
f =>,结合()f x 的单调性可知, 方程()427f x =
有两个实数解,一个解为1
3
,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()2
3
1211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦
, 则有()()()()()()3
3
211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,
()()()()()2121321f x x x a x x a x a x a '=--+--=-++,
令()0f x '=,可得方程()2
3210x a x a -++=,
因为()
()2
2
412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,
所以1x ,2x 为方程()2
3210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧
+=+⎪⎪⎨⎪=⎪⎩
,
则()()()()()()1211122211f x f x x x x a x x x a +=--+--
()()()()33
221212121x x a x x a x x =+-++++
()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦
()()()2221122121222123
3a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦
()()()()()2124221
2113
327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦
因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】
关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.
5.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有
()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )
A .21()x
x f x e
e x =--
B .2()1x
f x e x =+-
C .31,0
(),0x e x f x x x ⎧-≥=⎨-<⎩
D .42,0
()ln(1),0x x f x x x >⎧=⎨-≤⎩
【答案】ACD 【分析】
结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可
得到所求结论. 【详解】
条件①()00f =;
由选项可得:001(0)00f e e =--=,0
2(0)010f e =+-=,03(0)10f e =-=,
4()ln(10)0f x =-=,即ABCD 都符合;
条件②0()0()0x xf x f x >⎧'>⇔⎨
'>⎩,或0
()0
x f x <⎧⎨'<⎩;
即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; 对于21()x
x f x e
e x =--,则()()21()11212x x x x
f x e e e e =-+-=-',
由0x >可得,(
)()
120(1)1x x
f x e e '-=+>,即函数1()f x 单调递增;
由0x <可得,()()1
20(1)1x
x
f x e
e '-=+<,即函数1
()f x 单调递减;满足条件②;
对于2()1x
f x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1x
f x e x =+-在定义域上单调递增,不满足条件②;
对于31,0
(),0
x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,
3()1x f x e =-显然单调递增;满足条件②;
对于42,0()ln(1),0
x x f x x x >⎧=⎨
-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;
条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即
()()()()21220f x f x f x f x -=-->,
对于21()x
x f x e
e x =--,
()()2121222
11211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,
因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()(
)()22
2212
2211222x
x x x f x f x e e
e e x
x ----=--->
令()x
x
g x e e
x -=--,0x >,
所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()x
x
g x e e
x -=--在0x >上单调递增,所以()()00g x g >=,
即()()(
)22
2121120x
x f x f x e e
x -->-->,所以()()1211f x f x >满足条件③;
对于31,0(),0
x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x x
f x f x e x x e -=--=-+,
令()1x
h x e x =--,0x >,则()10x
h x e '=->在0x >上显然恒成立,
所以()()00h x h >=,则()()23231210x
f x f x e x --=>-,即()()3231f x f x >满足条
件③; 对于42,0
()ln(1),0
x x f x x x >⎧=⎨
-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,
令()()2ln 1u x x x =-+,0x >, 则()1
221101u x x
'=-
>-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:
求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利
用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)
6.已知函数()2
1ln 2
f x ax ax x =-+的图象在点()()11,x f x 处与点()()22,x f x 处的切线均平行于x 轴,则( )
A .()f x 在1,上单调递增
B .122x x +=
C .()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫
-∞-- ⎪⎝⎭
D .若16
3
a =
,则()f x 只有一个零点 【答案】ACD 【分析】
求导,根据题意进行等价转化,得到a 的取值范围;对于A ,利用导数即可得到()f x 在
()1,+∞上的单调性;对于B ,利用根与系数的关系可得121x x =+;对于C ,化简
()()121212x x x x f x f x ++++,构造函数,利用函数的单调性可得解;对于D ,将
16
3
a =
代入()f x ',令()0f x '=,可得()f x 的单调性,进而求得()f x 的极大值小于0,再利用零点存在定理可得解. 【详解】 由题意可知,函数()f x 的定义域为()0,∞+,且()211
ax ax ax a x x x
f -+=-+=',
则1x ,2x 是方程210ax ax -+=的两个不等正根,则21240
1
a a x x a ⎧∆=->⎪
⎨=>⎪⎩
,解得4a >, 当()1,x ∈+∞时,函数2
10y ax ax =-+>,此时()0f x '>,
所以()f x 在()1,+∞上单调递增,故A 正确;
因为1x ,2x 是方程210ax ax -+=的两个不等正根,所以121x x =+,故B 错误; 因为()()221212121112221111ln ln 22
x x x x f x f x x ax ax x ax ax a ++++=+
++-++- 111211
1ln 1ln 22a a a a a a a a
⎛⎫=+
++--=--+ ⎪⎝⎭, 易知函数()11
ln 2h a a a a
=-
-+在()4,+∞上是减函数,
则当4a >时,()()7
42ln 24
h a h <=--, 所以()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫
-∞-- ⎪⎝⎭
,故C 正确;
当16
3a =
时,()1616133f x x x '=
-+,令()0f x '=,得14x =或34
, 则()f x 在10,4⎛
⎫ ⎪⎝⎭
上单调递增,在13,44⎛⎫
⎪⎝⎭上单调递减,在3,4⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()f x 在1
4
x =
取得极大值,且104f ⎛⎫
< ⎪⎝⎭
,()2ln 20f =>, 所以()f x 只有一个零点,故D 正确. 故选:ACD. 【点睛】
关键点点睛:导数几何意义的应用主要抓住切点的三个特点: ①切点坐标满足原曲线方程; ②切点坐标满足切线方程;
③切点的横坐标代入导函数可得切线的斜率.
7.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是( ) A .若0a ≤,则函数()f x 没有极值 B .若0a >,则函数()f x 有极值
C .若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭
D .若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭
【答案】ABD 【分析】
先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断. 【详解】
解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x
'
-=-
=, 当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值, 又
当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞, ∴()f x 有且只有一个零点, 当0a >时,在10,
a ⎛
⎫
⎪⎝⎭
上,()0f x '<,()f x 单调递减,
在1,a ⎛⎫
+∞
⎪⎝⎭
上,()0f x '>,()f x 单调递增, ∴当1
x a
=
时,()f x 取得极小值,同时也是最小值, ∴min 1()1ln f x f a a ⎛⎫
==+
⎪⎝⎭
, 当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,
当x 趋近于+∞时,()f x 趋近于+∞, 当1ln 0a +=,即1
a e
=
时,()f x 有且只有一个零点; 当1ln 0a +<,即1
0a e
<<
时,()f x 有且仅有两个零点, 综上可知ABD 正确,C 错误. 故选:ABD . 【点睛】
方法点睛:函数零点的求解与判断方法:
(1)直接求零点:令()0f x =
,如果能求出解,则有几个解就有几个零点; (2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且
()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少
个零点;
(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
8.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1
f x x
'<,且()11f =,则下列结论正确的是( ) A .()2f e > B .10f e ⎛⎫> ⎪⎝⎭
C .()1,x e ∀∈,()2f x <
D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫
+> ⎪⎝⎭
- 【答案】BCD 【分析】
令()()ln F x f x x =-,求导得:'1
()()0F x f x x
'
=-
<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;
【详解】
令()()ln F x f x x =-,∴'1
()()0F x f x x
'
=-
<, ()F x ∴在(0,)+∞单调递减, (1)1f =,(1)(1)1F f ∴==,
对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误; 以B ,111(1)()110e
F F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭
⎝⎭
,故B 正确; 对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+,
(1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;
对D ,111,1,
,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭
()1ln ln f x x f x x ⎛⎫
⇒->+ ⎪⎝⎭
1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫
∈∴∈- ⎪⎝⎭,
1()2f x f x ⎛⎫
∴->- ⎪⎝⎭
1()20f x f x ⎛⎫
⇒-
+> ⎪⎝⎭
,故D 正确; 故选:BCD. 【点睛】
根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.
9.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x f
θ=,
()y g θ=,则下列说法正确的是( )
A .()x f θ=是偶函数,()y g θ=是奇函数;
B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;
C .()()1f
g θθ+≥在02πθ⎛⎤
∈ ⎥⎝
⎦
,上恒成立;
D .函数()()22t f g θθ=+.
【答案】ACD 【分析】
依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可
判断A 、B ;根据辅助角公式知()()4f g πθθθ⎛
⎫+=
+ ⎪⎝
⎭,再利用三角函数求值域可
判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可
得当1sin 2θ=
,cos θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】
由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos f
θθ=是偶函数,()sin g θθ=是奇函数,故A 正确;
对于B ,由正弦,余弦函数的基本性质可知,函数()cos f θθ=在()0,π上为减函数,函
数()sin g θθ=在0,
2π⎛
⎫
⎪⎝
⎭
为增函数,在,2ππ⎛⎫
⎪⎝⎭
为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦
,时,3,444π
ππθ⎛⎤
+
∈ ⎥⎝⎦
()()cos sin 4f g πθθθθθ⎛
⎫+=+=+∈ ⎪⎝
⎭,故C 正确;
对于D ,函数()()222cos sin2t f
g θθθθ=+=+,
求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+, 令0t '>,则11sin 2θ-<<
;令0t '<,则1
sin 12
θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤
⎢⎥⎣⎦上单调递增,在5,
66
ππ⎛⎫
⎪⎝⎭
上单调递减,
当6
π
θ=
即1sin 2θ=
,cos θ=时,函数取得极大值1222t =⨯=
又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,
所以函数()()22t f g θθ=+,故D 正确.
故选:ACD. 【点睛】
方法点睛:考查三角函数的值域时,常用的方法:
(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.
10.函数()ln f x x x =、()()f x g x x
'=
,下列命题中正确的是( ).
A .不等式()0g x >的解集为1,e ⎛⎫
+∞ ⎪⎝⎭
B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减
C .若函数()()2
F x f x ax =-有两个极值点,则()0,1a ∈
D .若120x x >>时,总有()()()22
12122
m x x f x f x ->-恒成立,则m 1≥ 【答案】AD 【分析】
对A ,根据()ln f x x x =,得到()()ln 1
f x x
g x x x
'+=
=
,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,
将函数()()2
F x f x ax =-有两个极值点,()ln 1
20x a x
+=
+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2
ln 2
m g x x x x =-,用
导数研究单调性. 【详解】
对A ,因为()()()ln 1
ln f x x f x x x g x x x
'+==
=
、, ()2ln x
g x x
-'=
, 令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;
令()0g x '<,得()1
x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫
== ⎪⎝⎭
, 故()g x 的图象如下所示:
数形结合可知,()0g x >的解集为1,e ⎛⎫
+∞ ⎪⎝⎭
,故正确;
对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数
()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;
对C ,若函数()()2
F x f x ax =-有两个极值点,
即()2
ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+,
要满足题意,则需()ln 2100x ax -+=+∞在,
有两根, 也即()ln 1
20x a x
+=
+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102
a <<. 故要满足题意,则1
02
a <<
,故错误; 对D ,若120x x >>时,总有()
()()2
212122
m x x f x f x ->-恒成立, 即
22
111222ln ln 22
m m x x x x x x ->-恒成立, 构造函数()2
ln 2
m g x x x x =
-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,
单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即
ln 1
x m x
+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确. 故选:AD. 【点睛】
本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.。