初中数学竞赛试题汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛试题汇编标准化管理部编码-[99968T-6889628-J68568-1689N]
C
(第2
题
中国教育学会中学数学教学专业委员会
2013年全国初中数学竞赛九年级预赛试题
(本卷满分120分,考试时间120 分钟)
一、选择题(本大题共6个小题,每小题5分,共30分)
在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分.
1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )
A .4
1 B .31 C .2
1 D .1
2.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( )
A .38
B .39
C .40 D. 41
3.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则y
x
的值等于( ) A .9
5 B .5
9 C .5
2011
-
D .9
2011
-
4.已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最
接近图中两个弓形(带点的阴影图形)面积之和的是( )
A .6
B. 7 C .8
D .9
5.设a ,b ,c 是△ABC 的三边长,二次函数2
)2
(2b a cx x b a y ----=在1=x 时取最小值b 5
8-,则△ABC 是( )
A .等腰三角形
B .锐角三角形
C .钝角三角形 D
6 照“先进后出”的原则,如图,堆栈(1)中的2据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3数据e ,d ,c ,取出数据的顺序是c ,d ,e 5个数据(每次取出1个数据),则不同顺序的取法的种数有( ) A .5种 B .6种 C .10种 D .12种 二、填空题(本大题共6个小题,每小题5分,共30分)
7.若04122=---x x ,则满足该方程的所有根之和为 .
8.(人教版考生做,在 ABCD 中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切,若AB =4,BE =5,则DE 的长为 .
(1) (2)
(第6题
8.(北师大版考生做)如图B ,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两
个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FG
AF
= .
9.已知012
=--a a ,且32
22322324-
=-++-a
xa a xa a ,则=x . 10.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,
且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有 件.
11.如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面
BC 上,如果CD 与地面成o 45,∠A =o 60,CD =4m ,BC =)2264(-m ,则电线杆AB 的长为
12.实数x 与y ,使得y x +,y x -,xy ,
y
x
四个数中的三个有相同的数值,则所有具有这样性质的数对),(y x 为 .
3个小题,每小题20分,共60分)
分) ))(())(()a x c x c x b x ++++++是完全平方式.求证: c b a ==.
14.分)如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M ,N 以每秒1个单位的速度分别从点A ,C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP .
(1)点B 的坐标为 ;用含t 的式子表示点P 的坐标
为 ;
(2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值
时,S 有最大值
(3)试探究:当S 有最大值时,
在y 轴上是否存在点T ,使直线MT 把
△ONC 分割成三角形和四边形两部
分,且三角形的面积是△ONC 面积的3
1
若存在,求出点T 的坐标;若不存在,请说明理由. 15.(本题满分20分)
对于给定的抛物线b ax x y ++=2,使实数p ,q 适合于)(2q b ap +=.(1)证明:抛物线q px x y ++=2通过定点;
(2)证明:下列两个二次方程,02=++b ax x 与02=++q px x 中至少有一个方程有实数根.
2013年全国初中数学竞赛试题
考试时间 2013年3月17日 9:30-11:30 满分150分
(备用图)
(第14题
(第11题A B C D (第8题图A ) D G
F E
C
B A
(第8题图B )
D
1.用圆珠笔或钢笔作答;
.解答书写时不要超过装订线; 草稿纸不上交。
一、选择题(共5个小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1.设非零实数a 、b 、c 满足⎩⎨⎧=++=++0
432032c b a c b a ,则2
22c b a ca
bc ab ++++的值为( ) (A) -21 ( B) 0 (C) 2
1
(D) 1
2.已知a 、b 、c 是实常数,关于x 的一元二次方程02=++c bx ax 有两个非零实根,则下列关于x 的一元二次方程02=++c bx ax 中,以
211x ,22
1
x 为两个实根的是( ) (A) 0)2(2222=+-+a x ac b x c ( B) 0)2(2222=+--a x ac b x c (C)0)2(2222=--+a x ac b x c (D) 0)2(2222=+--a x ac b x c 3,如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD
⊥AB,垂足为D ,DE ⊥OC,垂足为E ,若AD ,DB ,CD 的长
度都是有理数,则线段OD 、OE 、DE ,AC 的长度中,不.
一定..
是有理数的为( )
(A) OD ( B) OE
(C) DE (D) AC
4、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 上,且BC=4AF ,DCFE (△
BDE+△ADE)的面积为( )。
(A) 3 ( B) 4 (C) 6 (D) 8
5.对于任意实数x ,y ,z ,定义运算“*”为:
60
)1()1(45
33*3
33223-++++++=y x xy y x x y x ,且z y x z y x *)*(**=,则2013*2012*……*3*2的值为( (A)
967607 ( B) 9671821 (C) 967
5463
967
16389
二、填空题(共5小题,每小题7分,共35分)
6.设33=a ,b 是2a 的小数部分,则3)2(+b 的值为
7.如图,点D 、E 分别是△ABC 的边AC 、AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5则四边形AEFD 的面积是 。
8.已知正整数a 、b 、c 满足0222=--+c b a ,0832=+-c b a ,则a b c 的最大值为 。
9.实数a ,b ,c ,d 满足:一元二次方程02=++d cx x 的两根为a ,b ,一元二次方程02=++b ax x 的两根为c ,d ,则所有满足条件的数组(a ,b ,c ,d )为 。
10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元。
开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔。
三、解答题(共4题,每题20分,共80分)
11.如图,抛物线32-+=bx ax y ,顶点为E ,该抛物线x 与轴交于A ,B 两点,与y 轴交于点C ,且
OB=OC=3OA 。
直线13
1
+-=x y 与y 轴交于点D ,求∠DBC-∠CBE.
12.、设△ABC 的外心,垂心分别为O ,H ,若B ,C ,H ,O 共圆,对于所有的△ABC ,求 ∠BAC 所有可能的度数。
13.设a ,b ,c 是素数,记a c b x -+=,
b a
c y -+=,c b a z -+=,当y z =2,2=-y x 时,a ,b ,c 能否构成三角形的
三边长证明你的结论。
14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为
415的魔术数),求正整数n 的最小值,使得存在互不相同的正整数n a a a ,21 ⋯,满足任意一个正整数m ,在n a a a ,21
⋯中都至少有一个为的m 魔术数。
2013年全国初中数学联赛江西预赛试题
时间:2013年3月10日上午9:00-11:30
一、选择题(每小题7分,共6题,计42分)
1、若n m n m n
n m 、且,532-=同号,则222232654n
mn m n mn m +-+-的值是( ) A 、7 B 、6 C 、5 D 、4
2、若△ABC 中,AB =26-,BC=2, △ABC 的面积是1,若∠B 是锐角,则∠ACB 的度数是( )
A 、30°
B 、45°
C 、60°
D 、75°
3、若0
97,0972
2=++=++b b a a ,ab ≠1, 则b
a
a b
-的值为( ) A 、
3
13
B 、3
13
- C 、3
13
± D 、0 4、一块木板上钉有9枚铁钉,钉尖向上如图,用橡皮盘套住往其中4枚铁钉,构成一个平行四边形,共有套法( ) A 、82 B 、40 C 、22 D 、21
5一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,在正整数列中,从1开始数起,问第1990个“智慧数”是( ) A 、2663 B 、2664 C 、2665 D 、2626
6、能使方程mx 2 +2(2m-1)x+4(m-3)=0至少有一个整数解的正整数a 的值的个数有( )
A 、3
B 、4
C 、5
D 、6
二、填空题(每题7分,共4小题,计28分) 7、如图:在△ABC 中,AB =9,BC=4,Q 为AC 的中点,P 为AB 边上一点,且∠APQ=90°+2
1
∠B ,则
BP 的长为______
8、为了迎接2016年世界杯足球赛的到来,某足球
胜一场 平一场 负一场
积分 3 1 0 奖金(元/人)
1500
700
均出场费500元,设A 队其中一名参赛队员所得的奖金与出场费的和为W 元,则W 的最大值是_________
9、已知a 、b 、c 、d 是四个不同的实数,且(a+c )(a+d)=-2013,(b+c)(b+d)=-2013, 则(a+d)(b+d)=--_______
10、已知⊙O 的半径为6,四边形ABCD 是圆内接四边形,对角线AC 与BD 交于点E,CE =,若AC 是直径,且AD=BD ,则四边形ABCD 的周长是_______ 三、解答题(70分)
11、(满分20分)已知方程x 2+ax+2a+2=0有两个整数解,求a 的值。
12、(满分25分)已知AE 是△ABC 的角平分线,D 是线段AE 上的点,且 ∠BDE=90°+2
1∠BAC ,求证:D 是△ABC 的内心。
13、(满分25分)如图:抛物线y=mx2+5x+n 与x 轴交于B 、C 两点,交y 轴与A 点,过A 、B 、C 三点作⊙P ,且⊙P 与y 轴相切于点A , (1)求m 、n 的关系; (2)求∠BAC 的正切值;
(3)设抛物线的顶点为D ,试判断直线DB 与⊙P 的位置关系,并证明。
2012年全国初中数学竞赛预赛试题
江西省吉安市
一、 选择题:(每题7分,共42分) 1、化简38194233122172+---+的结果是
( )
A 、2
B 、 -2
C 、-33
D 、33
2、一次考试共有5道题,考后统计如下,有81%的同学做对第1题,91%的同学做对第2题,85%的同学做对第3题,79%的同学做对第4题,74%的同学做对第5题,如果做对3题以上的(含3题)题目的同学考试合格,那么这次考试合格率的同学至少( )。
A 、70% B 、 79% C 、74% D 、81%
3、如图:在△ABC 中,
,31
,31,31CA CF BC BE AB AD ===则AN:NL:LE 等于
( )
A 、2:1:1
B 、3:2:1
C 、3:3:1
D 、2:3:1 4、满足方程xy y x y x ++=+)(222的所有非负整数解的组
数有( )
A 、1
B 、2
C 、3
D 、4
5、如图:正方形ABCD 的边长为152,E 、F 分别是AB 、
BC 的中点,AF 分别交DE ,DB 于M ,N,则△DMN 的面积为( )
A 、8
B 、9
C 、10
D 、11
6、使分式3
34
222+-+-x x x x 的值为整数的实数x 的值的个数是
( )
A 、4
B 、5
C 、6
D 、7 二、填空题(每题7分,共28分)
7、边长为整数,且面积的数值与周长相等的直角三角形的个数为 . 8、边长为9cm, 40cm,41cm 的三角形的重心到外心的距离是
9、已知二次函数c bx ax y ++=2
,一次函数4
)1(2
k x k y --=,若它们的图像对于问题任
意的数k 都只有一个公共点,则二次函数的解析式为
10、代数式49)8(922+-++x x 的最小值是 三、解答题(共三大题,70分)
11、已知关于x 的方程024)2810()4)(2(2=+----x k x k k 的根是整数,求满足条件的所有实数k 的值(20分)
12、如图:在矩形ABCD 中,点P 在AB 上,且△ACP 是等腰三角形,O 是AC 的中点,OE ⊥ AB 于有,点Q 是OE 的中点,求证:PQ ⊥ CE (25分).
13、已知二次函数4)3(2++--=m x m x y 图像与轴交于)点点0,(),0,(21x B x A (x 1<x 2), 与y 轴交于点C,若∠CAB 与∠CBA 是锐角。
(1)求m 的值;
(2)是否可能出现∠CAB =∠CBA 若可能,求出m 的值;若不可能,比较∠CAB 与∠CBA 的大小;
(3)当∠CAB 与∠CBA 互余时,△ABC 的面积是多少(25分)
2012年全国初中数学联合竞赛试题参考答案
第一试
一、选择题:(本题满分42分,每小题7分)
1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( )
A. a b c <<
B. a c b <<
C. b a c <<
D.b c a <<
2.方程222334x xy y ++=的整数解(,)x y 的组数为
( )
A .3.
B .4.
C .5.
D .6.
3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与
CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )
A .
3 B .3 C .3
D .3 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )
A .18-.
B .0.
C .1.
D .98.
5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足
2323
11224()x x x x +=-+,则实数p 的所有可能的值之和为
( )
A .0.
B .34-.
C .1-.
D .5
4-.
6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足
a c
b d +=+.这样的四位数共有
( )
A .36个.
B .40个.
C .44个.
D .48个. 二、填空题:(本题满分28分,每小题7分)
1.已知互不相等的实数,,a b c 满足111
a b c t b c a
+=+=+=,则t = .
2.使得521m ⨯+是完全平方数的整数m 的个数为 .
3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC
AP
=
4.已知实数,,a b c 满足1abc =-,4a b c ++=,
222
4
3131319
a b c a a b b c c ++=------,则222a b c ++= . 第二试
一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.
二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D.证明:2AD BD CD =⋅.
三.(本题满分25分)已知抛物线21
6y x bx c =-++的顶点为P ,与x 轴的正
半轴
与y 交于A 1(,0)x 、B 2(,0)x (12x x <)两点,轴交于点C ,PA 是△ABC 的外接圆的切线.
设
学
M 3
(0,)2
-,若AM 2011年全国初中数
竞赛试题
(考试时间:2011年3月20日9:30——11:30 满分:150分)
一、选择题(共5小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1
、设x =
,则代数式(1)(2)(3)x x x x +++的值为( ) A 、0 B 、1 C 、﹣1 D 、2
2、对于任意实数a, b, c, d, 定义有序实数对(a, b )与(c, d)之间的运算
“△”为:(a, b )△(c, d )=(ac+bd, ad+bc )。
如果对于任意实数u, v,都有(u, v )△(x, y )=(u, v ),那么(x, y )为( )
A 、(0, 1)
B 、(1, 0)
C 、(﹣1, 0)
D 、(0, ﹣1)
3、已知A ,B 是两个锐角,且满足225sin cos 4A B t +=,2223
cos sin 4
A B t +=,则实
数t 所有可能值的和为( )
A 、83-
B 、53-
C 、1
D 、113
4、如图,点D 、E 分别在△ABC 的边AB 、AC 上,BE 、CD 相交于点F ,设
1EADF S S 四边形=,2BDF S S ∆=,3BCF S S ∆=,4CEF S S ∆=,则13S S 与24S S 的大
小关系为
( )
A 、13S S ﹤24S S
B 、13S S =24S S
C 、13S S ﹥24S S
D 、不能确定
5、设33331111
++++1232011S =,则4S 的整数部分等于( )
A 、4
B 、5
C 、6
D 、7
二、填空题(共5小题,每小题7分,共35分)
6、两条直角边长分别是整数a, b (其中b<2011),斜边长是b+1的直角三角形的个数为 .
7、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3 ,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是
1,3,4,5,6,8。
同时掷这两枚骰子,则其朝上的面两个数字和为5的概率是 .
8、如图,双曲线2
y x
= (0x >)与矩形OABC 的边
BC , BA 分别交于点E , F , 且AF =BF ,连结EF ,则△OEF 的面积为 .
9、⊙O 的三个不同的内接正三角形将⊙O 分成的区域的个数为 .
10、设四位数abcd 满足3333110a b c d c d ++++=+,则这样的四位数的个数为 .
三、解答题(共4题,每题20分,共80分)
11、已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程
20x ax b ++=的两个根都大1, 求a b c ++的值.
F
B C E
D
A
第4题
D P H O 1O 2C B A C B
A
P 12、如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交
于点D , 延长AD 交CH 于点P , 求证:点P 为CH 的中点.
的整数1a ,13、若从1,2,3,…,n 中任取5个两两互素的不同
2a ,3a ,4a ,5a , 其中总有一个整数是素数,求n 的
最大值.
14、如图,△ABC 中,∠BAC =60°,AB =2AC. 点P
在△ABC 内,且3, PB=5, PC=2, 求△ABC 的面积. 2011年全国初中数学联赛江西赛区初赛试题
(考试时间2011年3月二0日9:30—11:30)
第一试
一、选择题(每题7分,共42分) 1、设a 为质数,并且872+a 和782+a 都是质数,若记877+=a x ,788+=a y ,
财在以下情况中,必定成立的是( )
A 、x,y 都是质数
B 、x,y 都是合数
C 、x,y 一个是质数,一个是合数
D 、对于不同的a,以上各情况皆可
2、化简21217223212172
23---++的结果是( )
A 、2
B 、2-
C 、2
D 、-2
3、2011201132+的末位数字是( )
A 、1
B 、3
C 、5
D 、7
4、方程1168143=--+---+x x x x 的解的情况是( )
A 、无解
B 、恰有一解
C 、恰有两个解
D 、有无穷多个解
5、正六边形被三组平行线划分成小的正三角形,则图中的全体正三角形的个数是
( )
A 、24
B 、36
C 、38
D 、76
6、设a,b 为整数,并且一元二次方程0)6()32(22=++++++ab a x b a x 有等根
α,而一元二次方程0)122()224(22=--+--+b a x b a ax 有等根β,那么以α、β为
根的一元二次方程是( )
A 、06722=++x x
B 、0622=+-x x
C 、0442=++x x
D 、0)(2=+++ab x b a x
二、填空题(每题7分,共28分)
1、Rt △ABC 的三条边长分别为3、4、5,若将其为内切圆挖去,则剩下部分的面积
等于
2、若c x b x a x x x x +-+-+-=--+)4()4()4(3752323,则(a,b,c)= ( )
3、如图:正方形ABCD 的边长为1,E 是CD 边
外的一点,满CE ∥BD,BE=BD,则CE=
4、绕圆周填写了十二个正整数,其中每个数取自
{1,2,3,4,5,6,7,8,9}之中(每一个数都可以多次出现在圆周
上)若圆周上任何三个相邻位置上的数之和都是7的倍数,
用S 表示圆周上所有的十二个数的和,那么数S 所有可能的取值
情
况有 种。
第二试 一(20分)试确定,对于怎样的整数a,方程029)3(4522=-++-a x a x 的正整数
解并求出方程的所有正整数解。
二(25分)锐角△ABC 的外心为O ,外接圆的半径为R ,延长AO ,BO ,CO ,分别与
对边BC ,CA ,AB 交于D 、E 、F ;证明
R
CF BE AD 2111=++。
三、(25分)设k 为正整数,证明:
1、如果k 是两个连续正整数的乘积,那么25k+6也是两个
连续正整数的乘积;
2、如果25k+6是两个连续正整数的乘积,那么k 也是两个
连续正整数的乘积;
2010年全国初中数学联赛江西省初赛试题
第 一 试
一. 选择题(每小题7分,共42分)
1、化简2648
1353++-+的结果是( ).
(A )、2; (B )、
22; (C )2; (D )、2
1
. 2、△ABC 是一个等腰直角三角形,DEFG 是其内接正方形,H 是正方形的对角
线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为
( ).
(A)、12; (B)、13;(C)、26;(D)、30.
3、设ab ≠0,且函数b ax x x f 42)(21++=与b ax x x f 24)(22++=有相同的最小
值u ;函数a bx x x f 42)(23++-=与a bx x x f 24)(24++-=有相同的最大值v ;则u+v
的值( ).
(A)、必为正数;(B)、必为负数;(C)、必为0; (D)、符号不能确定.
4、若关于x 的方程
没有实根,那么,必有实根的方程是
( ).
(A)、
; (B)、; (C)、; (D)、. 5、正方形ABCD 中,E,F 分别是AB,BC 上的点,DE 交AC 于M ,AF 交BD 于
N ;若
AF 平分∠BAC ,DE ⊥AF ,;记BF
CF z ON BN y OM BE x ===,,,,则有( ). (A )、x>y>z ; (B )、x=y=z ;
(C )、x=y>z ; (D )、x>y=z .
6、将1,2,3,4,5,6,7,8这八个数分别填写于一个圆周八等分点上,使得圆
周上任两个相邻位置的数之和为质数, 如果圆周旋转后能重合的算作相同填
法,那么不同的填法有( ).
(A)、4种; (B)、 8种; (C)12种、; (D)、16种.
二、 填空题(每小题7分,共28分)
1、若k 个连续正整数之和为2010,则k 的最大值是 .
2、单位正三角形中,将其内切圆及三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则三角形剩下部分的面积为 .
3、圆内接四边形ABCD 的四条边长顺次为:
AB=2,BC=7,CD=6,DA=9,则四边形的面积为 .
4、在±1±2±3±5±20中,适当选择+、-号,可以得到不同代数和的个数
是 .
第 二 试
一、(20分)边长为整数的直角三角形,若其两直角边长a,b 是方程
k x k x 4)2(2++-=0的两根,求 k 的值并确定直角三角形三边之长.
二、(25分)如图,自△ABC 内的任一点P ,作三角形三条边的垂线: PD ⊥
BC ,PE ⊥CA ,PF ⊥AB ,若BD=BF,CD=CE ;证明:
AE=AF .
三、(25分)已知a,b,c 为正整数,且
c b b a ++33为有
理数,证明c b a c b a ++++2
22为整数. “《数学周报》杯”2010年全国初中数学竞赛试题
一、选择题(共5小题,每小题7分,共35分.
1.若10,20==c
b b a ,则
c b b a ++的值为( ). (A )2111 (B )1121 (C )21110 (D )11
210 2.若实数a ,b 满足022
12=++-b ab a ,则a 的取值范围是( ). (A )a (B )a 4 (C )a ≤或 a ≥4 (D )≤a ≤4
P D O y x C A B · 第9题
3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =32,BC =224-,
CD =24,则AD 边的长为( ).
(A )62 (B )64
(C )64+ (D )622+ 4.在一列数,,,321x x x ……中,已知11=x ,且当k ≥2时,
]}4
2[]41{[411----+=-k k x x k k (取整符号[a ]表示不超过实数的最大整数,例如[]=2,[]=0),则2010x 等于
( ).
(A) 1 (B) 2(C) 3(D) 4
5.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点
C 旋转180°得点P 3,点P 3绕点
D 旋转180°得点
P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).
(A )(2010,2) (B )(2010,
) (C )(2012,) (D )(0,2)
二、填空题
6.已知a =15-,则2a 3+7a 2-2a -12 的值等于 .
7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路
上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在
后,货车在客车与小轿车的正中间.过了10分钟,小轿车追
上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,
货车追上了客车,则t = .
8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,
0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M
(2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .
9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线
AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂
足为D .若CD =CF ,则AD
AE . 10.对于i =2,3,…,k ,正整数n 除以i 所得的余
数为i -1.若的最小值0n 满足30002000<<n ,则正
整数的最小值为 . 三、解答题(共4题,每题20分,共80分) A D
C
B 第3题图
11、如图:△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,
BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证:BC
EF PAD =∠tan . 12.如图,抛物线bx ax y +=2(a 0)与
双曲线x
k y =相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积
为3(O 为坐标原点).
(1)求实数a ,b ,k 的值;
(2)过抛物线上点A 作直线AC ∥x 轴,交
抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点
E 的
坐标. 13.求满足m m p p 28222-=++的所有素数p
和正整数m .
2009年全国初中数学江西赛区预赛试
题 (2009年3月22日上午9:30~11:30)
一、选择题(共5小题,每小题7分,满分35
分) 1、已知非零实数a 、b 满足|2a -
4|+|b+2|+(a-3)b 2 +4=2a ,则a+b 等于( )
A 、-1
B 、0
C 、1
D 、2
2、如图所示,菱形ABCD 边长为a ,点O 在对角
线AC
上一点,且OA=a ,OB=OC=OD=1,则a 等于( )
A 、21
B 、1
C 、51+
D 、251+ 3、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方形骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则关于x 、y 的方程组⎩⎨⎧=+=+2
23y x by ax 只有正数解的概率为( ) A 、112 B 、29 C 、518 D 、1336
4、如图1所示,在直角梯形ABCD 中,AB ∥CD ,
∠B=90°,动点P 从点B 出发,沿梯形的边由B →
C →
D →A 运动,设点P 运动的路程为x ,△ABP 的面
积为y ,把y 看作x 的函数,函数图象如图2所示,则△ABC 的面积为( )
A 、10
B 、16
C 、18
D 、32
5、关于x 、y 的方程29222=++y xy x 的整数解(x 、y )的组数为( )
A 、2组
B 、3组
C 、4组
D 、无穷多组
二、填空题(共5小题,每小题7分,共35分)
6、一自行车轮胎,若把它安装在前轮,则自行车行驶5000km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、
后轮胎。
如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时
报废,那么这辆自行车将能行驶 ;
7、已知线段AB 的中点为C ,以点C 为圆心,AB 长为半径作
圆,在线段AB 的延长线上取点D ,使得BD=AC ;再以点D 为圆心,
DA 的长位半径作圆,与⊙A 分别相交于点F 、G 两点,连接FG 交
AB 于点H ,则AH AB
的值为 ; 8、已知54321,,,,a a a a a
满足条件954321=++++a a a a a 的五个不同的整数,若b 是关于x 的方程2009))()()()((54321=-----a x a x a x a x a x
的整数根,则b 的值为 ;
9、如图所示,在△ABC 中,CD 是高,CE 为∠ACB 的
平
分线,若AC=15,,BC=20,CD=12,则CE 的长等于
10、10个人围成一个圆圈做游戏,游戏的规则是:每
个人心里都想好一个数,并把自己想好的数如实告诉两旁
的两个人,然后每个人将他两旁的两个人告诉他的数的平
均数报出来,若抱出来的数如图所示,则报3的人心里想
的数是 ;
三、解答题(共4小题,每题20分,共80分)
11、函数22)12(k x k x y +-+=的图像与x 轴的两个交
点是否都在直线x=1的右侧若是,请说明理由;若不一定是,请求出两个交点都在直线x=1的右侧时k 的取值范围
12、在平面直角坐标系xoy 中,我们把横坐标为整数,纵坐标为完成平方数的点称为“好点”,求二次函数4907)90(2--=x y 的图像上的所有“好点”的坐标.
13、如图,给定锐角△ABC ,BC <CA ,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过电D 、E 分别作l 的垂线,垂足分别为F 、G ,试比较线段DF 和EG 的大小,并证明你的结论
14、n 个正整数n a a a ,,,21⋯⋯
满足如下条件:20091321=<⋯⋯<<=n a a a a 、且n a a a ,,,21⋯⋯ 中任意n -1个不同的数的算术平均数都是正整数,求n 的最大值。
2009年初中数学竞赛江西赛区决赛试题
第一试
一、
选择题(每小题7分,共42分) 1、化简24712324712
3+----++的值是( ).
A 、2
B 、23
C 、36
D 、4
7. 2、a,b,c 是互不相同的实数, 则代数式)
)(())(())(())(())(())((222b c a c b x a x c c b a b a x c x b c a b a c x b x a ----+----+----经化简后得到( ). A 、2a B 、2b C 、2c D 、2x .
3、设实数a<b<c, x<y<x ,则下列四数中,值最小的一个数是( ).
A 、ax+by+cz
B 、cx+by+az
C 、bx+ay+cz
D 、ax+cy+bz
4、若△ABC 的三条边长AB=3,AC=4,BC=5,分别以A 、B 、C 为圆心作⊙A ,⊙B ,⊙C ,使得这两个圆两两相切,则⊙A ,⊙B ,⊙C 面积之比是( ).
A 、1:2:3
B 、3:4:5
C 、1:4:9
D 、9:16:25
5、数组{a,b,c,d},a<b<c<d 由不大于20的四个质数组成,且满足a+d=b+c,这种四元组的个数是( ).
A 、6
B 、8
C 、12
D 、16.
6、若一元二次方程02=++b ax x 的两根为整数,且两根的平方和为2009,则这种方程有( ).
A 、1个
B 、2个
C 、4个
D 、8个.
二、填空题(每小题7分,共28分)
7、从前20个正整数1,2,……20中选择5个不同的数填写在一个圆周上,使得圆周上每相邻两数之和都是平方数,你的填法是( ).(如果写成一行,首尾的数看成相邻).
8、若f(x)= 323232112121
-++-+++x x x x x ,
则f(1)+f(3)+f(5)+ …+f(2009)= .
9、若AD ,BE 为△ABC 的两条角平分线,I 为内心,若
C ,
D ,I ,
E 四点共圆,且DE=1,则ID= . 10、设1322+=k k
k a ,k 为自然数,令921a a a A ⋯++=,
921a a a B ⋯=,则B
A = . 第二试
三、 解答题(本题三大题,共70分)
11、(20分)若关于x 的方程
06821)14216()281(162234=+-+-+-+-a a x a x a x x 的各根为整数,求a 的值,并解此方程.
12、(25分)如图,△ABC 中,AB=AC ,D 是BC 上的任意一点,E ,F 分别是边AC ,AB 上的点,且DE ∥AB ,DF ∥AC ,作点D 关于EF 的对称点F ,
证明:PD 平分∠BPC ,且△PBC ∽△AEF.
13、(25分)将前300个正整数1、2、3、
4、…、300顺次在黑板上排成一行,然后划去两数1、2,而将这两数的和写在最后面,成为3、4、
5、
6、…300、3;接着,再划去前两数3、4,而将这两数的和写在最后面,成为5、6、
7、
8、…、300、3、7;象这样一直进行下去,直到黑板剩下一个数为止,试求黑板上出现过所以数之和(包括每次划去的数在内).
2009年全国初中数学联合竞赛试题
第一试
一、选择题(本题满分42分,每小题7分)
1. 设71a =,则32312612a a a +--= ( ) . B. 25. C. 4710. D. 4712+.
2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC =( ) A.72. B. 10. C. 1053
3.用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解的个数为 ( )
. B. 2. C. 3. D. 4.
4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为
( B )
A.314.
B. 37.
C. 12.
D. 47
. 5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直
径在矩形内作半圆,自点A 作半圆的切线AE ,则sin ∠CBE =
( ) 623. C. 1310 D C
E
6.设n 是大于1909的正整数,使得19092009n n --为完全平方数的n 的个数是 ( ) . B. 4. C. 5. D. 6.
二、填空题(本题满分28分,每小题7分)
1.已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是___ _____.
2. 设D 是△ABC 的边AB 上的一点,作DE m n 3.如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=____
4.已知,a b 是正整数,且满足15152(
)a b
+是整数,则这样的有序数对(,)a b 共有 对. 第二试
一、(本题满分20分)已知二次函数2(0)y x bx c c =++<的图象与x 轴的交点分别为A 、B ,与y 轴的交点为C.设△ABC 的外接圆的圆心为点P.
(1)证明:⊙P 与y 轴的另一个交点为定点.
(2)如果AB 恰好为⊙P 的直径且2ABC S △=,求b 和c 的值.
二.(本题满分25分)设CD 是直角三角形ABC 的斜边AD 上的高,1I 、2I 分别是△ADC 、△BDC 的内心,AC =3,BC =4,求1I 2I .
三.(本题满分25分)已知,,a b c 为正数,满足如下两个条件:
32a b c ++= ①
14
b c a c a b a b c bc ca ab +-+-+-++= ② 是否存在以,,a b c 为三边长的三角形如果存在,求出三角形的最大内角.
2008年全国初中数学联合竞赛试题
第一试
一、选择题(本题满分42分,每小题7分)
.1.设213a a +=,213b b +=,且a b ≠,则代数式
22
11a b +的值为 ( )
)(A 5. )(B 7. )(C 9. )(D 11. I 1 I 2
2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,
3EF =,则线段BE 的长为 ( )
)(A 185. )(B 4. )(C 215. )(D 245
. 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,
把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为
个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )
)(A 15. )(B 310. )(C 25. )(D 12
. 4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和
CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则 ( )
)(A BM CN >. )(B BM CN =.
)(C BM CN <. )(D BM 和CN 的大小关系不确定.
5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )
)(A 39()8. )(B 49()8. )(C 59()8. )(D 98
. 6、已知实数,x y 满足22(2008)(2008)2008x x y y --=,则
2007332322--+-y x y x 的值为( )
)(A 2008-. )(B 2008. )(C 1-. )(D 1.
二、填空题(本题满分28分,每小题7分)
1.设512a =,则5432322a a a a a a a
+---+=- . 2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且
5AM =135MAN ∠=︒,则四边形AMCN 的面积为
3.已知二次函数2y x ax b =++的图象与x 轴的两个交
点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b
的最大值和最小值分别为p ,q ,则p q +=
4.依次将正整数1,2,3,……,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是
第二试
一.(本题满分20分)1、已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥(1)恒成立.当乘积ab 取最小值时,求,a b 的值.
二.(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.
(1)证明:点O 在圆D 的圆周上.
(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.。
三.(本题满分25分)1、设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+求a ,b 的值.
2008年全国初中“数学周报”杯数学竞赛试题
一、选择题(共5小题,每小题6分,满分30分)
1.已知实数x y ,满足 42424233y y x x
-=+=,,则444y x +的值为( ). (A )7 (B )
113+ (C ) 713+ (D )5 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先
后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).
(A )512 (B )49 (C )1736 (D )12
3.有两个同心圆,大圆周上有4个不同的点,小圆周
上有2个不同的点,则这6个点可以确定的不同直线最少有
( ).
(A )6条 (B ) 8条 (C )10条 (D )12条
4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.
以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点
A 的一点,且D
B AB a ==,D
C 的延长线交圆O 于点E ,则AE 的长为( ).
(A )52a (B )1 (C )32
(D )a。