微积分 中常见的基本公式
高等数学常用微积分公式
高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
微积分基本公式16个
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
微积分常用公式
微积分常用公式微积分常用公式微积分是数学的一个重要分支,是研究变化率和积分的学科。
在微积分的学习中,掌握常用公式是非常关键的。
下面,我将介绍一些微积分常用公式。
导数公式导数是描述一个函数在某一点上的变化率的指标,它的定义为:$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$导数公式如下:1. 常数函数的导数为0$$\frac{d}{dx}(C)=0$$2. 变量自己的导数为1$$\frac{d}{dx}(x)=1$$3. 幂函数的导数为幂次减一与系数的积$$\frac{d}{dx}(x^n)=n\times x^{n-1}$$4. 指数函数的导数为本身与常数的积$$\frac{d}{dx}(e^x)=e^x$$5. 对数函数的导数为自变量的导数与自变量的倒数的积$$\frac{d}{dx}(\ln x)=\frac{1}{x}$$6. 三角函数的导数公式如下:$$\frac{d}{dx}(\sin x)=\cos x$$$$\frac{d}{dx}(\cos x)=-\sin x$$$$\frac{d}{dx}(\tan x)=\sec^2 x$$$$\frac{d}{dx}(\cot x)=-\csc^2 x$$7. 复合函数的导数公式如下:如果$y=f(u)$和$u=g(x)$都可导,则复合函数$y=f(g(x))$的导数为$$\frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}$ $8. 链式法则$$\frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}$ $积分公式积分是微积分的另一个重要概念,是求曲线下面的面积的方法。
积分有两种形式:不定积分和定积分。
下面,我将介绍一些积分公式。
1. 常数积分公式$$\int Cdx=Cx+C_1$$2. 幂函数积分公式$$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$$3. 指数函数积分公式$$\int e^xdx=e^x+C$$4. 对数函数积分公式$$\int \frac{1}{x}dx=\ln x+C$$5. 三角函数积分公式$$\int \sin xdx=-\cos x+C$$$$\int \cos xdx=\sin x+C$$$$\int \tan xdx=-\ln |\cos x|+C$$$$\int \cot xdx=\ln |\sin x|+C$$6. 反三角函数积分公式$$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$$$$\int \frac{1}{1+x^2}dx=\arctan x+C$$前置公式1. 两点之间的距离公式设平面直角坐标系上的两点$A(x_1,y_1)$和$B(x_2,y_2)$,则两点之间的距离公式为:$$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$2. 导数定义公式导数的定义为:$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$3. 极限定义公式$\lim_{x\to a}f(x)=L$的定义为:对于任意给定的正数$\epsilon$,总存在正数$\delta$,使得当$x$满足$0<|x-a|<\delta$时,就有$|f(x)-L|<\epsilon$4. 常用三角恒等式$$\sin^2x+\cos^2x=1$$$$1+\tan^2x=\sec^2x$$$$\cot^2x+1=\csc^2x$$总结微积分是数学的一个重要分支,掌握常用公式对于学习微积分十分关键。
微积分的基本公式
微积分的基本公式共有四大公式: 1.牛顿-莱布尼茨公式,又称为微积分基本公式 2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分 3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关这四大公式构成了经典微积分学教程的骨干,可以说起到提纲挈领的作用,其实如果你学习了外代数,又称为格拉斯曼grassmann代数,用外微分的形式来表达,四个公式就是一个公式,具有统一的形式,其余的导数公式,积分公式,罗尔中值定理,拉格朗日中值定理,柯西中值定理,泰勒级数、麦克劳林展开式,当然也是基石了。
微积分的全部公式
微积分的全部公式微积分是数学的一个重要分支,研究函数的变化规律和各种变化量之间的关系。
微积分的公式是研究微积分的基础,下面将介绍一些微积分的重要公式。
1. 导数的定义公式:导数可以理解为函数在某一点上的变化率,用数学符号表示为f'(x)或者dy/dx。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f(x)是函数,h是无穷小的增量。
2. 导数的基本公式:导数具有一些基本的运算规则,包括常数因子法则、求和法则、乘积法则和商法则。
这些公式可以简化对函数的导数计算。
- 常数因子法则:如果f(x)是一个函数,k是一个常数,则有(d/dx)(k*f(x)) = k*(d/dx)f(x)- 求和法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)+g(x)) = (d/dx)f(x) + (d/dx)g(x)- 乘积法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)*g(x)) = f(x)*(d/dx)g(x) + g(x)*(d/dx)f(x)- 商法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)/g(x)) = [g(x)*(d/dx)f(x) - f(x)*(d/dx)g(x)] / [g(x)]^23. 积分的定义公式:积分可以理解为函数在区间上的累积和,用数学符号表示为∫f(x)dx。
积分的定义公式为:∫f(x)dx = F(x) + C其中,F(x)是函数f(x)的原函数,C是常数。
4. 积分的基本公式:积分也具有一些基本的运算规则,包括常数法则、线性法则、分部积分法和换元积分法。
这些公式可以简化对函数的积分计算。
- 常数法则:∫k*f(x)dx = k*∫f(x)dx,其中k是一个常数- 线性法则:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx- 分部积分法:∫f(x)*g(x)dx = f(x)*∫g(x)dx - ∫[f'(x)*∫g(x)dx]dx- 换元积分法:如果u = g(x)是一个可导函数,则有∫f(g(x))g'(x)dx = ∫f(u)du5. 泰勒级数公式:泰勒级数是用一组多项式逼近函数的方法,可以将复杂的函数近似表示为多项式的形式。
微积分的基本公式
微积分的基本公式微积分是数学中的一个分支,主要研究连续变化的对象,如函数、曲线和曲面等。
微积分的基本公式是应用广泛且重要的数学工具,包括导数、积分、微分方程等。
下面将对微积分的基本公式进行详细介绍。
一、导数导数是微积分中的基本概念之一,用于描述函数在其中一点上的变化率。
导数的定义如下:对于函数y = f(x),其在特定点x处的导数表示为f'(x)或dy/dx,定义为函数曲线在该点处的切线斜率。
导数的几何意义是函数曲线在其中一点的切线斜率的极限值。
导数的基本公式包括:1.常数导数公式:如果f(x)=k,其中k是常数,则f'(x)=0。
2. 幂函数导数公式:对于f(x) = x^n,其中n是实数,则f'(x) = nx^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,其中e是自然对数的底,则f'(x)=e^x。
4. 对数函数导数公式:对于f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。
5. 三角函数导数公式:对于f(x) = sin(x),则f'(x) = cos(x);对于f(x) = cos(x),则f'(x) = -sin(x)。
二、积分积分是微积分中的另一个基本概念,用于计算曲线下面的面积或者曲线长度。
积分的定义如下:对于函数y = f(x),其在区间[a, b]上的积分表示为∫f(x)dx,定义为区间[a, b]上函数曲线与x轴之间的面积。
积分的基本公式包括:1. 不定积分公式:如果F(x)是f(x)的一个原函数,则∫f(x)dx =F(x) + C,其中C是常数。
这是积分的基本公式,也称为不定积分。
2. 定积分公式:如果f(x)是在区间[a, b]上连续函数,且F(x)是其原函数,则∫[a, b]f(x)dx = F(b) - F(a),其中F(a)表示F(x)在点a处的值,F(b)表示F(x)在点b处的值。
微积分的公式
微积分的公式引言微积分是数学中的一个重要分支,研究函数的变化规律和求解与变化相关的问题。
在微积分的学习中,有一些经典的公式是我们必须掌握和熟练运用的。
本文将介绍微积分中常见的几个重要公式,并通过例子进行说明。
导数的定义和运算法则定义函数f(x)在点x=a处的导数定义为:f'(a) = lim┬(Δx→0)(f(a+Δx)−f(a))/Δx导数的运算法则•常数法则d/dx (c) = 0其中c为常数。
•幂法则d/dx(x^n) = n * x^(n-1)其中n为自然数。
•乘法法则d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)常用微积分公式极限公式•极限的四则运算法则lim┬(x→a)(f(x)±g(x)) = lim┬(x→a)f(x) ± lim┬(x→a)g(x)lim┬(x→a)(f(x)g(x)) = lim┬(x→a)f(x) * lim┬(x→a)g(x)•无穷小与无穷大的关系lim┬(x→∞)(f(x)) = ∞,当且仅当lim┬(x→∞)(1/f (x)) = 0lim┬(x→∞)(f(x)) = a,当且仅当lim┬(x→∞)(1/f(x)) = 1/a求和公式•等差数列求和公式∑┬(k=1)(n)k = n(n+1)/2积分公式•基本积分公式∫(f(x) + g(x))dx = ∫(f(x))dx + ∫(g(x))dx ∫(k * f(x))dx = k * ∫(f(x))dx其中k为常数。
•微元法∫(f(x))dx = F(x) + C其中F(x)为函数f(x)的一个原函数,C为常数。
应用示例示例1:求函数的导数已知函数f(x) = 2x^2 + 3x - 1,求f'(x)。
解: 根据幂法则,对于函数f(x) = 2x^2 + 3x - 1,我们可以先对每一项求导,再相加得到f'(x)。
微积分的公式大全
微积分的公式大全1.导数公式:- 限定义导数:f'(a) = lim[h->0] (f(a+h)-f(a))/h-幂函数的导数:(x^n)'=n*x^(n-1)-指数函数的导数:(e^x)'=e^x- 对数函数的导数:(ln(x))' = 1/x-三角函数的导数:- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (tan(x))' = sec^2(x)-反三角函数的导数:- (arcsin(x))' = 1/√(1-x^2)- (arccos(x))' = -1/√(1-x^2)- (arctan(x))' = 1/(1+x^2)2.积分公式:- 不定积分的基本公式:∫[f(x)+g(x)]dx = ∫f(x)dx + ∫g(x)dx - 幂函数的积分:∫x^n dx = x^(n+1)/(n+1) + C (其中C为常数) - 指数函数的积分:∫e^x dx = e^x + C- 对数函数的积分:∫1/x dx = ln,x, + C (其中C为常数)-三角函数的积分:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫tan(x) dx = -ln,cos(x), + C-反三角函数的积分:- ∫1/√(1-x^2) dx = arcsin(x) + C- ∫-1/√(1-x^2) dx = arccos(x) + C- ∫1/(1+x^2) dx = arctan(x) + C3.基本定理:- 第一基本定理:∫[a, b] f'(x)dx = f(b) - f(a) (即导函数的积分等于原函数在区间上的差)- 第二基本定理:∫[a, b] f(x)dx = F(b) - F(a) (即函数的积分等于其原函数在区间上的差)4.微分方程:- 一阶线性ODE通解:y = ∫[a, x] f(t)*e^(∫[a, t] p(u)du) dt + Ce^(∫[a, x] p(t)dt)-二阶常系数齐次线性ODE通解:y=C1e^(r1x)+C2e^(r2x)-二阶常系数非齐次线性ODE通解:- 非齐次线性ODE的特解:y = yp- 齐次线性ODE的通解:y = yp + C1e^(r1x) + C2e^(r2x)5.极限公式:- 极限定义:lim[x->a] f(x) = L (当x趋近于a时,f(x)趋近于L) -极限的四则运算法则:- lim[x->a] [f(x) + g(x)] = lim[x->a] f(x) + lim[x->a] g(x) - lim[x->a] [f(x) - g(x)] = lim[x->a] f(x) - lim[x->a] g(x) - lim[x->a] [f(x) * g(x)] = lim[x->a] f(x) * lim[x->a] g(x) - lim[x->a] [f(x) / g(x)] = lim[x->a] f(x) / lim[x->a] g(x) (其中g(a)不等于0)- 极限函数的连续性:如果lim[x->a] f(x) = f(a)和lim[x->a]g(x) = g(a),则lim[x->a] [f(x) + g(x)] = f(a) + g(a)和lim[x->a] [f(x) * g(x)] = f(a) * g(a)。
高数常用微积分公式24个
高数常用微积分公式24个为了更好地帮助大家理解高等数学中的微积分,本文主要介绍高数常用的微积分公式24个。
首先,介绍最基本的微积分概念。
微积分是一个广义的概念,它包括微分学和积分学。
微分学是研究变动数量的变化率,变量可以表达为函数。
积分学则是将某一函数在不同区域上的积分和运算,可以表示为面积、重量或其他距离变化的概念。
其次,介绍高数常用的微积分公式。
1、微分中的基本公式:(1)函数的定义域x的导数,表示为f′(x)(2)复合函数的导数,表示为f′(g(x))(3)二阶导数的定义,表示为f″(x)2、积分中的基本公式:(1)求解定积分,表示为∫[a, b]f(x)dx(2)定积分的换折叠公式,表示为∫[a, b]f(x)dx=[a,c]f(x)dx+[c, b]f(x)dx(3)求解不定积分,表示为∫f(4)二重积分的定义,表示为∫[a, b]∫[c, d]f(x,y)dydx (5)定义域积分,表示为∫[S]f(x,y)ds3、微分与积分的关系:微分与积分有着相互联系的关系。
积分是将函数某一段区间的值累积为某一量,而微分则是积分的反过程,求出函数在有限的区间内的变化率。
这一关系也被称为微分法和积分法的反射关系。
4、偏微分的基本公式:偏微分是指关于同一变量的偏导数。
它是微分中比较复杂的一种形式,通常与多元函数相关,旨在研究函数变化率在同一点上受其他变量影响的情况。
它的基本公式为f′(x, y)=f/x, f′(x, y)=f/y。
5、常见的微分与积分公式:(1)指数函数的求导公式,表示为f′(x)=ae^(ax)(2)对数函数的求导公式,表示为f′(x)=1/x(3)三角函数的求导公式,表示为f′(x)=cos(x),f′(x)=sin(x)(4)椭圆函数的求导公式,表示为f′(x)=2a(a+bx)/(b^2-a^2)(5)反椭圆函数的求导公式,表示为f′(x)=-2a(a+bx)/(b^2-a^2)(6)求极限的求导公式,表示为limX→0f′(x)=f(0)(7)求微积分的积分公式,表示为∫[a,b]f(x)=F(b)-F(a)最后,本文介绍了高数常用的微积分公式24个,包括微分、积分、偏微分以及极限的求导公式,利用这些公式,大家就可以更好地理解微积分的概念,从而更好地学习高等数学中的微积分内容。
基本积分公式
基本积分公式在微积分中,积分是导数的逆运算,用于求解函数的原函数。
基本积分公式是包含常见函数的积分公式,它们可以直接应用于各种问题的求解。
这些公式可以帮助我们快速计算积分,并在进行更复杂的积分时提供一个基础。
下面是一些常见的基本积分公式:1.幂函数的积分:(1) 若n ≠ -1,则有∫ x^n dx = (x^(n+1))/(n+1) + C(2) 若 n = -1,则有∫ dx/x = ln,x, + C举例来说,∫ x^3 dx = (x^4)/4 + C,∫ dx/x = ln,x, + C2.指数函数的积分:(1) ∫ e^x dx = e^x + C(2) ∫ a^x dx = (a^x)/ln,a, + C这里的a是一个正常数且不等于1举例来说,∫ e^x dx = e^x + C,∫ 3^x dx = (3^x)/ln(3) + C3.三角函数的积分:(1) ∫ sin(x) dx = -cos(x) + C(2) ∫ cos(x) dx = sin(x) + C(3) ∫ sec^2(x) dx = tan(x) + C(4) ∫ csc^2(x) dx = -cot(x) + C(5) ∫ sec(x)tan(x) dx = sec(x) + C(6) ∫ csc(x)cot(x) dx = -csc(x) + C举例来说,∫ sin(x) dx = -cos(x) + C,∫ sec^2(x) dx = tan(x) + C4.反三角函数的积分:(1) ∫ 1/√(1 - x^2) dx = arcsin(x) + C(2) ∫ -1/√(1 - x^2) dx = arccos(x) + C(3) ∫ 1/(1 + x^2) d x = arctan(x) + C(4) ∫ -1/(1 + x^2) dx = -arctan(x) + C注意:这里的反三角函数指的是反正弦、反余弦和反正切函数。
积分表24个公式
积分表24个公式积分是微积分中的重要概念之一,它用于计算曲线下的面积,解决各种数学和物理问题。
在本文中,我将介绍24个与积分相关的常见公式。
这些公式涵盖了微积分中的不同应用领域,帮助我们理解积分的重要性和灵活性。
1. 定积分的定义公式:∫[a, b] f(x) dx表示函数f(x)在[a, b]区间内的定积分,表示曲线下的面积。
2. 反导数公式:若F'(x) = f(x),则∫f(x) dx = F(x) + C,其中C为常数。
3. 线性性质公式:∫[a, b] (f(x) + g(x)) dx = ∫[a, b] f(x) dx + ∫[a, b] g(x) dx。
4. 反函数求积分公式:若F(x)是f(x)的一个反函数,则∫f(x) dx = F^{-1}(x) + C。
5. 分部积分公式:∫u(x) v'(x) dx = u(x)v(x) - ∫v(x)u'(x) dx,可以将一个积分转化为另一个积分。
6. 第一类换元积分公式:∫f(g(x))g'(x) dx = ∫f(u) du,u = g(x)。
7. 第二类换元积分公式:∫f(g(x)) dx = ∫f(u) |g'(x)| dx,u = g(x)。
8. 倒置积分公式:∫[a, b] f(x) dx = -∫[b, a] f(x) dx,改变积分区间时改变积分符号。
9. 对称性公式:若f(x)在某区间关于x轴对称,则∫[-a, a] f(x) dx = 0。
10. 积分中值定理公式:若f(x)在[a, b]上连续,则存在c∈(a, b),使得∫[a, b] f(x) dx = f(c)(b-a)。
11. 反常积分定义公式:若f(x)在[a, b]上有界,则∫[a, b] f(x) dx = lim_{n→∞} ∫[a,b] f(x) dx。
12. 曲边梯形面积公式:∫[a, b] f(x) dx ≈ (b-a)((f(a)+f(b))/2),对应梯形近似法则。
微积分基本公式和基本定理
利用泰勒公式展开函数$f(x) = sin x$在$x = frac{pi}{2}$处的幂级数。
答案
根据泰勒公式,得到$sin x = sum_{n=0}^{infty} (1)^n cdot frac{x^{2n+1}}{(2n+1)!}$。代入$x = frac{pi}{2}$,得到$sin frac{pi}{2} = sum_{n=0}^{infty} (-1)^n cdot frac{(frac{pi}{2})^{2n+1}}{(2n+1)!} = 1$。
求函数$f(x) = ln(x + sqrt{1 + x^2})$的导数。
利用链式法则和基本导数公式 ,得到$f'(x) = frac{1}{sqrt{1 + x^2}} cdot frac{x}{sqrt{1 + x^2}} = frac{x}{1 + x^2}$。
积分习题及答案
题目
计算$int_0^1 (x^2 + 1) dx$。
泰勒公式是一个重要的微积分定理,它可以用来近似计算复杂的函数。通过泰勒公式,可以将一个复 杂的函数展开成多项式的和,从而简化计算。
泰勒公式在近似计算中广泛应用于数值分析、物理、工程等领域。例如,在计算物理现象的近似解时 ,可以使用泰勒公式来逼近真实解。此外,泰勒公式还可以用于求解函数的极限、证明不等式等数学 问题。
牛顿-莱布尼兹定理
总结词
牛顿-莱布尼兹定理是计算定积分的 核心定理,它提供了计算定积分的简 便方法。
详细描述
牛顿-莱布尼兹定理表述为:对于任意 在[a, b]区间上连续的函数f(x),F(x)是f(x)的一个原函数。这个定理大大 简化了定积分的计算过程,是微积分学 中的重要内容。
大学数学微积分基本公式
大学数学微积分基本公式微积分是数学中的重要分支,是研究变化和累积的数学方法。
它包括微分学和积分学两个部分,通过研究函数的导数和不定积分来揭示数学问题的本质。
微积分中有一些基本公式,对于学习和应用微积分来说是至关重要的。
本文将介绍大学数学微积分的基本公式。
一. 导数的基本公式1. 常数函数导数公式对于常数c,其函数f(x) = c的导数为f'(x) = 0。
这是因为常数函数在任意点处的斜率都为0。
2. 幂函数导数公式对于幂函数f(x) = x^n,其中n是常数,它的导数为f'(x) = nx^(n-1)。
这是通过应用幂函数的导数定义得到的。
3. 指数函数导数公式对于指数函数f(x) = a^x,其中a是常数且a>0,它的导数为f'(x) =a^x·ln(a)。
这个公式是指数函数的特性之一。
4. 对数函数导数公式对于对数函数f(x) = log_a(x),其中a是常数且a>0且a≠1,它的导数为f'(x) = 1/(x·ln(a))。
这是对数函数的基本导数公式。
5. 三角函数导数公式常见的三角函数sin(x),cos(x),tan(x)等它们的导数公式分别为:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)这些导数公式可以通过极限定义和三角函数的基本性质推导得到。
6. 反三角函数导数公式反三角函数的导数公式与三角函数导数公式相对应,具体如下:arcsin'(x) = 1/√(1-x^2)arccos'(x) = -1/√(1-x^2)arctan'(x) = 1/(1+x^2)这些导数公式可以通过反函数的导数性质得到。
二. 积分的基本公式1. 不定积分基本公式不定积分是积分学中的重要概念,它表示函数的反导数。
不同函数的不定积分有不同的基本公式,常见的如下:∫x^n dx = (1/(n+1))·x^(n+1) + C,其中n≠-1∫e^x dx = e^x + C∫1/x dx = ln|x| + C∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C∫sec^2(x) dx = tan(x) + C∫1/√(1-x^2) dx = arcsin(x) + C∫1/(1+x^2) dx = arctan(x) + C这些不定积分的基本公式可以通过求导的逆过程得到。
微积分入门基本公式例题
微积分入门基本公式例题微积分是数学中的一个重要分支,它涉及到函数的极限、连续性、导数、积分等概念。
以下是一些微积分的基本公式及其例题:1.导数的基本公式导数描述了函数值随自变量变化的速率。
基本的导数公式包括:(1) 常数导数:f'(x) = 0,其中f(x)是一个常数;(2) 正比例函数导数:f'(x) = k,其中f(x) = kx;(3) 幂函数导数:f'(x) = nx^(n-1),其中f(x) = x^n;(4) 对数函数导数:f'(x) = 1/x,其中f(x) = ln x;(5) 三角函数导数:f'(x) = cos x,其中f(x) = sin x;以及f'(x) = -sin x,其中f(x) = cos x。
例题:求f(x) = 3x^2 + 5x + 2的导数。
解:根据幂函数导数的公式,f'(x) = 2*3x + 5 = 6x + 5。
2.积分的基本公式积分是微分的逆运算,它可以用来计算曲线下面积、求解定积分等。
基本的积分公式包括:(1) 常数积分:∫ a dx = ax + C,其中a是常数;(2) 正比例函数积分:∫ x dx = x^2/2 + C,其中C是积分常数;(3) 幂函数积分:∫ x^n dx = x^(n+1)/(n+1) + C,其中n是正整数;(4) 对数函数积分:∫ ln x dx = x ln x - x + C,其中C是积分常数;(5) 三角函数积分:∫ sin x dx = -cos x + C,以及∫ cos x dx = sin x + C,其中C是积分常数。
例题:计算∫ (3x^2 + 5x + 2) dx。
解:根据积分的基本公式,∫ (3x^2 + 5x + 2) dx = (3/3) * x^3 + (5/2) * x^2 + 2x + C = x^3 + (5/2)*x^2 + 2x + C。
常见积分公式24个
常见积分公式24个积分是微积分的一个重要概念,它是对函数的一个连续求和过程。
在微积分中,我们常常使用积分公式来计算各种函数的积分,以解决实际问题。
下面是常见的24个积分公式,详细介绍每个公式的积分计算过程。
1. $∫dx=x+C$:对任意常数 $C$,常数的积分是它自己,即对$x$ 的积分是 $x$ 加上一个常数 $C$。
2. $∫x^ndx=\frac{1}{n+1}x^{n+1}+C$:这个公式称为幂函数的积分公式,其中 $n$ 是不等于 $-1$ 的实数。
3. $∫e^xdx=e^x+C$:这是指数函数的积分公式,它的导数是 $e^x$。
4. $∫a^xdx=\frac{a^x}{\ln a}+C$:这是对数函数的积分公式,其中 $a$ 是大于 $0$ 且不等于 $1$ 的常数。
5. $∫\frac{1}{x}dx=\ln,x,+C$:这是倒数函数的积分公式,其中 $x$ 不等于 $0$。
6. $∫\sin xdx=-\cos x+C$:这是正弦函数的积分公式,它的导数是 $-\cos x$。
7. $∫\cos xdx=\sin x+C$:这是余弦函数的积分公式,它的导数是$\sin x$。
8. $∫\frac{1}{\cos^2 x}dx=\tan x+C$:这是正切函数的积分公式,它的导数是 $\frac{1}{\cos^2 x}$。
9. $∫\frac{1}{\sin^2 x}dx=-\cot x+C$:这是余切函数的积分公式,它的导数是 $\frac{1}{\sin^2 x}$。
10. $∫\sec x\tan xdx=\sec x+C$:这是正割函数的积分公式,它的导数是 $\sec x\tan x$。
11. $∫\csc x\cot xdx=-\csc x+C$:这是余割函数的积分公式,它的导数是 $\csc x\cot x$。
12. $∫\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$:这是反正弦函数的积分公式,它的导数是 $\frac{1}{\sqrt{1-x^2}}$。
微积分公式与运算法则
微积分公式与运算法则1.基本公式(1)导数公式 (2) 微分公式(xμ)ˊ= μxμ-1 d(xμ)= μxμ-1 dx(a x)ˊ= a x lna d(a x)= a x lna dx(loga x)ˊ= 1/(xlna) d(loga x)= 1/(xlna) dx(sin x)ˊ= cos x d(sin x)= cos x dx(con x)ˊ= -sin x d(con x)= -sin x dx(tan x)ˊ= sec2 x d(tan x)= sec2 x dx(cot x)ˊ= -csc2 x d(cot x)= -csc2 x dx(sec x)ˊ= sec x·tan x d(sec x)= sec x·tan x dx (csc x)ˊ= -csc x·cot x d(csc x)= -csc x·cot x dx (arcsin x)ˊ= 1/(1-x2)1/2 d(arcsin x)= 1/(1-x2)1/2 dx (arccos x)ˊ= -1/(1-x2)1/2 d(arccos x)= -1/(1-x2)1/2 dx (arctan x)ˊ= 1/(1+x2) d(arctan x)= 1/(1+x2) dx (arccot x)ˊ= -1/(1+x2) d(arccot x)= -1/(1+x2) dx (sinh x)ˊ= cosh x d(sinh x)= cosh x dx (cosh x)ˊ= sinh x d(cosh x)= sinh x dx2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则(αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ= (μˊυ-μυˊ)/υ2(2)函数和差积商的微分法则d(αμ+βυ)= αdμ+βdυd(μυ)=υdμ+μdυd(μ/υ)= (υdμ-μdυ)/υ23.复合函数的微分法则设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为dy/dx = fˊ[ψ(x)] ·ψˊ(x)所以复合函数的微分为dy = fˊ[ψ(x)] ·ψˊ(x) dx由于fˊ[ψ(x)]= fˊ(μ),ψˊ(x) dx = dμ,因此上式也可写成 dy = fˊ(μ) dμ由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy = fˊ(μ) dμ保持不变,这一性质称为微分形式不变性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 u = u(x),v = v(x) 为可导函数,则
(1)
(u
±
v)′
=
u′
±
v′; (2)
(uv)′
=
u′v
+
uv′;(3)
u v
′
=
u′v − uv′ v2
(v
≠
0).
(4) 若 uk = uk (x) (k = 1,2,L,n) 均为可导函数,则
(u1u2 Lun )′ = u1′u2 Lun + u1u2′Lun + L + u1u2 x2 + x4 + o(x4); 2! 4!
(4) tan x = x + x3 + 2 x5 + o(x5); 3 15
(5) arcsin x = x + x3 + 3 x5 + o(x5); (6)arctan x = x − x3 + x5 + o(x5)
6 40
1 n
n
单调递增.
六、 微积分中值定理
1、罗尔 (Rolle) 定理: 假设 f (x) 在 [a,b] 上满足
(1) f (x) 在 [a,b] 上连续;(2) f (x) 在 (a,b)内可导;(3) f (a) = f (b).
则:∃ξ ∈ (a,b) 使得 f ′(ξ ) = 0.
2、拉格朗日(Lagrange) 中值定理:假设 f (x) 在 [a,b] 上满足
(6)
(loga
x)′
=
1 x ln a
(a > 0且 a ≠ 1);
(8) (cos x)′ = −sin x;
(9) (tan x)′ = sec2 x;
(10) (cot x)′ = − csc2 x;
(11) (sec x)′ = sec x tan x; (12) (csc x)′ = −csc x cot x;
ln a
∫ 2. xαdx = xα +1 + C (α ≠ 1);
α +1
∫ 4. exdx = ex + C ; 6. ∫ cos xdx = sin x + C ;
7. ∫ sin xdx = − cos x + C ;
8. ∫ sec2 xdx = tan x + C ;
9. ∫ csc2 xdx = − cot x + C ;
11.
∫
1
1 +x
2
dx
=
arctan
x
+
C
;
13. ∫ csc x cot xdx = − csc x + C ;
∫ 15.
dx x2 − a2
=
1 ln
2a
x−a x+a
+ C;
10.
∫
1 dx = arcsin x + C ; 1− x2
12. ∫ sec x tan xdx = sec x + C ;
其中的“中值”ξ 有时也表示为 ξ = a + θ (b − a),(其中:0 < θ < 1)
2
七、 常见函数的泰勒 (Taylor) 展开( Maclaurin 展开的 Peano 余项)
(1) ex = 1 + x + x2 + x3 + o(x3); 2! 3!
(2) sin x = x − x3 + x5 + o(x5); 3! 5!
14.
∫
dx ax + b
=
1 a
ln
ax
+
b
+
C
(a
≠
0);
∫ 16.
dx x2 + a2
=
1 arctan x
a
a
+C
;
∫ 17.
dx = arcsin x + C;
a2 − x2
a
( ) ∫ 18.
dx = ln x + x2 + a2 + C;
x2 + a2
19. ∫ tan xdx = −ln cos x + C;
35
(7)ln(1 + x) = x − x2 + x3 + o(x3); (8) (1 + x)α = 1 + α x + α (α −1) x2 + o(x2 ).
23
2!
八、 常见的不定积分公式
1. ∫ dx = x + C ;
3.
∫
1 x
dx
=
ln
x
+C
;
∫ 5. axdx = ax + C ;
微积分(1)中常见的基本公式(一)
一、 16 个基本初等函数的导数公式
(1) (C)′ = 0;
( ) (2) xα ′ = α xα −1;
(3) (ex )′ = ex;
(4) (ax )′ = ax ln a (a > 0且 a ≠ 1);
(5) (ln x)′ = 1; x
(7) (sin x)′ = cos x;
(1) f (x) 在 [a,b] 上连续; (2) f (x) 在 (a,b) 内可导;
则:∃ξ ∈ (a,b) 使得 f ′(ξ ) = f (b) − f (a);或 f (b) − f (a) = f ′(ξ )(b − a). b−a
3、柯西中值定理:假设 f (x)、g(x) 在 [a,b] 上满足
20. ∫ cot xdx = − ln sin x + C;
21. ∫ sec xdx = ln sec x + tan x + C;
∫ 22. a2 − x2 dx = x a2 − x2 + a2 arcsin x + C (a > 0);
2
2
a
∫ 23.
x2 + a2 dx = x x2 + a2 + a2 ln(x + x2 + a2 ) + C (a > 0).
y′
=
ln(1+ x) e x
′
=
ln(1+ x)
ex
⋅
x 1+
x
− ln(1+ x2
x)
=
(1 +
1
x)x
⋅
x 1+
x
− ln(1 + x2
x) .
当 x > 0 时,ln(1+ x) >
x
1
,因此,y = (1+ x)x 在 (0,+ ∞) 上单调递减.
1+ x
由此可得,数列
an
=
1 +
(13) (arcsin x)′ = 1 ; (14) (arccos x)′ = − 1 ;
1− x2
1 − x2
(15)
(arctan
x
)′
=
1
1 + x2
;
(16)
(arc
cot
x)′
=
−
1
1 +x
2
.
( ) 【特别地】: x ′ = 1 ; 2x
1 x
′
=
−
1 x2
.
二、 导数的四则运算法则
三、 反函数的求导公式
设 y = f (x) 的反函数为 x = g( y),若 f (x) 可导,则 g( y) 也可导,且
dx dy
=
1 dy
,即
g′(
y)
=
f
1 ′(x)
.
( f ′(x) ≠ 0.)
dx
四、 复合函数求导的链式法则
设函数 u = g(x) 在点 x 处可导,函数 y = f (u) 在对应点 u = g(x) 处可导,
设 y = u(x)v(x) (u(x) > 0),且 u(x)、v(x) 均可导,则
( ) y′ =
ev( x ) ln u ( x)
′
=
ev( x) ln
u( x)
v′(x) ln
u( x)
+
v(x)
⋅
u′(x) u(x)
=
u
(
x)v
(
x)
v′(
x)
ln
u(
x)
+
v(
x)
⋅
u′(x) u( x)
.
【注】:幂指函数的导数也可用对数求导法计算,ln y = v(x)ln u(x),则
1 y
⋅
y′
=
v′(x)ln u(x)
+
v(x) ⋅
u′(x) u( x)
⇒
y′
=
u(x)v(x)
v′(x)
ln
u(x)
+
v(x) ⋅
u′( x) u( x)
.
1
(4) 设 y = (1 + x)x (x > 0),求:y′.
2
2
3
(1) f (x)、g(x) 在 [a,b] 上连续;(2) f (x)、g(x) 在 (a,b)内可导;(3) g′(x) ≠ 0.
则:∃ξ ∈ (a,b) 使得
f (b) g (b)
− −
f (a) g(a)
=
f ′(ξ g′(ξ