2020-2021初三数学上期末试题附答案(6)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初三数学上期末试题附答案(6)
一、选择题
1.下列图形中既是轴对称图形又是中心对称图形的是( ) A .正三角形 B .平行四边形 C .正五边形 D .正六边形 2.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023
B .2021
C .2020
D .2019
3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知
4EF CD ==,则球的半径长是( )
A .2
B .2.5
C .3
D .4
4.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是
( )
A .y =﹣2(x +1)2+1
B .y =﹣2(x ﹣1)2+1
C .y =﹣2(x ﹣1)2﹣1
D .y =﹣2(x +1)2﹣1
5.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )
A .32×
20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540
D .(32﹣x )(20﹣x )+x 2=540
6.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣
12x+k=0的两个根,则k 的值是( ) A .27
B .36
C .27或36
D .18
7.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )
A .
6
π B .
3
π C .
2π-12
D .
12
8.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( ) A .400(1)640x +=
B .2400(1)640x +=
C .2400(1)400(1)640x x +++=
D .2400400(1)400(1)640x x ++++=
9.若关于x 的一元二次方程()2
6230a x x --+=有实数根,则整数a 的最大值是( ) A .4
B .5
C .6
D .7
10.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( ) A .顶点坐标为(﹣3,2) B .对称轴为直线y=3
C .当x≥3时,y 随x 增大而增大
D .当x≥3时,y 随x 增大而减小
11.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( ) A .
14
B .
12
C .
23
D .
34
12.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )
A .
B .
C .
D .
二、填空题
13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.
14.如图,已知抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a 1x 2+b 1x+c 1,则下列结论正确的是_________.(写出所有正确结论的序号)
①b >0;②a ﹣b+c <0;③阴影部分的面积为4;④若c=﹣1,则b 2=4a .
15.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.
16.如图,AB 为O e 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O e 的
半径为______.
17.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____. 18.已知二次函数
,当x _______________时,随的增大而减小.
19.如图,点A 是抛物线2
4y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.
20.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =
2,则图中阴影部分的面积等于_____.
三、解答题
21.在平面直角坐标系xOy 中,抛物线y =a 2x -4ax 与x 轴交于A ,B 两点(A 在B 的左侧). (1)求点A ,B 的坐标; (2)已知点C (2,1),P (1,-
3
2
a ),点Q 在直线PC 上,且Q 点的横坐标为4. ①求Q 点的纵坐标(用含a 的式子表示);
②若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.
22.有四张完全相同的卡片,正面分别写有四个角度现将这四张卡片洗匀后,背面朝上;
(1)若从中任意抽取一张,求抽到锐角卡片的概率;
(2)若从中任意抽取两张,求抽到两张角度恰好互余卡片的概率;
23.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件 (1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的
函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大; (3)商场的营销部结合上述情况,提出了A 、B 两种营销方案 方案A :该文具的销售单价高于进价且不超过30元;
方案B :每天销售量不少于10件,且每件文具的利润至少为25元 请比较哪种方案的最大利润更高,并说明理由
24.已知抛物线2
y x bx c =++经过()()1,0,3,0A B -两点.
(1)求抛物线的解析式和顶点坐标;
(2)设点P 为抛物线上一点,若6PAB S ∆=,求点P 的坐标.
25.如图,在平面直角坐标系xOy 中,A (﹣2,0),B (0,3),C (﹣4,1).以原点O 为旋转中心,将△ABC 顺时针旋转90°得到△A 'B 'C ',其中点A ,B ,C 旋转后的对应点分别为点A ',B ',C '.
(1)画出△A 'B 'C ',并写出点A ',B ',C '的坐标; (2)求经过点B ',B ,A 三点的抛物线对应的函数解析式.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
根据轴对称图形与中心对称图形的概念求解. 【详解】
A. 是轴对称图形,不是中心对称图形,故错误;
B. 不是轴对称图形,是中心对称图形,故错误;
C. 是轴对称图形,不是中心对称图形,故错误;
D. 是轴对称图形,也是中心对称图形,故正确. 故答案选:D. 【点睛】
本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.
2.A
解析:A 【解析】 【分析】
根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解. 【详解】
a ,
b 是方程230x x +-=的两个实数根,
∴23b b =-,1a b +=-,-3ab =,
∴222201932019a b a b -+=-++()2
220161620162023a b ab =+-+=++=; 故选A . 【点睛】
本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.
3.B
解析:B 【解析】 【分析】
取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可. 【详解】 如图:
EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF , ∵四边形ABCD 是矩形, ∴∠C=∠D=90°, ∴四边形CDMN 是矩形, ∴MN=CD=4, 设OF=x ,则ON=OF , ∴OM=MN-ON=4-x ,MF=2,
在直角三角形OMF 中,OM 2+MF 2=OF 2, 即:(4-x )2+22=x 2, 解得:x=2.5, 故选B . 【点睛】
本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.
4.B
解析:B 【解析】 【详解】
∵函数y=-2x 2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为
y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
5.B
解析:B
【解析】
【分析】
先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.
【详解】
利用图形平移可将原图转化为下图,设道路的宽为x,
根据题意得:(32-x)(20-x)=540.
故选B.
【点睛】
本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
6.B
解析:B
【解析】
试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
试题解析:分两种情况:
(1)当其他两条边中有一个为3时,将x=3代入原方程,
得:32-12×3+k=0
将k=27代入原方程, 得:x 2-12x+27=0 解得x=3或9
3,3,9不能组成三角形,不符合题意舍去; (2)当3为底时,则其他两边相等,即△=0, 此时:144-4k=0 解得:k=36 将k=36代入原方程, 得:x 2-12x+36=0 解得:x=6
3,6,6能够组成三角形,符合题意. 故k 的值为36. 故选B .
考点:1.等腰三角形的性质;2.一元二次方程的解.
7.A
解析:A 【解析】 【分析】
先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD . 【详解】
∵∠ACB=90°,AC=BC=1,
∴,
∴S 扇形ABD =
2
30=
360
6
ππ⨯
,
又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE , ∴Rt △ADE ≌Rt △ACB ,
∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6
π, 故选A. 【点睛】
本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
8.B
解析:B 【解析】 【分析】
根据平均年增长率即可解题.
解:设这两年的年净利润平均增长率为x,依题意得:
()2
4001640
x
+=
故选B.
【点睛】
本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 9.B
解析:B
【解析】
【分析】
根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再
求出两不等式的公共部分得到a≤19
3
且a≠6,然后找出此范围内的最大整数即可.
【详解】
根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
解得a≤19
3
且a≠6,
所以整数a的最大值为5.
故选B.
【点睛】
本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.
10.C
解析:C
【解析】
∵ y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,
∴当3
x≥时,y随x的增大而增大.
∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确的.
故选C.
11.B
解析:B
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.
【详解】
解:画树状图如下:
,
一共12种可能,两人摸出的小球颜色相同的有6种情况,
所以两人摸出的小球颜色相同的概率是
6
12
=
1
2
,
故选:B.
【点睛】
此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
12.D
解析:D
【解析】
【分析】
【详解】
∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;
当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.
故选B.
二、填空题
13.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:
(410) (510) (610) (810) (910) (109) (4
解析:
7 15
.
【解析】
【分析】
列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.
【详解】
解:从6张牌中任意抽两张可能的情况有:
(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5)
(4,5) (5,4) (6,4) (8,4) (9,4) (10,4)
∴一共有30种情况,点数和为偶数的有14个, ∴点数和是偶数的概率是
1473015
=; 故答案为
715
. 【点睛】
本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.
14.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判
解析:③④ 【解析】 【分析】
①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2b
a
>0,可得b <0,据此判断即可.
②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.
④根据函数的最小值是2
424ac b a
-=-,判断出c=﹣1时,a 、b 的关系即可.
【详解】
解:∵抛物线开口向上,
∴a >0,又∵对称轴为x=﹣
2b
a
>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确;
∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,
∴平行四边形的高是2,∴阴影部分的面积是:2×
2=4,∴结论③正确; ∵2
424ac b a
-=-,c=﹣1,∴b 2=4a ,∴结论④正确.
故答案为:③④. 【点睛】
本题考查二次函数图象与几何变换;二次函数图象与系数的关系.
15.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x ﹣2)(x ﹣5)=0解
得:x1=2x2=5故等腰三角形的腰长只能为55底边长
解析:12
【解析】
【分析】
首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.
【详解】
解:x2﹣7x+10=0
(x﹣2)(x﹣5)=0,
解得:x1=2,x2=5,
故等腰三角形的腰长只能为5,5,底边长为2,
则其周长为:5+5+2=12.
故答案为:12.
【点睛】
本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 16.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD 即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:
解析:5
【解析】
【分析】
连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.
【详解】
解:连接OD,
∵CD⊥AB于点E,
∴DE=CE= 1
2
CD=
1
2
×8=4,∠OED=90°,
由勾股定理得:2222
345
OE DE
+=+=,
即⊙O的半径为5.
故答案为:5.
【点睛】
本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.17.(﹣22)【解析】【分析】利用旋转的性质得到
OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角
形求出OHP3H从而得到P3点坐标【详解】解:如图∵点
解析:(﹣2,23).
【解析】
【分析】
利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.
【详解】
解:如图,∵点P0的坐标为(2,0),
∴OP0=OP1=2,
∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,
∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,
作P3H⊥x轴于H,
OH=1
2
OP3=2,P333
∴P3(-2,3
故答案为(-2,3
【点睛】
本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
18.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质
解析:<2(或x≤2).
【解析】
试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.
考点:二次函数的性质
19.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线
x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°
解析:(2,2)或(2,-1) 【解析】
∵抛物线y=x 2-4x 对称轴为直线x=-
4
22
-= ∴设点A 坐标为(2,m ),
如图所示,作AP ⊥y 轴于点P ,作O′Q ⊥直线x=2,
∴∠APO=∠AQO ′=90°, ∴∠QAO ′+∠AO ′Q=90°, ∵∠QAO ′+∠OAQ=90°, ∴∠AO ′Q=∠OAQ , 又∠OAQ=∠AOP , ∴∠AO ′Q=∠AOP , 在△AOP 和△AO′Q 中,
APO AQO AOP AO Q AO AO ∠∠'⎧⎪
∠∠'⎨⎪'⎩
===
∴△AOP ≌△AO ′Q (AAS ), ∴AP=AQ=2,PO=QO′=m , 则点O ′坐标为(2+m ,m-2),
代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ), 解得:m=-1或m=2,
∴点A 坐标为(2,-1)或(2,2), 故答案是:(2,-1)或(2,2).
【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O ′的坐标是解题的关键.
20.-1【解析】由题意得ABBC 于DBC 于EBC 交BC 于FAB=勾股定理得AE=AD=1DB=-1
2-1 【解析】
由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .
Q AB 2,勾股定理得∴AE =AD=1,∴DB 2-1
2211
2122
ABE DBF S S S AE BD =-=
-=-V V 阴影.
三、解答题
21.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0. 【解析】 【分析】
(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标; (2)①设直线PC 的解析式为,将点P (1,-
3
2
a ),C (2,1)代入可解得3
1,13.2
k a b a =+=--
()3
113.2
y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a
②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围. 【详解】
(1)令y =0,则a 2x -4ax =0. 解得 120, 4.x x == ∴ A (0,0),B (4,0)
(2)①设直线PC 的解析式为.y kx b =+ 将点P (1,-
3
2
a ),C (2,1)代入上式, 解得3
1,13.2
k a b a =+=-- ∴y=(1+
3
2
a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4, ∴Q 点的纵坐标为3+3a
②当a >0时,如图1,不合题意; 当a <0时,由图2,图3可知,3+3a≥0. ∴a≥-1.
∴符合题意的a 的取值范围是 -1≤a <0.
图1 图2 图3
【点睛】
本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.
22.(1)3
4
;(2)
1
6
【解析】
【分析】
(1)利用四张卡片有三张锐角卡片即可得出答案;
(2)利用列表法得出多少可能结果,找到两张角度恰好互余卡片的可能结果即可得出答案.【详解】
解:(1)一共有四张卡片,其中写有锐角的卡片有三张,
因此P(抽到写有锐角卡片)
3 4 =
(2)列表如下:
36︒54︒144︒64︒36︒90︒180︒100︒54︒90︒198︒118︒144︒180︒198︒208︒64︒100︒118︒208︒
所以(抽到两张角度恰好互余卡片)
1 6 =
【点睛】
本题考查了概率的求法,根据题意得出总数与可能的结果数是解题的关键.
23.(1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;
(3) A方案利润更高.
【解析】
【分析】
试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.
(2)根据(1)式列出的函数关系式,运用配方法求最大值.
(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.
【详解】
解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.
(2)∵w=-10x2+700x-10000=-10(x-35)2+2250
∴当x=35时,w有最大值2250,
即销售单价为35元时,该文具每天的销售利润最大.
(3)A方案利润高,理由如下:
A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,
∴当x=30时,w有最大值,此时,最大值为2000元.
B 方案中:,解得x的取值范围为:45≤x≤49.
∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,
∴当x=45时,w有最大值,此时,最大值为1250元.
∵2000>1250,
∴A方案利润更高
24.(1)抛物线的解析式为y=x2-2x-3,顶点坐标为(1,-4);(2)P点坐标为(1 73)或(17,3)或(0,-3)或(2,-3).
【解析】
【分析】
(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点坐标;
(2)设P(x,y),根据三角形的面积公式以及S△P AB=6,即可算出y的值,代入抛物线解析式即可得出点P的坐标.
【详解】
解:(1)把A(-1,0)、B(3,0)分别代入y=x2+bx+c中,
得:
10 930
b c
b c
-+
⎧
⎨
++
⎩
=
=
,
解得:
2
3 b
c
=-
⎧
⎨
=-
⎩
,
∴抛物线的解析式为y=x2-2x-3.∵y= x2-2x-3=(x-1)2-4,
∴顶点坐标为(1,-4).
(2)∵A(-1,0)、B(3,0),∴AB=4.
设P(x,y),则S△P AB=1
2
AB•|y|=2|y|=6,
∴|y|=3,
∴y=±3.
①当y=3时,x2-2x-3=3,解得:x1=1+7,x2=1-7,
此时P点坐标为(1+7,3)或(1-7,3);
②当y=-3时,x2-2x-3=-3,解得:x1=0,x2=2,
此时P点坐标为(0,-3)或(2,-3).
综上所述,P点坐标为(1+7,3)或(1-7,3)或(0,-3)或(2,-3).【点睛】
本题考查了待定系数法求函数解析式、三角形的面积公式以及二次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出函数解析式;(2)设出点P的坐标,找出关于y的方程.
25.(1)见解析;(2)抛物线的解析式为y=﹣1
2
x2+
1
2
x+3.
【解析】
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可.
(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入求出a即可.【详解】
解:(1)如图△A'B'C'即为所求.A′(0,2),B′(3,0),C′(1,4)
(2)设抛物线的解析式为y=a(x+2)(x﹣3),
把B(0,3)代入得到a=﹣1
2
,
∴抛物线的解析式为y=﹣1
2
x2+
1
2
x+3.
【点睛】
本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.。