第九章 滴定分析法
第九章电位法和永停滴定法
第九章电位法和永停滴定法第一节:电化学分析法概述电化学分析(电分析化学):依据电化学原理,和物质的电化学性质建立的一类分析方法,即以试样溶液和适当电极构成化学电池,根据化学参数的强度或变化对被测组分进行分析的方法。
•电位法:–直接电位法–电位滴定法•电解法–电重量法–库伦法–库伦滴定法•电导法–直接电导法–电导滴定法•伏安法–极谱法–溶出法–电流滴定法优点:仪器简单、操作方便、易于微型化和自动化、分析速度快、选择性好、灵敏度高第二节:电位法基本原理化学电池原电池:电解池:原电池、电解池表示方法相界电位(金属电极电位):液接电位(扩散电位):盐桥:3%琼脂的高浓度KCl填充到一个U型管或者直管中构成。
指示电极和参比电极指示电极:电极电位值随着被测离子的活度(浓度)变化而改变的一类电极。
金属基电极、膜电极1.金属基电极a.金属-金属离子电极:第一类电极b.金属-金属难溶盐电极:第二类电极c.惰性金属电极:零类电极2.膜电极(离子选择电极)参比电极:在一定条件下,电位值不随溶液组成和浓度变化保持基本恒定的电极。
饱和甘汞电极、银-氯化银电极1.饱和甘汞电极:金属-金属难溶盐电极2.银-氯化银电极:第三节:直接电位法直接电位法:根据被测组分的电化学性质,选择合适的指示电极与参比电极,浸入待测溶液中组成原电池,测量原电池的电动势,根据能斯特方程求得待测溶液中被测组分活度的方法。
溶液pH的测定pH玻璃电极构造:由内参比电极、内参比溶液、玻璃膜、高度绝缘的导线和电极插头等部分组成。
响应机制:对H+选择性响应电极电位:\varphi=K-0.059pHpH玻璃电极的性能:1.转换系数:每改变一个pH单位,引起玻璃电极电位的变化值。
2.碱差与酸差:3.不对称电位:4.电极内阻:测量电动势,只允许有微小的电流通过,否则会引起很大误差。
5.使用温度:测量原理和方法直接比较法:用已知pH的标准缓冲溶液电动势来求未知溶液的电动势残余液接电位:饱和甘汞电极在标准缓冲溶液和待测溶液中可能产生不相等的液接电位,称为残余液接电位。
无机及分析化学第九章 配位滴定法
第六章
配位化合物
二、指示剂应具备的条件
1)MIn与In颜色明显不同,显色迅速,变色 可逆性好 2)MIn的稳定性要适当:KMY / KMIn >102 a. KMIn太小→置换速度太快→终点提前 b. KMIn 太大→置换难以进行→终点拖后或 无终点 3) In本身性质稳定,便于储藏使用 4)MIn易溶于水,不应形成胶体或沉淀
第六章
配位化合物
表观稳定常数K’稳越大,突跃范围越大。
cM=0.01mol· -1, L K’稳<108,无突跃。
第六章
配位化合物
溶液酸度
lgK’稳= lgK稳 – lgα
pH↑→酸效应系数α ↓ →K’稳↑ →突跃范围↑
第六章
配位化合物
金属离子被准确滴定的条件
lgcMK'稳≥6 若cM=0.01mol/L, lg(0.01×K'稳)≥6 则:lgK’稳≥8
CNK’NY稳<106
第六章
配位化合物
几种离子共存——M,N( N为干扰离子)
a. MY的允许最低 pH比NY的低:
N M
控制酸度, 减小K’NY
使 CNK’NY<106 ; CMK’MY>106
b. MY的允许最低 pH比NY的高:
第六章
配位化合物
3.钙指示剂(简称NN或钙红): 紫黑色粉末
终点:酒红→纯蓝
适宜pH:12.0~13.0(碱性区) pKa1=9.26 pKa2=13.67
H2In2pH<8
HIn3-+H+
pH=8~13
In4-+2H+
pH>13
酒红色
滴定分析法
滴定分析法3.2滴定分析法3.2.1 滴定分析法的特点与分类滴定分析法是将一种已知准确浓度的试剂溶液,通过滴定管滴加到被测物质的溶液中,获奖被测物质的溶液滴加到已知准确浓度的溶液中,直到所加的试剂溶液与被测物质按化学计量关系完全反应为止,根据所用试剂溶液的浓度和消耗的体积,计算被测物质含量的方法。
这种分析方法的操作手段主要是滴定,因此称为滴定分析法。
又因这一类分析方法是以测量容积为基础的分析方法,所以又称容量分析法。
已知准确浓度的试剂融液称为标准溶液(又称为滴定剂或滴定液)。
将标准溶液从滴定管中滴加到被测物质溶液中的操作过程称为滴定。
当加入的标准溶液中物质的量与被测组分物质的量恰好符合化学反应时所表示的化学计量关系时,称为反应达到化学计量点,亦称等量点或等当点。
许多滴定反应在到达化学计量点时外观上没有明显的变化,为了确定化学计量点的到达,在实际滴定操作时,常在被测物质的溶液中加入一种辅助试剂,借助于其颜色变化作为化学计量点到达的标志,这种能通过颜色变化指示剂到达化学计量点的辅助试剂称为指示剂。
在滴定过程中,指示剂发生颜色变化的转变点成为滴定终点。
化学计量点是根据化学反应的计量关系求得的理论值,而滴定终点是实际滴定时的测量值,只有在理想情况下滴定终点才能完全一致。
在实际测定中,指示剂往往不是恰好在到达化学计量点的一瞬间变色,两者不一定完全符合,这种由滴定终点与化学计量点不一定恰好符合而造成的分析误差称为终点误差或滴定误差。
它的大小取决于化学反应的完全程度和指示剂的选择是否恰当。
因此,为了减小终点误差,应选择合适的指示剂,使滴定终点尽可能接近化学计量点。
滴定分析法通常适用于被测组分的含量在1%以上的常量组分的分析,具有操作简便、快速、所用仪器简单、准确、价格便宜的特点。
一般情况下相对平均偏差在0.2%以下。
各测量值及分析结果的有效数字位数为四位。
根据标准溶液与被测物质间所发生的化学反应类型不同,将滴定分析法分为酸碱滴定法(又称中和法)、沉淀滴定法、配位滴定法和氧化还原滴定法四大类。
滴定分析
滴定分析分析化学是研究物质组成的测定方法与有关原理的一门科学。
它分为定性分析和定量分析两在部分。
定性分析的任务是确定物质的组成成分;定量分析的任务是在定性分析的基础上进一步确定各组成成分的相对含量。
定量分析通常可分为化学分析和仪器分析。
化学分析是以物质化学性质为基础的分析方法,它包括重量分析和滴定分析。
仪器分析是以物质的物理或物理化学性质为基础,应用特殊的检验仪器进行分析的方法。
滴定分析由于其简便、快速等特点且有足够的准确度,不仅在化学、化工领域有很大的实用性,医药卫生等工作中也有广泛的应用。
第一节滴定分析概念一、滴定分析的特点和方法滴定分析是通过“滴定”来实现的一种分析方法。
在滴定过程中,使用的已知准确的溶液称为标准溶液,被滴定的溶液叫做试样溶液。
当标准溶液与被测组成的反应恰好完全时,即为反应的理论终点,称为化学计量点附近发生的、容易观察到的变化来确定。
若反应本身无此种变化,就须借助指示剂。
指示剂所指示的反应终点称为滴定终点。
滴定分析法是基于标准溶液与被测组分之间发生化学反应时,它们的量之间存在一定的化学计量关系,利用标准溶液的浓度和所消耗的体积来计算被测物质含量的一种方法。
根据分析时所利用的化学反应不同,滴定分析又分为酸碱滴定法,氧化还原滴定法,配合滴定法和沉淀滴定法。
值得注意的是,并非所有的反应都可用于滴定分析,适合滴定分析的反应必须满足以下条件:第一,该反应必须按一定的反应式进行,即必须具有确定的化学计量关系;第二,反应必须能够定量地进行,通常要求达到99.9%以上;第三,必须有适当的方法确定反应的终点。
此外要求反应能较快地进行。
对于速度较慢的反应有时可通过加热或加入催化剂来加速反应。
二、滴定分析的操作程序(一)标准溶液的配制1.直接配制法直接称取一定量的基准物质,溶解后转入容量瓶中,稀释定容。
根据溶质的量和溶液的体积可计算出该溶液的准确浓度。
所谓基准物质是指那些能够直接用来配制溶液的物质。
仪器分析-电位滴定法
解: 将原始数项
24.10
减前项比体积差得到,例: 24.20
0.174 0.183 0.194
0.09 0.2
0.11 2.8
0.39
E 0.316 0.233 0.83 V 24.40 24.30
2 E V 2
体积(mL)
(V)
������
������2
由得到数据可以看出二级微商等
24.00
于零时所对应的体积在24.30~
24.10
24.40mL之间,准确值可以由内
0.174 0.183
0.09 0.2
0.11
插法计算出:
24.20
0.194
2.8 0.39
24.30
0.233
4.4
0.83
4.4 V终点 24.30 (24.40 24.30) 4.4 5.9
电位滴定分析法
直接电位法需要准确测量电池电动势,而电位滴定只需要 知道随滴定剂加入后电动势的改变值。因此液接电位、活 度系数和仪器校正等的误差对测量没有影响或影响甚小。
电位滴定分析法
酸碱滴定以玻璃电极为指示电极 氧化还原滴定以Pt为指示电极
沉淀滴定可采用Ag电极作指示电极 配合滴定以第三类电极为指示电极
电位滴定分析法
三种确定电位滴定终点的方法
(1)E-V曲线法:图(a) 突跃的中点(E-V 曲线中的转折点)即为电 位滴定终点。简单,准确性稍差。
(2)ΔE/ΔV - V曲线法:图(b) 一阶微商曲线上存在着极值点,该点对应着 E-V 曲线中的拐点。
(3)Δ2E/ΔV 2 - V曲线法:图(c)
Δ2E/ΔV 2二阶微商等于零处。
《无机与分析化学基础》第九章:酸碱滴定法
第九章 酸碱滴定法
学习目标
1.了解酸碱指示剂的变色原理、变色范围
及影响指示剂变色的因素。
2.掌握常用酸碱标准溶液的配制和标定方
法。
3.掌握酸碱滴定法的实际应用。
定义和实质
• 酸碱滴定法:利用酸碱间的中和反应来 测定物质含量的定量分析方法。
• 反应的实质:
H+ + OH- = H2O
百里酚蓝(第二次变色)
8.0~9.6
黄
蓝
8.9
0.1%乙醇(20%)溶液
三、影响指示剂变色范围的因素
1. 指示剂加入量多少影响变色敏锐程度(过多或过 少都不好);指示剂应适当少量。 2. 不同酸碱指示剂其变色范围和理论变色点不同。 3. 指示剂的变色范围受温度、溶剂性质影响。 4. 为辨于颜色的观察,通常使指示剂的颜色由无色 变有色,由浅色变深色。
围
100.1 0.02 101.0 20.20
0.1 1
0.02 0.20
9.70 后 10.70
计量点
(二)滴定曲线的特点 根据滴定过程中
各点的pH,同样
可以绘出强碱滴
定弱酸类型的滴
定曲线,如图4-
3所示。
比较用NaOH滴定液滴定同一浓度的HCl和HAc
溶液的滴定曲线,可看出NaOH滴定液滴定HAc
pH 1.00 2.30 3.30 4.30 7.00 9.70 10.7 0
突 跃 范 围
(二)滴定曲线的特点
以表中NaOH加 入量为横坐标, 溶液的pH为纵 坐标,作pH-V
曲线,即为强
碱滴定强酸的 滴定曲线。如 图所示。
在计量点±0.1%附近,即加入NaOH 从 19.98ml→20.02ml,由图4-1可看到曲线
滴定分析法中的四种滴定方式及有关计算
滴定分析法中的四种滴定方式及有关计算
介绍相关内容
滴定分析法是分析化学中一种常用的分析方法,它主要是利用一定量溶液滴定剂溶液,通
过对对应浓度反应液体滴定实现各种物质的分析,是常用的分析实验方法。
滴定分析法中有四种常用的滴定方式:
一种是定容滴定法。
它运用的原理是用一定的溶液滴定剂逐滴加入到被滴定溶液中,直至
产生指定颜色变化或达到预先设定的容量,在容量设定时需要准确测定滴定液的体积,以
指定颜色变化时需要准确比较滴定液颜色的变化,以确定滴定点,定容滴定的计算公式为:
被测物质的浓度=滴定液的滴定容量/测定体积
第二种是指示性滴定法。
通常使用该方法滴定的溶液中一般含有一种可指示的指示剂,它
的作用是在一定的pH范围内被完全消耗或被发色,这一变色作为滴定点,指示性滴定的
计算公式为:
被测物质的浓度=滴定液滴定容量/测定体积
第三种是非指示性滴定法,该滴定法通常使用滴定剂可通过结合和氧化还原反应形成物质,它的反应比较复杂,可以检测和分析它,例如硫酸锌-酸度指示剂和过氧乙酸钾-酸度指示剂,非指示性滴定的计算公式为:
被测物质的浓度=滴定液的滴定容量/测定体积
第四种是终点滴定法,主要是利用一定量溶液滴定剂溶液,在特定的反应滴定溶液量时反
应液会出现由先前的次级反应转变成终点反应的显著变化,被滴定物发生变色或改变电导率,以此作为滴定点,终点滴定法的计算公式为:
被测物质的浓度=滴定液的滴定容量/测定体积
以上就是滴定分析法中常见的四种滴定方式及有关计算的介绍。
只要对滴定分析法的原理
和具体的滴定方式有足够的认识,便可以更好的掌握滴定分析法,用来分析不同类型的物质。
第九章 氧化还原滴定法
第九章 氧化还原滴定法一 、内容提要本章讨论了氧化还原电对的电极电位计算,判断氧化还原反应次序的基本规则和氧化还原反应进行的程度,以及氧化还原滴定曲线和常用的指示剂,并重点阐述了碘量法和高锰酸钾法。
氧化还原滴定法是以氧化还原反应为基础,以氧化剂或还原剂作为标准溶液得滴定分析方法。
当两个氧化还原电对的电极电位不相等时,一般来说,电位高的电对的氧化型可能氧化电位低的电对的还原型。
电对的电极电位可用Nernst 方程式计算:式中的E ox/Red 为电对Ox/Red 的电极电位,E 0ox/Red 为Ox/Red 的标准电极电位;n 为电对氧化还原半反应(半电池反应)中转移的电子数;a ox ,a Red 为电对Ox/Red 氧化型和还原型的活度。
当考虑离子强度和副反应对电对的影响,以浓度C 代替活度进行电极电位的计算时,应采用下式:式中'0Re ,dOx E 为电对Ox/Red 的条件电极电位,亦称克式量电极电位或式量电极电位。
当无电对的'0Re ,dOx E 时,可用下式对电对的电极电位进行计算:(近似式) 式中[Ox],[Red] 为电对Ox/Red 氧化型和还原型的平衡浓度。
判断氧化还原反应次序的基本规则是:电极电位相差最大的两电对的氧化型、还原型首先进行反应。
氧化还原反应进行的程度,可通过下式进行定性的判断:(25℃) Oxdd Ox d Ox a a nF RT E E Re 0Re ,Re ,log 303.2-=Oxdd Ox d Ox C C nF RT E E Re '0Re ,Re ,log 303.2-=][][Re lg 05915.00)Re ,()Re ,(Ox d n E E d Ox f d Ox f -=059.0log '0E m n K ∆⨯=式中的n ,m 为氧化还原半反应中转移的电子数;'0E 为两电位的条件电极电位之差;K 为氧化还原反应的平衡常数。
滴定分析
滴定分析法中的计算
滴定分析计算的依据和基本公式 (1)滴定剂与被滴定物质之间的计量关系 设滴
定剂A与被滴物质B有下列关系: aA+bB=cC+dD 当滴定恰好到达化学计量点时,滴定剂A的物质 的量n(A)与被滴物质B的物质的量有下列关系: n(A):n(B)=a:b 故有 n(A)=a*n (B) /b或,n(B)=b*n (A) /a
2. 指示剂的变色范围和变色点
c(In-)=c(HIn)时, pH=pKHIn, 酸色和碱色的等量成
分混合色, 称为指示剂的理论变色点
c(In-)=c(HIn) ≤ 1/10时, 则pH≤ pKHIn–1,酸式色;
c(In-)=c(HIn) ≥ 10时,则pH≥ pKHIn+1,碱式色 ; 1/10< c(In-)=c(HIn) <10时,酸式和碱式的混合色
容量滴定分析
滴定分析法概述
滴定分析:将一种已知准确浓度的试剂 滴定管 滴定剂 溶液,滴加到一定体积的被测物质的
溶液中,直到所加的试剂与被测物质
按化学计量关系定量完全反应为止, 然后根据标准溶液的浓度和体积,计
算出被测物质的含量。
被滴定溶液
滴定分析法
这种已知准确浓度的试剂溶液称为滴定液。 将滴定液从滴定管中加到被测物质溶液中的过
沉淀滴定法
沉淀滴定法是以生成沉淀的化学反应为基础的
一种滴定分析法 沉淀滴定法是根据沉淀发应建立的滴定方法。 虽然形成沉淀的反应很多,但是能够用来做滴 定分析的却很少。其原因是:很多沉淀没有固 定的组成;对构晶离子的吸附现象及与其他离 子共沉淀造成较大误差;有些沉淀的溶解度比 较大,在化学计量点时反应不够完全;很多沉 淀反应速率较慢,尤其是一些晶形沉淀,容易 产生过饱和现象;缺少合适的指示剂等。应用 最多的沉淀滴定法是银量法
配位平衡和配位滴定分析
第九章 配位平衡和配位滴定分析一、本章要点1. 了解配合物的定义、组成和结构特点。
2. 理解配合物价键理论的主要观点,并解释一些配合物的结构和性质。
3. 理解配位平衡常数的意义及其有关的计算。
4. 了解螯合物EDTA 的特点及其应用。
5. 了解溶液中各级配合物的分布,掌握副反应系数,即酸效应、酸效应系数和配位效应、配位效应系数和条件稳定常数的基本概念。
6. 掌握条件稳定常数与绝对稳定常数、酸效应系数、配位效应系数的关系。
7. 掌握配位滴定的基本原理,影响配位滴定曲线突跃大小的因素、直接准确滴定的条件及配位滴定的适宜酸度范围。
8. 掌握金属指示剂的作用原理、金属指示剂的选择依据,常用的铬黑T 和钙指示剂的使用。
了解金属指示剂的封闭和僵化现象及消除原理。
9. 掌握干扰离子的判断条件,控制溶液的酸度排除干扰离子和利用掩蔽法、解蔽法提高选择性的方法。
10. 掌握EDTA 标准溶液的配制与标定以及配位滴定法的应用。
二、示例解析例1 命名下列配合物,并指出中心离子,配位体,配位数及配离子电荷。
])([42OH Zn K ,253])([Cl Cl NH Co ,3243])()([CO Cl NO NH Pt例2. 指出下列配合物中的配离子、中心离子及其配位数。
(1)3KNO 2·Co(NO 2)3; (2)Co(CN)3·3KCN ; (3)2Cu(CN)2·Fe(CN)2; (4)2KCl ·PtCl 2; (5)KCl ·AuCl 3; (6)CrCl 3·4H 2O; 解例3. 命名下列配合物,并指出配离子和中心离子的电荷。
(1)[Cu(NH3)4](OH)2; (2)[CoCl(NO2)(NH3)4]+;(3)K3[Co(NO2)6]; (4)[CrBr2(H2O)4]Br·2H2O;(5)[Cr(OH)(C2O4)(en)(H2O)].例4. 已知有两种钴的配合物,它们具有相同的分子式Co(NH3)5BrSO4,其间区别在于第一种配合物的溶液中加BaSO4产生沉淀,加AgNO3时不产生AgBr沉淀,而第二种配合物与此相反。
滴定分析法概论
(2)佛尔哈德法 佛尔哈德法 指示剂, 为标准溶液, 以NH4Fe(SO4)2为 指示剂,NH4SCN为标准溶液, 为标准溶液 离子等。 直接滴定Ag 返滴定Cl 直接滴定 +,返滴定 -、Br-、I-离子等。终点颜色血 红色 滴定条件( 酸度控制在 酸度控制在0.1~ 滴定条件(1)酸度控制在 ~1.0mol/L (2)指示剂用量 3+的浓度在 指示剂用量Fe 的浓度在0.015mol/L以上 指示剂用量 以上
2MnO4- + 5C2O42- + 16H+ = 2 Mn2+ +10CO2+ 8H2O
酸碱滴定基本原理
滴定曲线( ):以溶液的 为纵坐标, 滴定曲线(titration curve):以溶液的 为纵坐标, ):以溶液的pH为纵坐标 所滴入的滴定剂的物质的量或体积为横坐标作图。 所滴入的滴定剂的物质的量或体积为横坐标作图。 突跃范围( ):α 1.001之间 突跃范围(titration jump):α在0.999 至1.001之间 ): 时的pH pH值 pKa应落在突跃范围内 应落在突跃范围内, 时的pH值。指示剂的 pKa应落在突跃范围内,此时滴定 误差在±0.1%。 误差在±0.1%。 用浓度为0.1000 mol/LNaOH溶液滴定相同浓度的 NaOH溶液 用浓度为 NaOH溶液滴定相同浓度的 20.00mL HCl。 。
(一)直接滴定: 用标准溶液直接滴定被测物质 直接滴定
凡能满足滴定分析对化学反应要求的化学反应都可用此法
(二)返滴定法( 又称剩余量滴定法或回滴法 ): 返滴定法 :
在被测物质中加入已知量且过量的标准溶液, 待与被测物质 在被测物质中加入已知量且过量的标准溶液 反应完全后, 再用另一种标准溶液返滴剩余的前一种标准溶液. 反应完全后 再用另一种标准溶液返滴剩余的前一种标准溶液 被测物质: 标准溶液:( 如: 被测物质 CaCO3 (s) 标准溶液 HCl ) 、NaOH CaCO3+HCl( 定量 1V1 ,过量 →H+( 剩余量 ) 定量c 过量) 过量 ↑ NaOH( c2V2)
滴定分析法概论
滴定反应的配制与滴定操作
滴定反应配制
根据实验要求,配制适当的滴定反应体系,包括滴定剂、指示剂、缓冲液等。
滴定操作
将样品溶液加入滴定反应体系中,按照规定的速度滴加滴定剂,观察指示剂的变化情况,记录滴定量和时间。
数据记录与处理
数据记录
详细记录实验过程中的数据,包括样品质量、滴定量、时间、温度等。
数据处理
滴定分析法概论
汇报人: 日期:
目 录
• 滴定分析法简介 • 滴定分析法的基本原理 • 滴定分析法的实验操作流程 • 滴定分析法的数据分析方法 • 滴定分析法的优缺点及改进方向 • 滴定分析法在各领域的应用案例
01
滴定分析法简介
滴定分析法的定义
滴定分析法是一种常用的化学分析方法,通过滴定计量液体中的组分含量,实现 对样品的分析。
氧化还原滴定法主要利用氧化还原反 应进行计量,适用于测定具有氧化还 原性质的物质含量。
滴定分析法的应用范围
滴定分析法广泛应用于化学、环境、食 品、医药等领域,用于测定物质含量、 成分分析等。
在医药领域中,滴定分析法可用于药物 成分含量测定、药效研究等。
在食品领域中,滴定分析法可用于检测 食品中的添加剂、营养成分等。
环保与废弃物处理
滴定分析法可用于对化学工业产生的废弃物进行检测和定量分析, 帮助企业实现环保和废弃物处理。
在食品工业领域的应用案例
食品添加剂的检测
滴定分析法可用于对食品添加剂进行准确检测,如对糖、盐、酸等 添加剂的含量进行测定,从而确保食品的口感和质量。
营养物质的定量分析
滴定分析法可对食品中的营养成分进行定量分析,如蛋白质、脂肪 、维生素等,为食品科研和开发提供数据支持。
土壤的化学分析
第九章 沉淀溶解平衡与沉淀滴定
(三)溶度积规则的应用
1.控制条件就可以分离不同的离子。如果溶液中同时含有数
种离子,当加入某种试剂时,它可能与溶液中的几种离子都
发生反应而产生沉淀;离子积Q的数值首先达到溶度积的难 溶电解质先析出沉淀,离子积Q的数值后达到溶度积的就后 析出沉淀。这种先后沉淀的现象,叫做分步沉淀。利用分步 沉淀可以达到分离离子的目的。
M(OH)n(s) Mn+ + nOH若c(Mn+)=1mol /L,则氢氧化物开始沉淀时OH-的最低浓度为:
c(OH ) n K sp ( M (OH ) n )
Mn+沉淀完全(溶液c(Mn+) 10-5mol /L)时,OH-的最低浓度为:
c(OH ) n K sp (M(OH) n ) 10 5
知识窗: 根据沉淀的物理性质,粗略地将沉淀分为晶形沉淀和无定
形沉淀。如果聚集速度大,定向速度小,得到非晶形沉淀;反
之,如果聚集速度小,定向速度大,则得到晶形沉淀。所谓聚 集速度是指由离子聚集成晶核,晶核长大生成沉淀微粒的速度;
定向速度则是指聚集的同时,构晶离子在一定晶格中定向排列
的速度。沉淀的形成经过晶核形成和晶核长大两个过程。
目前用得较广的是生成难溶银盐的反应,例如: Ag+ + Cl- = AgCl Ag+ + SCN- = AgSCN 这种利用生成难溶银盐反应的测定方法称为“银量法”,可以 测定Cl-、Br-、I-、Ag+、CN-、SCN-等离子。
莫尔法 银量法(根据滴定方式、滴定 条件和选用指示剂的不同) 佛尔哈德法 法扬司法
例1:已知BaSO4在298.15K时的溶度积为1.08×10-10,求在该温 度下它的溶解度。 解: 设BaSO4的溶解度(S)为x mol/L在其饱和溶液中存在有下列 平衡: BaSO4 (s) Ba2+ + SO42平衡时浓度(mol/L) x K sp ( BaSO4)= [Ba2+]· c[SO42-]
滴定分析法
6m(KIO3 ) c( Na 2S2O3 ) M (KIO3 )V ( Na 2S2O3 )
22
例5
1 2 2 c (S2 O3 ) V (S2O3 ) M (K 2Cr2O 7 ) = 6 ms 1 0.2000mol L1 0.02500L 294.2g mol 1 = 6 0.5000g
= 49.03%
24
3. 间接滴定法
例: 测人体血液中的含钙量,先取2.00 mL血液样品,稀释后用(NH4)2C2O4溶 液处理,使Ca2+生成CaC2O4 沉淀,将 沉淀过滤洗涤后溶解于强酸中,然后用 0.0100 mol· -1 的KMnO4标准溶液滴定, L 用去1.20 mL。试计算c(Ca2+)。
例2 配制1L的0.1mol · -1的NaOH溶液,需称固 L 体NaOH多少克?{M(NaOH)= 40 g · -1} mol
16
例3
准确称取8.495g AgNO3固体,定量转移到 500mL的容量瓶中,求c(AgNO3)。 已知{M(AgNO3)= 169.9 g · -1} mol
量方程
差;
3
2HCl+Na2CO3=2NaCl+H2CO3
滴定管 滴定剂 化学计量点(sp) Stoichiometric point 滴定终点(ep) End point 终点误差 (Et )
被滴定溶液
4
二. 滴定分析的方法
第九章化学分析法第五节 滴定终点的确定方法
一、指示剂法
(一)指示剂的作用原理
●定义 指示剂是滴定分析中为确定滴定终点加入的变色敏锐的
辅助试剂。是有一定特性的有机试剂
●类型 按用途可分为
酸碱指示剂(酸碱滴定中pH检测)
金属指示剂(配位滴定中pM检测)
氧化还原指示剂(氧化还原滴定中电极电势的检测)
●作用原理 用途和类型不同,作用原理也不同。例MnO4-,I2
示例 铬黑T(eriochrome black T,EBT)作指示剂滴Ca2+, Mg2+,但Al3+,Fe3+,Co2+,Ni2+,Cu2+封闭EBT
消除方法
•分离除去(量多时)
•加掩蔽剂掩蔽封闭金属指示剂的离子
2023/2/20
6
●僵化
现象 M-In配合物溶解度很小,故与EDTA的置换反应速度相 当缓慢而使终点拖长的现象称指示剂的僵化 示例 用PAN(-pyridyl--azonaphthol,-吡啶基--偶氮萘酚) 作指示剂,温度较低时易发生僵化 消除方法
2023/2/20
2
酚酞:三苯甲烷类,变色范围: 8-10 ,无色变红色 甲基橙:偶氮类结构,变色范围: 3.1--4.4 ,黄色变橙红色。
2023/2/20
3
具有氧化还原性质,其氧化态和还原态具有不同颜色,通式为:
In(Ox) ne ==In(Red)
氧
化 还 原
E
E
In
/
0.059 z
lg
2023/2/20
11
二、仪器分析法
●指示剂的利弊
利 操作简便,不需要特殊设备,使用广泛 弊 不适用于有色溶液或有沉淀溶液的滴定;有些滴定不能用 指示剂法指示滴定终点
沉淀滴定法
(二)滴定条件
1、溶液的酸度:酸性 0.1 – 1 mol/L 2、剧烈摇动,降低吸附 3、干扰:强氧化剂氧化SCN-,氮的低价氧化物与SCN-形 成红色NOSCN,铜盐、汞盐与SCN-反应生成沉淀。
(三)应用范围
1、直接滴定法测定:Ag+ 2、返滴定法测定:Cl- , Br , I- , SCN- , PO43- ,AsO433、返滴定法测Cl-时:Cl- + Ag+ = AgCl ↓白, Ksp1=1.810-10 Ag+ + SCN- = AgSCN ↓白, Ksp2=1.010-12 SCN- + Fe3+ = FeSCN2+ 红, K=138 Ksp2 < Ksp1 将发生: AgCl+ SCN- = AgSCN + Cl- ,使终点不 明确
([ FeSCN 2 ]ep [ SCN ]ep [ Ag ]ep ) 100% 100% C AgNO 3 2
3.1 % 0.1000/ 2
2.返滴淀法
此法是首先向试液中加入已知量且过量的硝酸 银的标准溶液,使之充分反应,再加入铁铵矾指 示剂,用SCN-标准溶液返滴定剩余的Ag+
Ksp 1.8 1010
Ksp 2.0 1012
§ 8-2 确定终点的方法
AgCl的溶解度:
Ag2CrO4的溶解度:
S1 Ksp 1.8 10
10
1.3 10 mol / L
5
S2 3 Ksp 3 2.0 1012 7.9 105 mol / L
4、返滴定法测I-时,指示剂需在加入过量的Ag+后加入,以免发 生
2I- + Fe3+ = Fe2+ + I2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖 3 南 农 业 大 学 应 用 化 学 系
K a3 3.2 1012 107
不能被滴定
第九章 滴定分析方法
无 机 (2) 多元碱的滴定 及 多元碱的滴定与多元酸的滴定相似,滴定判据中的 Ka 分 析 换成 Kb 即可。 化 学 湖 南 农 业 大 学 应 用 化 学 系
例题2 Na 2CO3 的滴定
2 CO3 +H 2O=HCO3 +OH HCO3 +H 2O=H 2CO3 +OH
K b 1.8 104 1 K b2 2.38 108
第九章 滴定分析方法
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
第九章 滴定分析方法
无 机 4 应用示例 及 分 (1) 混合碱的测定(双指示剂法) 析 a. Na2CO3 与 NaHCO3 混合碱的测定 化 学 HCl标液滴定 湖 南 Na2CO3 + NaHCO3 农 V1 0 业 大 酚酞终点 NaHCO3 NaHCO3 学 V1 V2-V1 应 用 甲基橙终点 H2O + CO2 化 学 系
20.00 19.98 pK a lg 0.1000 7.74 19.98
第九章 滴定分析方法
无 机 及 分 析 化 学
3 理论终点时 溶液为0.05mol L -1 NaAc c(OH- ) K b c(Ac ) mol L-1 5.6 1010 0.050 00 mol L-1 5.34 106 pH 14 pOH 8.72
湖 南 4 理论终点后 当加入VNaOH 20.02mL Er 0.1% 农 业 pH 9.70 大 学 可见,该滴定的滴定突跃范围 7.74~9.70,选择酚酞、 应 用 百里酚酞作指示剂 化 学 系
第九章 滴定分析方法
无 结合强酸滴定强碱来看,强碱不变,强酸变为弱酸,滴 机 及 定突跃范围在酸性区间内缩小,可见滴定突跃范围与酸的强 分 析 度有关。酸的强度变小时,滴定突跃范围缩小,可供选择的 化 指示剂减少,当酸的强度小到某一程度时( K 10-9 ),就 a 学 无法找到合适的指示剂来指示滴定终点. 湖 南 考虑浓度和强度两者的影响,一元弱酸能否被强碱直接准 农 业 确滴定的判据: 大 -8 学 c(HA) Ka ≥ 10 应 用 一般酸碱滴定中所用的浓度为0.1mol· -1,则判据简单地为: L 化 学 Ka ≥ -7 10 系
9.1.3 酸碱滴定法的应用
1. HCl标准溶液的配制(间接法/标定法)
(1)粗配
(2)标定 基准物质:硼砂 指示剂:甲基红 2. NaOH标准溶液的配制(间接法/标定法)
(1)粗配
(2)标定 基准物质:邻苯二甲酸氢钾 指示剂:酚酞
第九章 滴定分析方法
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
3. 酸碱滴定中 CO2 的影响 CO2 的影响取决于滴定终点时的pH值。 pH<6.4,CO2 以 H2CO3 的形式存在; 6.4< pH<10.3,CO2 以 HCO3- 的形式存在;
pH>10.3,CO2 以 CO32- 的形式存在。
若滴定终点在弱酸性区间(pH<6.4),CO2 无影响; 若滴定终点在弱碱性区间(6.4< pH<10.3), CO2 有影响。
第九章 滴定分析方法
无 机 (1) 多元酸的滴定 及 滴定判据: 分 K a 析 1)若 cK ≥10-8,cK ≥10-8,且 ≥104 a a K a 化 学 此二元酸可被分步滴定,形成两个明显的突跃 湖 K a 南 2)若 cK ≥10-8,cK ≥10-8,且 <104 a a K a 农 业 此二元酸一次被滴定,形成一个的突跃 大 学 K a 应 3)若 cK ≥10-8,cK <10-8,且 ≥104 a a 用 K a 化 第二步解离的H+不干扰第一步滴定,可以准确滴定 学 至第一个计量点。 系
第九章 滴定分析方法
无 机 (2) 强酸滴定一元弱碱 及 同样,可以得到其滴定突跃范围(酸性区间),只能 分 析 选用在酸性区间变色的指示剂,如甲基红、甲基橙等。 化 同样,一元弱碱能否被强酸直接准确滴定的判据: 学 湖 -8 南 c(B) Kb ≥ 10 农 业 -7 大 Kb ≥ 10 学 应 用 3 多元酸(碱)的滴定 化 学 系
第九章 滴定分析方法
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
1) 滴定开始前 2) 理论终点前
pH = 1.00
1
当加入VNaOH 18.00mL 时
(20.00 18.00) 0.1000 c(H ) 5.26 103 mol L-1 38.00 pH 2.28 2 当加入VNaOH 19.98mL时
分类:
根据反应类型不同分为: 酸碱滴定法 配位滴定法 氧化还原滴定法 沉淀滴定法
第九章 滴定分析方法
无 机 9.1 酸碱滴定法 及 分 9.1.1 酸碱指示剂 析 化 1 指示剂的变色原理 学 酸碱指示剂常为有机弱酸或有机弱碱。 湖 南 HIn H In 农 业 酸式色 碱式色 大 学 应 c(HIn) c(H ) c(H ) c(In ) Ka (HIn) 用 c(In ) Ka (HIn) c(HIn) 化 学 系
第九章 滴定分析方法
无 机 K a 及 (2)K a 1.15 107 107, 104 ,K a 107 形成第二个突跃 Ka 分 析 终点产物为HAsO2 c(H ) K K 6.07 1010 4 a a 化 pH 9.22 选择酚酞作指示剂 学
1 1 2 2 1 1 2 2 1 1 2 2
第九章 滴定分析方法
无 K a 4)若 cK a ≥10-8,cK a <10-8, <104 机 Ka 及 第二步解离的H+干扰第一步滴定,此二元酸不能被准 分 析 确滴定 化 学 例题1: NaOH 滴定 H3AsO4
1 1 2 2
湖 南 农 业 大 学 应 用 化 学 系
V1 V2
第九章 滴定分析方法
无 机 及 Na2CO3 与 NaHCO3 混合碱测定的结果计算: 分 析 化 学 1 c(HCl) 2V1 M (Na 2CO3 ) 湖 (Na 2CO3 ) 2 南 ms 农 业 大 c(HCl) (V2 V1 ) M (NaHCO3 ) 学 (NaHCO3 ) 应 ms 用 化 学 系
第九章 滴定分析方法
无 滴定突跃范围的大小与滴定剂和被滴定溶液的浓度有 机 及 关,浓度越小,滴定突跃范围越小。 分 常选择标准溶液的浓度在 0.1~0.01mol· -1 之间。 L 析 化 学 2. 一元弱酸(碱)的滴定 湖 这一类型的滴定反应为 南 Ka Kt OH- HA A- H2O 农 Kw 业 + + Kb 大 H B HB Kt 学 Kw 应 由于此时的 Kt值较前述类型小,故反应的完全程度 用 化 不及强碱强酸滴定。 学 系
第九章 滴定分析方法
无 c(In ) 机 pH=pK a lg 及 c(HIn) 分 析 当 c(In ) > c(HIn) ,理论上为碱式色, pH>pKa 化 当 c(In ) < c(HIn) ,理论上为酸式色, pH<pKa 学 当 c(In ) = c(HIn) ,理论上为混合色, =pKa (理论变色点) pH 湖 南 c(In ) 规定 当 ≥10时 碱式色 pH≥pK a 1 农 c(HIn) 业 c(In ) 1 大 当 ≤ 时 酸式色 pH≤pK a 1 c(HIn) 10 学 应 1 c(In ) 当 10时 混合色 pK a 1 pH pK a 1 用 10 c(HIn) 化 此范围为指示剂的理论变色间隔, 学 系
第九章 滴定分析方法
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
第九章
பைடு நூலகம்
滴定分析方法
第九章 滴定分析方法
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
滴定分析法:
将已知准确浓度的标准溶液,滴加到被测溶液中(或者将被 测溶液滴加到标准溶液中),直到所加的标准溶液与被测物 质按化学计量关系定量反应为止,然后测量标准溶液消耗的 体积,根据标准溶液的浓度和所消耗的体积,算出待测物质 的含量
第九章 滴定分析方法
无 机 及 分 析 化 学
b. Na2CO3 与 NaOH混合碱的测定 HCl标液滴定 NaOH V1-V2 H2O+NaCl 0 H2O+NaCl + Na2CO3 V2 NaHCO3 V2 H2O + CO2 V1
+
19.98 20.00 此时滴定的相对误差 Er 100% 0.1% 20.00 20.00 19.98 0.1000 5.00 105 mol L1 + c(H ) 39.98 pH 4.30
3) 理论终点时 VNaOH=20.00mL pH =7.00 4) 理论终点后 当加入VNaOH=20.02mL,此时的相对误差 Er = +0.1% pH = 9.70
三级解离常数分别为 6.5×10-3,1.15×10-7,3.2×10-12
分析 : K a 1 K
a2
1
K a 6.5 103 107 1
104
形成第一个突跃
终点产物为H 2 AsO4
c(H ) K a K a2 2.73 105 1
pH 4.56 选择甲基红作指示剂
1) 滴定开始前溶液为0 1000mol L 的HAc溶液 c(H ) Ka c(HAc) mol L1 1.32 103 pH 2.89