三年高考(2016-2018)数学(理)真题分类解析:专题05-函数图象与方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05 函数图像与方程
考纲解读明方向
1.高考主要考查由函数解析式画出函数的图象,两个函数图象的交点出现的情况.近几年考查了用图象表示函数.
2.在数学中,由“形”到“数”比较明显,由“数”到“形”需要意识,而试题中主要是由“数”到“形”.在解答题中,要注意推理论证的严密性,避免出现以图代证的现象,利用图象研究函数的性质,特别是在判断非常规方程根的个数时,此法有时“妙不可言”,这是数形结合思想在“数”中的重要体现.
分析解读
函数与方程思想是中学数学最重要的思想方法之一,由于函数图象与x轴的交点的横坐标就是函数的零点,所以可以结合常见的二次函数、对数函数、三角函数等内容进行研究.本节内容在高考中分值为5分左右,属于难度较大题.在备考时,注意以下几个问题:
1.结合函数与方程的关系,求函数的零点;
2.结合零点存在性定理或函数的图象,对函数是否存在零点进行判断;
3.利用零点(方程实根)的存在性求有关参数的取值或范围是高考中的热点问题.
命题探究练扩展
2018年高考全景展示
1.【2018年浙江卷】函数y=sin2x的图象可能是
A. B.
C. D.
【答案】D
【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.
详解:令,因为,所以为
奇函数,排除选项A,B;因为时,,所以排除选项C,选D.
点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.
2.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是
A. [–1,0)
B. [0,+∞)
C. [–1,+∞)
D. [1,+∞)
【答案】C
详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.
点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.
3.【2018年理数全国卷II】函数的图像大致为
A. A
B. B
C. C
D. D
【答案】B
点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.
4.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.
【答案】
【解析】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果. 详解:分类讨论:当时,方程即,整理可得:,很明显
不是方程的实数解,则,当时,方程即,整理可得:
,很明显不是方程的实数解,则,令,其中
,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.
点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
5.【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.
【答案】–3
【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.
点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.
6.【2018年全国卷Ⅲ理】函数在的零点个数为________.
【答案】
【解析】分析:求出的范围,再由函数值为零,得到
的取值可得零点个数。
详解:,
,由题可知
,或
,解得
,
或
,故有3个零点。
点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。
2017年高考全景展示
1.【2017山东,理10】已知当0,1x ∈时,函数1y mx =-的图象与y m =
的图象有且只有一
个交点,则正实数m 的取值范围是 (A )(]
)
0,1
23,⎡+∞⎣
(B )(][)0,13,+∞
(C )(
)
23,⎡+∞⎣
(D )(
[)3,+∞
【答案】B
【考点】函数的图象、函数与方程及函数性质的综合应用. 【名师点睛】已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
1.【2016高考新课标1卷】函数y
(A )(B )
(C )(D )
【答案】D
【解析】函数f (x )=2x 2–e |x |
在[–2,2]上是偶函数,其图象关于y 轴对称,因为
22(2)8,081f e e =-<-<,所以排除,A B 选项;当[]0,2x ∈时,4x y x e '=-有一零点,设为0x ,当
0(0,)x x ∈时,()f x 为减函数,当0(,2)x x ∈时,()f x 为增函数.故选D.
考点:函数图像与性质
【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.
2.【2016高考天津理数】已知函数f (x )=2(4,0,
log (1)13,0
3)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递
减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,
23] (B )[23,34
] (C )[13,2
3]
{
34
}(D )[13,2
3)
{
3
4
} 【答案】C
考点:函数性质综合应用
【名师点睛】已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.
3. 【2016年高考北京理数】设函数33,()2,x x x a
f x x x a ⎧-≤=⎨->⎩
.
①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________. 【答案】2,(,1)-∞-. 【解析】
试题分析:如图作出函数3
()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,
(1,2)B -,由2'()33g x x =-,知1x =是函数()g x 的极大值点,
①当0a =时,33,0
()2,0
x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;
②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由3
32a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.
考点:1.分段函数求最值;2.数形结合的数学思想.
【名师点睛】1.分段函数的函数值时,应首先确定所给自变量的取值属于哪一个范围,然后选取相应的对应关系.若自变量值为较大的正整数,一般可考虑先求函数的周期.若给出函数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否属于相应段自变量的范围;2.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将大大缩短我们的判断过程.
【2016高考山东理数】已知函数2||,
()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩
其中0m >,若存在实数b ,使得关于x
的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 【答案】()3,+∞ 【解析】 试题分析:
画出函数图象如下图所示:
由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即
2224,30m m m m m m m >-⋅+->,解得3m >
考点:1.函数的图象与性质;2.函数与方程;3.分段函数
【名师点睛】本题主要考查二次函数函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好的考查考生数形结合思想、转化与化归思想、基本运算求解能力等.。