张家港市人教版七年级上册数学期末试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张家港市人教版七年级上册数学期末试卷及答案.doc
一、选择题
1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元
B .(b ﹣10)元
C .(10a ﹣b )元
D .(b ﹣10a )元
2.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9 B .327-
C .3-
D .(3)--
3.下列选项中,运算正确的是( )
A .532x x -=
B .2ab ab ab -=
C .23a a a -+=-
D .235a b ab +=
4.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )
A .4n+1
B .4n+2
C .4n+3
D .4n+5
5.若x=﹣1
3
,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7
B .﹣1
C .9
D .7
6.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③
D .④
7.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:
||||||a b b c a c -+-=-,则点B ( )
A .在点 A, C 右边
B .在点 A,
C 左边
C .在点 A, C 之间
D .以上都有可能
8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )
A .
B .
C .
D .
9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .
D .
10.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2
B .(3a ﹣b )2
C .3a ﹣b 2
D .(a ﹣3b )2
11.如图的几何体,从上向下看,看到的是( )
A .
B .
C .
D .
12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯
B .5510⨯
C .6510⨯
D .510⨯
二、填空题
13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.
14.5535______. 15.|-3|=_________;
16.单项式2
2
ab -的系数是________.
17.化简:2xy xy +=__________.
18.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元. 19.分解因式: 2
2xy
xy +=_ ___________
20.小马在解关于x 的一元一次方程3232
a x
x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.
21.若
2a +1与212
a +互为相反数,则a =_____. 22.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.
23.当12点20分时,钟表上时针和分针所成的角度是___________.
24.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.
三、压轴题
25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.
(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.
(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.
26.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.
27.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.
(1)求出数轴上B点对应的数及AC的距离.
(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.
①当P点在AB之间运动时,则BP=.(用含t的代数式表示)
②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.
③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数
28.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.
问题解决:
(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);
(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A
点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).
①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;
②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.
29.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.
观察下列按照一定规律堆砌的钢管的横截面图:
用含n的式子表示第n个图的钢管总数.
(分析思路)
图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.
如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)
(解决问题)
(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.
S=1+2 S=2+3+4 _____________ ______________
(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:
_______ ____________ _______________ _______________
(3)用含n的式子列式,并计算第n个图的钢管总数.
30.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.
(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;
(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.
31.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).
(1)当甲追上乙时,x = .
(2)请用含x的代数式表示y.
当甲追上乙前,y= ;
当甲追上乙后,甲到达C之前,y= ;
当甲到达C之后,乙到达C之前,y= .
问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.
32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若AC=4cm,求DE的长;
(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据题意知:花了10a元,剩下(b﹣10a)元.
【详解】
购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.
故选D.
【点睛】
本题考查了列代数式,能读懂题意是解答此题的关键.
2.B
解析:B
【解析】
【分析】
由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.
【详解】
解:,故排除A;
=3-,选项B正确;
C. 3-=3,故排除C;
--=3,故排除D.
D. (3)
故选B.
【点睛】
本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.
3.B
解析:B
【解析】
【分析】
根据整式的加减法法则即可得答案.
【详解】
A.5x-3x=2x,故该选项计算错误,不符合题意,
-=,计算正确,符合题意,
B.2ab ab ab
C.-2a+3a=a,故该选项计算错误,不符合题意,
D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,
故选:B.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则是解题关键.
4.A
解析:A
【解析】
试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.
5.D
解析:D 【解析】 【分析】
将x 与y 的值代入原式即可求出答案. 【详解】 当x=﹣
1
3
,y=4, ∴原式=﹣1+4+4=7 故选D . 【点睛】
本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.
6.A
解析:A 【解析】 【分析】
根据点到直线的距离,直线的性质,线段的性质,可得答案. 【详解】
①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确; ②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误; ③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误; ④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确. 故选A . 【点睛】
本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.
7.C
解析:C 【解析】 【分析】
根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】
∵绝对值表示数轴上两点的距离
a b -表示a 到b 的距离
b c -表示b 到c 的距离 a c -表示a 到c 的距离
∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】
本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.
8.C
解析:C 【解析】 【分析】
利用棱柱的展开图中两底面的位置对A 、D 进行判断;根据侧面的个数与底面多边形的边数相同对B 、C 进行判断. 【详解】
棱柱的两个底面展开后在侧面展开图相对的两边上,所以A 、D 选项错误; 当底面为三角形时,则棱柱有三个侧面,所以B 选项错误,C 选项正确. 故选:C . 【点睛】
本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.
9.C
解析:C 【解析】 【分析】
先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可. 【详解】 移项得,x >2, 在数轴上表示为:
故选:C . 【点睛】
本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.
10.B
解析:B 【解析】
用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -. 故选B.
11.A
解析:A 【解析】 【分析】
根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可. 【详解】
从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A 符合题意, 故选:A . 【点睛】
本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.
12.B
解析:B 【解析】 【分析】
科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】
将50万用科学记数法表示为5510⨯,故B 选项是正确答案. 【点睛】
此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.
二、填空题
13.【解析】 【分析】
设小长方形卡片的长为2m ,则宽为m ,观察图2可得出关于m 的一元一次方程,解之即可求出m 的值,设盒子底部长方形的另一边长为x ,根据长方形的周长公式结合图2与图3阴影部分周长之比为
解析:【解析】 【分析】
设小长方形卡片的长为2m ,则宽为m ,观察图2可得出关于m 的一元一次方程,解之即可求出m 的值,设盒子底部长方形的另一边长为x ,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x 的一元一次方程,解之即可得出x 的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.
【详解】
解:设小长方形卡片的长为2m ,则宽为m ,
依题意,得:2m +2m =4,
解得:m =1,
∴2m =2.
再设盒子底部长方形的另一边长为x ,
依题意,得:2(4+x ﹣2):2×2(2+x ﹣2)=5:6,
整理,得:10x =12+6x ,
解得:x =3,
∴盒子底部长方形的面积=4×3=12.
故答案为:12.
【点睛】
本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
14.【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:,5,都大于0,
则,

故答案为:.
【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进
5<<
【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:50,
则62636555=<=<,
5<<,
5<
<. 【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 15.3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.
故答案为3.
解析:3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
16.【解析】
【分析】
直接利用单项式的系数的概念分析得出即可.
【详解】
解:单项式的系数是,
故答案为:.
【点睛】
此题主要考查了单项式,正确把握相关定义是解题关键.
解析:1
2
-
【解析】
【分析】
直接利用单项式的系数的概念分析得出即可.
【详解】
解:单项式
2
2
ab
-的系数是
1
2
-,
故答案为:
1 2 -.
【点睛】
此题主要考查了单项式,正确把握相关定义是解题关键.
17..
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:
故填.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:23.xy xy xy +=
故填3xy .
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.
18.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
19.【解析】
【分析】
原式提取公因式xy ,即可得到结果.
【详解】
解:原式=xy (2y +1),
故答案为:xy (2y +1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本 解析:xy(2y 1)+
【解析】
【分析】
原式提取公因式xy ,即可得到结果.
解:原式=xy(2y+1),
故答案为:xy(2y+1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.20.3
【解析】
【分析】
先根据题意得出a的值,再代入原方程求出x的值即可.
【详解】
∵方程的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x,解得x=3.
故答案为3
解析:3
【解析】
【分析】
先根据题意得出a的值,再代入原方程求出x的值即可.
【详解】
∵方程32
3
2
a x
x
+
=的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x,解得x=3.
故答案为3
【点睛】
本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.21.﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.
【详解】
根据题意得:
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】
根据题意得:a2a1
10 22
+
++=
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:﹣1
【点睛】
本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.
22.5
【解析】
【分析】
根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.
【详解】
∵△ABE向右平移3cm得到△DCF,
∴BC=3cm,
∵BE=8cm,
∴C
解析:5
【解析】
【分析】
根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.
【详解】
∵△ABE向右平移3cm得到△DCF,
∴BC=3cm,
∵BE=8cm,
∴CE=BE-BC=8-3=5cm,
故答案为:5.
【点睛】
本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.23.110°
【解析】
12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.
【详解】
解:因为
解析:110°
【解析】
【分析】
12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.
【详解】
解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,
所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,
分针转过的角度是:6°×20=120°,
所以12时20分钟时分针与时针的夹角120°-10°=110°.
故答案为:110°
【点睛】
本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.
24.﹣3cm
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.
故答案为:﹣3
解析:﹣3cm
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.
故答案为:﹣3cm.
【点睛】
此题主要考查有理数的应用,解题的关键是熟知有理数的意义.
25.(1)10;(2)
21
2
±;(3)
28
8.
5
±±,
【解析】
【分析】
(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.
(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.
(3)画数轴,结合数轴分四种情况讨论计算即可.
【详解】
(1)解:若b=-4,则a的值为 10
(2)解:当A在原点O的右侧时(如图):
设OB=m,列方程得:m+3m=14,
解这个方程得,
7
m
2 =,
所以,OA=21
2
,点A在原点O的右侧,a的值为
21
2
.
当A在原点的左侧时(如图),
a=-21 2
综上,a的值为±21
2
.
(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5
.
当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.
当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5
.
当点A在原点的左侧,点B在点C的左侧时,图略,c=8.
综上,点c的值为:±8,±28 5
.
本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.
26.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;
(2)依题意设∠2=x,列等式,解方程求出即可;
(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.
【详解】
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,
∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=1
2
∠COM=82.5°,∠MOE=
1
2
∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
【点睛】
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
27.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4
【分析】
(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;
(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;
②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;
③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC
列出方程,进而求出P点在数轴上对应的数.
【详解】
(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,
∴B点对应的数为60﹣30=30;
∵C点到A点距离是B点到A点距离的4倍,
∴AC=4AB=4×30=120;
(2)①当P点在AB之间运动时,
∵AP=3t,
∴BP=AB﹣AP=30﹣3t.
故答案为30﹣3t;
②当P点是A、B两个点的中点时,AP=1
2
AB=15,
∴3t=15,解得t=5;
当B点是A、P两个点的中点时,AP=2AB=60,
∴3t=60,解得t=20.
故所求时间t的值为5或20;
③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.
∵AQ﹣BP=AB,
∴5x﹣3x=30,
解得x=15,
此时P点在数轴上对应的数是:60﹣5×15=﹣15;
第二次相遇是点Q到达C点后返回到A点的途中.
∵CQ+BP=BC,
∴5(x﹣24)+3x=90,
解得x=105
4

此时P点在数轴上对应的数是:30﹣3×105
4
=﹣48
3
4

综上,相遇时P 点在数轴上对应的数为﹣15或﹣48
34
. 【点睛】 本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.
28.(1)1+a 或1-a ;(2)
12或52;(3)1≤b≤7. 【解析】
【分析】
(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;
(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②
【详解】
解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;
点N 在点M 左侧时,点N 表示的数是1-a ;
(2)①b=4时,AB 相距3个单位,
当点A 在点B 左侧时,t=(3-2)÷(3-1)=
12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52
; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,
∴1-d+3×(3-1)≤6,
解得d ≥1,
∴d=1,
当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,
∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7
∴1<d ≤7,
综合两种情况,d 的取值范围是1≤d ≤7.
故答案为(1)1+a 或1-a ;(2)①
12或52
;②1≤b≤7. 【点睛】
本题考查了数轴上两点之间的距离和动点问题.
29.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析
【解析】
【分析】
先找出前几项的钢管数,在推出第n项的钢管数.
【详解】
(1)3456;45678
S S
=+++=++++
(2)方法不唯一,例如:
12
S=+1233
S=+++123444
S=+++++12345555
S=+++++++(3)方法不唯一,例如:
()()
12 (2)
S n n n n
=++++++
()()
()()
=.....12.....
1
11
2
n n n n
n n n n
+++++++
=+++
()
3
1
2
n n
=+
【点睛】
此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.
30.(1)
1
3
-;(2)P出发
2
3
秒或
4
3
秒;(3)见解析.
【解析】
【分析】
(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;
(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;
(3)设点C表示的数为a,根据两点间的距离进行求解即可得.
【详解】
(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;
若P,Q两点相遇,则有
-3+2t=1-t,
解得:t=
4
3


41
32
33
-+⨯=-,
∴点P和点Q相遇时的位置所对应的数为
1
3
-;
(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,
若点P 和点Q 在相遇前相距1个单位长度,
则()2t 1t 141+⨯+=-, 解得:2t 3
=; 若点P 和点Q 在相遇后相距1个单位长度,
则2t+1×(t+1) =4+1, 解得:4t 3
=, 综合上述,当P 出发23秒或43
秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×
23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+
53|+|a+23|, 要使|a+3|+|a+53|+|a+23
|最小, 当点C 与P 重合时,即a=-
53
时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43
, 此时满足条件的点C 即为Q 点,所表示的数为43-
, 综上所述,点C 所表示的数分别为-
53和-43
. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.
31.问题一、(1)
32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011
. 【解析】
【分析】
问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。

【详解】
问题一:(1)当甲追上乙时,甲的路程=乙的路程+3
所以,863x x =+。

相关文档
最新文档