齐次线性方程组有非零解的条件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齐次线性方程组有非零解的条件
齐次线性方程组有非零解的条件是:
利用全选主元高斯消去法求解Ax=b(A是n阶矩阵,b是列向量),当A
的行列式det A != 0时,齐次线性方程组Ax = b才有非零解。
如果
满足这个条件,则齐次线性方程组Ax = b就有非零解。
具体来说,首先要明确的是,只有行列式det A 不等于0的矩阵A,才能用高斯消去法求出非零解。
如果行列式 det A 等于 0,那么A
就不可逆,齐次线性方程组将一直没有解。
因此,为了使齐次线性方
程组有非零解,必须确保行列式det A != 0。
除了行列式det A 的条件外,齐次线性方程组有非零解还要满足
另一个条件,即矩阵A 和列向量b的维数必须相同,即n=m(m为列向
量b的维数,n为A的阶数)。
另外,要求各个方程的右边的b的分量
都不全为0。
从上面的分析可知,齐次线性方程组有非零解的条件是:
(1)行列式det A 不等于0;
(2)矩阵A和列向量b的维数必须相同,即n=m;
(3)各个方程的右边的b的分量都不全为0。
此外,还要确保齐次线性方程组的系数矩阵A在最终得到非零解后,它能满足A×x=b。
如果不满足,那么齐次线性方程组就无法求出
非零解。
而如果满足,那么就可以用全选主元高斯消去法求出非零解,从而解决齐次线性方程组 Ax = b 的有非零解问题。