【函数与导数压轴题突破】8、巧辩存在任意问题

合集下载

导数、数列压轴题的破解策略:合理巧设函数与导数压轴题

导数、数列压轴题的破解策略:合理巧设函数与导数压轴题

合理“巧设”,轻松应对函数与导数压轴题函数与导数的交汇问题经常出现在压轴题(包括客观题和主观题中的压轴题)位置.解决这类问题时,往往会遇到某些难以确定的根、交点、极值点或难以计算的代数式.倘若迎难而上,往往无功而返;这时,放弃正面求解所需要的量,先设它为某字母,再利用其满足的条件式实行整体代换以达到消元或化简的效果.下面通过介绍几种具体的“设”的方法来解决这类难题.一、根据函数的单调性,巧设自变量【例1】(2013四川卷理)设函数()f x =,a R e ∈为自然对数的底数),若曲线sin y x =上存有点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ).A. []1,eB. 11,1e -⎡⎤-⎣⎦C. []1,1e +D. 11,1e e -⎡⎤-+⎣⎦【解析】 易知()f x =.设0()f t y =……… ①,又00()()y f f y =,由单调性则0()t f y =……… ②. 下面证明0t y =.若0t y ≠,由单调性则0()f t y ≠,则()00()f y f y ≠与已知矛盾,.所以必有0t y =. 代入②即00()f y y =.曲线sin y x =上存有点()00,x y ,使得00()f y y =x 在[]0,1上存有解.即2x e x x a +-=在[]0,1x ∈上有解.设2()x h x e x x =+-,则()12x h x e x '=+-.在[]0,1x ∈上12x e +≥,22x ≤,所以()120x h x e x '=+-≥,则()h x 在[]0,1上单调递增,所以1(0)()(1)h h x h e =≤≤=.故[]1,a e ∈. 故选A.【评注】由()f x 的单调性可知, 对于00(())f f y y =,则必存有唯一的自变量t ,使得0()f t y =,从而有0()t f y =.这样方便表达.【变式1】(2015·石家庄高三教学检测一)设函数()2x f x e x a =+-(,a R e ∈为自然对数的底数),若曲线sin y x =上存有点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ).A. 11,1e e -⎡⎤-+⎣⎦ B. []1,1e + C. [],1e e + D. []1,e【答案】易知()2x f x e x a =+-为单调递增函数.同例1,有00()f y y =.曲线sin y x =上存有点()00,x y ,使得00()f y y =,等价为:()2x f x e x a x =+-=在[]1,1-上存有解.即x e x a +=在[]1,1x ∈-上有解.设()x h x e x =+,()10x h x e '=+>,则()h x 在[]1,1-上单调递增,所以11(1)()(1)1h h x h e e -=-≤≤=+.故11,1a e e ⎡⎤∈-+⎢⎥⎣⎦. 故选A. 【变式2】(2016届广雅中学高三开学测试)已知()f x 是定义在()0,+∞上的单调函数,且对()0,x ∀∈+∞,都有2(()log )3f f x x -=,则方程()()2f x f x '-=的实数解所在的区间是( ).A. 10,2⎛⎫ ⎪⎝⎭B. 1,12⎛⎫⎪⎝⎭C. ()1,2D. ()2,3【答案】因为()f x 是定义在()0,+∞上的单调函数,所以存有唯一0x ,使得0()3f x = ①. 又2(()log )3f f x x -=,故有20()log f x x x -=,解得20()log f x x x =+.用0x 代替x ,则有0200()log f x x x =+ ②.由①②解得02x =.将02x =代入化简()()2f x f x '-=,得21log 0ln 2x x -=⋅.令21g()log ln 2x x x =-⋅,因为1g(1)0ln 2=-<,1g(2)102ln 2=->,又g()x 在()1,2上单调递增,故g()x 在()1,2上存有唯一零点,即方程()()2f x f x '-=的实数解所在的区间是()1,2.故选C.二、根据两个函数的图象,巧设交点的横坐标【例2】(2015·四川卷理)已知函数()2x f x =,2()()g x x ax a R =+∈.对于不相等的实数12,x x ,设12121212()()()(),f x f x g x g x m n x x x x --==--.现有如下命题:○1对于任意不相等的实数12,x x ,都有0m >;○2对于任意的a 及任意不相等的实数12,x x ,都有0n >; ○3对于任意的a ,存有不相等的实数12,x x ,使得m n =; ○4对于任意的a ,存有不相等的实数12,x x ,使得m n =-.其中的真命题有 (写出所有真命题的序号).【解析】对于○1,由()2x f x =的单调递增的性质可知,1212()()0f x f x m x x -=>-,故○1准确.对于○2,由2()()g x x ax a R =+∈先单调递减再递增的性质可知,存有1212()()0f x f x m x x -=<-的情形,故○2不准确. 对于○3,m n =等价于1212()()()()f x f x g x g x -=-,即1222112222x x x ax x ax -=+--,即1222112222x x x ax x ax --=--.设2()2x h x x ax =--,则()()2ln 22x h x x a '=-+.此时由2ln 2y x =和2y x a =+的图象(如下图)可知,调整合适的a 可使2y x a =+的图象全在2ln 2y x =的图象之下,这时()()2ln 220x h x x a '=-+>恒成立,所以2()2x h x x ax =--单调递增. 据此分析可知:存有a ,使得对于不相等的实数12,x x ,不可能有1222112222x x x ax x ax --=--,即不可能有m n =,故○3不准确.对于○4,m n=-等价于()1212()()()()f x f x g x g x -=--,即()1222112222x x x ax x ax -=-+--,即1222112222x x x ax x ax ++=++. 设2()2x h x x ax =++,则()()2ln 22x h x x a '=---.此时由2ln 2y x =和2y x a =--的图象(如下图)可知,两者必有交点,设交点横坐标为0x .由简图可知,当()0,x x ∈-∞时,2ln 22x x a <--,则()0h x '<,()h x 单调递减;()0,x x ∈+∞y xy=2x+a y=2x ln2时,2ln 22x x a >--,则()0h x '>,()h x 单调递增.于是,对于任意的a ,由单调性可知:存有不相等的实数12,x x ,使得1222112222x x x ax x ax ++=++,即m n =-成立.故○4准确. 综上,所给命题中的真命题有○1、○4.【评注】当导函数为超越函数时,有时我们无法直接求得零点,即便二次求导也难以奏效.这时不妨将其转化为研究两个简单函数的图象的交点问题.由图象可直观获得两图象的高低情况(对应函数值的大小比较),从而轻松判断导函数的正负情况.为了方便表述,可设两图象的交点的横坐标为0x .【变式3】(2015·郑州市质量预测节选)给定方程:1sin 102xx ⎛⎫+-= ⎪⎝⎭,探究该方程在(),0-∞唯一交点. ()0,x x ∈-∞减;(0,0x x ∈递增.所以()h x结合(0)h 如下,根属于区间(【例3(1(2)证明:当0a >时,2()2ln f x a a a≥+.【解析】(1)2()2(0)x af x e x x '=->.当0a ≤时,因为()0f x '>,所以()f x '没有零点;当0a >时,令2()()2(0)x ah x f x e x x'==->,因为22()40x a h x e x '=+>,所以()h x 在()0,+∞上单调递增.当0x →时,又0x >,所以2()2x ah x e x=-→-∞,结合2()210a h a e =->,可得()h x 即()f x '在()0,+∞上存在唯一零点.(2)证明:由(1)可知,当0a >时,(f '设该零点为0x ,则有0200()20x af x e x '=-=.○1 此时由22x y e =和a y x =的图象可2()20x af x e x'=-<,()f x 单调递减;(0x x ∈22x a e x>, 则2()20x af x e x'=->,()f x 单调递增. 所以()f x 在0x 处取得最小值020()x f x e =-由○1得0202x ae x =0020020()ln ln 22x x a a f x e a x a x e =-=-0022a ax x =+所以当0a >时,2()2ln f x a a a≥+.【评注】当我们研究函数的极值大小时,经常遇到一些较难确定大小的代数式(如0200()ln x f x e a x =-),而0x 又是一个无法算得的数值,这时我们利用极值点处的导数为零这一条件(如0200()20x af x e x '=-=),消去某些式子,得到较为简单的代数式(如0002()2ln 2a f x ax a x a=++),使研究更为简便. 【例4】设函数2()ln(1)f x x a x =++有两个极值点1x ,2x ,且12x x <. (1)求实数a 的取值范围; (2)求2()f x 的取值范围.【解析】(1)求导得()2122()2111x x a f x x a x x x++'=+=>-++.令函数2()22g x x x a =++,则由函数()f x 有两个极值点1x ,2x 可知,1x ,2x 必为方程()0g x =在()1,-+∞上的两个不等根,又注意到函数()g x 图像的对称轴为12x =-,所以只需480(1)0a g a ∆=->⎧⎨-=>⎩,解得102a <<.故实数a 的取值范围是1(0,)2.(2)2x 为2()220g x x x a =++=的根,则有222222220,22x x a a x x ++==--即 ()2222222()22ln(1)f x x x x x =-++.由(1)可知,(0)0g a =>,而对称轴12x =-,故有21,02x ⎛⎫∈- ⎪⎝⎭. 设()22()22ln(1)h x x x x x =-++,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()21()242ln(1)22221ln(1)01h x x x x x x x x x'=-++-+=-++>+. 所以()h x 在1,02x ⎛⎫∈- ⎪⎝⎭上单调递增,则112ln 2()(),(0),024h x h h -⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭.故2()f x 的取值范围是12ln 2(,0)4-.【评注】2x 为函数2()ln(1)f x x a x =++极值点,若直接求解2x ,再代入2()f x ,显然运算量较大.不妨由2222222()=01x x af x x ++'=+,求得22222a x x =--,将2222()ln(1)f x x a x =++中的a 消去即可迅速求解.【变式4】(2013·新课标全国卷Ⅱ节选)已知函数()ln(2)x f x e x =-+,证明()0f x >. 【答案】易知函数1()2x f x e x '=-+在(2,)-+∞单调递增.由(1)(0)0f f ''-⋅<知()0f x '=在(1,0)-有唯一实根0x .当()02,x x ∈-时,()0f x '<,故()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,故()f x 单调递增.故()f x 取得最小值0()f x .由0()0f x '=得0001()02x f x e x '=-=+即0012x e x =+,则002x e x -=+即00ln(2)x x +=-. 所以02000000(1)1()ln(2)022x x f x e x x x x +=-+=+=>++,则有min 0()()()0f x f x f x ≥=>.得证. 【变式5】(2013·惠州二模第21题节选)已知函数()ln |f x ax x x b =++是奇函数,且图像在点(,())e f e 处的切线斜率为3 (e 为自然对数的底数). (1)求实数,a b 的值; (2)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值. 【答案】(1)由题意易得1,0a b ==.(2)当1x >时,由()1f x k x <-恒成立,得min ()()1f x k x <-. 当1x >时,设()ln ()11f x x x xg x x x +==--,则22ln '()(1)x xg x x --=-. 设()2ln h x x x =--,则1'()10h x x=->,()h x 在(1,)+∞上是增函数. 因为(3)1ln 30h =-<,(4)2ln 40h =->,所以0(3,4)x ∃∈,使0()0h x =.0(1,)x x ∈时,()0,'()0h x g x <<,即()g x 在0(1,)x 上为减函数;同理()g x 在0(,)x +∞上为增函数.故min 0()()g x g x =.由000()2ln 0h x x x =--=得00ln 2x x =-. 于是,000000min 0000ln (2)()()11x x x x x x g x g x x x x ++-====--,所以min 0()(3,4)k g x x <=∈,又k Z ∈,故k 的最大值为3.【变式6】( 2012·新课标全国卷文节选)设函数()2x f x e ax =--. (1) 求()f x 的单调区间;(2)若1,a k =为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.【答案】(1)易得若0,()a f x ≤在R 上单调递增;若0,()a f x >在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)当1a =时,()()1()(1)10x x k f x x x k e x '-++=--++>等价于1(0)1x x k x x e +<+>-.令1()1x x g x x e +=+-,则min ()k g x <. 221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--,由(1)可知,函数()2x h x e x =--在()0,+∞上单调递增,同时(1)(2)0h h ⋅<,则()h x 在()1,2上存在唯一零点a ,即()g x '在()1,2上存在唯一零点a ,即()1,2a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>,所以min 1()()1a a g x g a a e +==+-. 因为 ()0g a '=,即20a e a --=. 将2a e a =+代入()g a 得11()1211aa a g a a a a a e ++=+=+=++--. 由()1,2a ∈得()()2,3g a ∈.因为()k g a <,故整数k 的最大值为2.。

如何探究导数压轴题解题技巧

如何探究导数压轴题解题技巧

如何探究导数压轴题解题技巧在高中数学中,导数是一个非常重要的概念,经常出现在各种考试中。

而“导数压轴题”更是出现频率较高的考点。

因此,如何探究导数压轴题解题技巧变得尤为关键。

以下将按照场景、方法、技巧三个方面进行探究。

一、场景考试中,导数压轴题通常出现在数学考试的末尾,为的是检验学生对该章节知识点的理解和应用能力。

这类题目难度较大,需要学生经过反复推导和练习,而且多数情况下会涉及与其他知识点的结合,因此考察的就不仅仅是直接的导数知识,还包含了学生综合应用知识点的能力。

因此,我们需要在平时学习的过程中注重练习,并熟练掌握常见的导数压轴题类型。

二、方法或许有人会问:“在平时的学习中,怎么发现导数压轴题的解题技巧呢?”其实,出现频率高的类型,我们可以通过分析题目和对于以往的历年试卷进行总结,来找到解题的方法。

例如:图示中,$y=f(x)$ 是 $[a,b]$ 区间上的可导函数,$f'(a)>0$,$f'(b)<0$,请你估计 $f(x)$ 的最大值。

解析:首先将函数 $f(x)$ 求导(或者说是化简):$$f'(c)=\frac{f(c)-f(a)}{c-a}\quad\quad f'(d)=\frac{f(b)-f(d)}{b-d}$$因为 $f'(a)$ 与 $f'(b)$ 的符号不同,所以 $f'(c)$ 与 $f'(d)$ 的符号也不同,也就是说 $f(x)$ 在 $[a,c]$ 上单调上升,在$[d,b]$ 上单调下降。

因此,函数 $f(x)$ 的最大值,取决于 $c$ 和 $d$ 的取值。

其中,对于给定的 $a$、$b$,可以推导出最优解为 $f(\frac {a+b}2)$。

三、技巧对于导数压轴题的解题技巧,我们需要熟悉部分招式,这里列出一些常见的方法:1.求导法。

通过对函数求导,找到函数的驻点,判断函数极值,求出极值点的函数值。

突破“函数与导数”压轴大题的 “卡壳点”——卡壳点六 “任意”与“存在”办?

突破“函数与导数”压轴大题的 “卡壳点”——卡壳点六 “任意”与“存在”办?

突破“函数与导数”压轴大题的“卡壳点”卡壳点六“任意”与“存在”办?类型一“∀x,使得f(x)>g(x)”与“∃x,使得f(x)>g(x)”的辨析(1)∀x,使得f(x)>g(x),只需h(x)min=[f(x)-g(x)]min>0.如图①.(2)∃x,使得f(x)>g(x),只需h(x)max=[f(x)-g(x)]max>0.如图②.[典例]设函数f(x)=ln(1+x),g(x)=af′(x),其中f′(x)是f(x)的导函数.(1)若对于任意x≥0,总有f(x)≥g(x),求实数a的取值范围;(2)若存在x≥0,使得f(x)≥g(x),求实数a的取值范围.[解题观摩](1)设h(x)=f(x)-g(x)=ln(1+x)-a1+x(x≥0),则h′(x)=11+x+a(1+x)2=x+1+a(1+x)2.当a≥-1时,h′(x)≥0,h(x)在[0,+∞)上单调递增,∴h(x)≥h(0)=-a,则-a≥0,a≤0,∴a∈[-1,0].当a<-1时,ln(1+x)≥0,-a1+x>0,所以h(x)≥0恒成立.综上可知,实数a的取值范围为[-∞,0].(2)由(1)可知,当a≥-1时,存在x≥0,使得f(x)≥g(x),当a<-1时,f(x)≥g(x)恒成立.综上可知,实数a的取值范围为(-∞,+∞).[关键点拨](1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当x0≥0时,总有f(x0)≥g(x0),即f(x0)-g(x0)≥0(注意不是f(x)min≥g(x)max),可以转化为当x≥0时,h(x)=f(x)-g(x)≥0恒成立问题.(2)存在x≥0,使得f(x)≥g(x),即至少有一个x0≥0,满足f(x0)-g(x0)不是负数,可以转化为当x≥0时,h(x)=f(x)-g(x)的函数值至少有一个是非负数.类型二“若∃x1∈D1,∃x2∈D2,使得f(x1)=g(x2)”与“∀x1∈D1,∃x2∈D2,使得f(x1)=g(x2)”的辨析(1)∃x1∈D1,∃x2∈D2,使得f(x1)=g(x2)等价于函数f(x)在D1上的值域A与g(x)在D2上的值域B的交集不是空集,即A∩B≠∅,如图③.其等价转化的目标是两个函数有相等的函数值.(2)∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图④.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中.说明:图③,图,图④④中的条形图表示函数在相应定义域上的值域在y 轴上的投影.[典例]已知函数f (x )=x 2-23ax 3,a >0,x ∈R ,g (x )=1x 2(1-x ).(1)若∃x 1∈(-∞,-1],∃x 2∈(-∞,-12),使得f (x 1)=g (x 2),求实数a 的取值范围;(2)当a =32时,求证:对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).[解题观摩](1)∵f (x )=x 2-23ax 3,∴f ′(x )=2x -2ax 2=2x (1-ax ).令f ′(x )=0,得x =0或x =1a.∵a >0,∴1a>0,∴当x ∈(-∞,0)时,f ′(x )<0,∴f (x )在(-∞,-1]上单调递减上单调递减,,f (x )≥f (-1)=1+2a 3,故f (x )在(-∞,-1]上的值域为(1+2a 3,+∞).∵g (x )=1x 2(1-x ),∴g ′(x )=3x 2-2x x 4(1-x )2=3x -2x 3(1-x )2.当x <-12时,g ′(x )>0,∴g (x )在(-∞,-12)上单调递增,g (x )<g (-12)=83,故g (x )在(-∞,-12)上的值域为(-∞,83).若∃x 1∈(-∞,-1],∃x 2∈(-∞,-12),使得f (x 1)=g (x 2),则1+2a 3<83,解得0<a <52,故实数a 的取值范围是(0,52).(2)证明:当a =32时,f (x )=x 2-x 3,∴f ′(x )=2x -3x 2=3x (23-x ).当x >2时,f ′(x )<0,∴f (x )在(2,+∞)上单调递减,且f (2)=-4,∴f (x )在(2,+∞)上的值域为(-∞,-4).则g (x )=1x 2(1-x )=1f (x )在(1,+∞)上单调递增,∴g (x )=1x 2(1-x )在(1,+∞)上的值域为(-∞,0).∵(-∞,-4)4)(-∞,0),∴对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).[关键点拨]本题第(1)问等价转化的基本思想是:两个函数有相等的函数值,即它们的值域有公共部分部分;;第(2)问等价转化的基本思想是问等价转化的基本思想是::函数f (x )的任意一个函数值都与函数g (x )的某一函数值相等,即f (x )的值域都在g (x )的值域中.类型三f (x ),g (x )是闭区是闭区间间D 上的连续函数上的连续函数,,“∀x 1,x 2∈D ,使得f (x 1)>g (x 2)”与“∃x 1,x 2∈D ,使得f (x 1)>g (x 2)”的辨析(1)f (x ),g (x )是在闭区间D 上的连续函数且∀x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )min >g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值均大于函数y =g (x )的任意一个函数值.如图⑤.(2)存在x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )max >g (x )min .其等价转化的目标是函数y =f (x )的某一个函数值大于函数y =g (x )的某些函数值.如图⑥.[典例]已知f (x )=x +a 2x(a >0),g (x )=x +ln x .(1)若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,求实数a 的取值范围;(2)若存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),求实数a 的取值范围.[解题观摩](1)对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,等价于x ∈[1,e]时,f (x )min ≥g (x )max .当x ∈[1,e]时,g ′(x )=1+1x>0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.只需证f (x )≥e +1,即x +a 2x≥e +1⇔a 2≥(e +1)x -x 2在[1,e]上恒成立即可.令h (x )=(e +1)x -x 2,当x ∈[1,e]时,h (x )=(e +1)x -x 2=-(x -e +12)2+(e +12)2的最大值为h (e +12)=(e +12)2.所以a 2≥(e +12)2,即a ≥e +12(舍去负值).故实数a 的取值范围是(e +12,+∞).(2)存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),等价于x ∈[1,e]时,f (x )min <g (x )max .当x ∈[1,e]时,g ′(x )=1+1x>0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.又f ′(x )=1-a 2x2,令f ′(x )=0,得x =a ,故f (x )=x +a 2x(a >0)在(0,a )上单调递减,在(a ,+∞)上单调递增.当0<a <1时,f (x )在[1,e]上单调递增,f (x )min =f (1)=1+a 2<e +1,符合题意;当1≤a ≤e 时,f (x )在[1,a ]上单调递减,在[a ,e]上单调递增,f (x )min =f (a )=2a ,此时,2a <e +1,解得1≤a <e +12;当a >e 时,f (x )在[1,e]上单调递减,f (x )min =f (e)=e +a 2e ,此时,e +a 2e<e +1,即a <e ,与a >e 矛盾,不符合题意.综上可知,实数a 的取值范围是(0,e +12).[关键点拨](1)本题第(1)问从数的角度看问从数的角度看,,问题的本质就是f (x )min ≥g (x )max .从形的角度看从形的角度看,,问题的本质就是函数f (x )图象的最低点不低于g (x )图象的最高点.(2)本题第(2)问从数的角度看,问题的本质就是f (x )min <g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.类型四“∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2)”与“∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2)”的辨析(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧.[典例]已知函数f (x )=ln x -14x +34x-1,g (x )=x 2-2bx +4,若对任意的x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.[解题观摩]依题意知f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,值,即即f (x )min ≥g (x )min .因为f ′(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,则当0<x <1时,f ′(x )<0,f (x )单调递减;当1<x <2时,f ′(x )>0,f (x )单调递增,所以当x ∈(0,2)时,f (x )min =f (1)=-12.又g (x )=x 2-2bx +4,①当b <1时,可求得g (x )min =g (1)=5-2b .由5-2b ≤-12,解得b ≥114,这与b <1矛盾,不符合题意;②当1≤b ≤2时,可求得g (x )min =g (b )=4-b 2.由4-b 2≤-12,得b 2≥92,这与1≤b ≤2矛盾,不符合题意;③当b >2时,可求得g (x )min =g (2)=8-4b .由8-4b ≤-12,得b ≥178.综合综合①②③①②③①②③得,实数得,实数b 的取值范围是(178,+∞).[关键点拨]“对任意x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2)”等价于“f (x )在(0,2)上的最小值大于或等于g (x )在[1,2]上的最小值”.————————————————————————————————————《初、高中数学教研微信系列群》简介:目前有8个群(7个高中群、1个初中群),共3000多大学教授、教师、中学优秀、特、高级教师,省、市、区县教研员、教辅公司数学编辑、报刊杂志初、高中数学编辑等汇聚而成,是一个围绕初、高中数学教学研究展开教研活动的微信群.宗旨:脚踏实地、不口号、不花哨、接地气的初、高中数学教研!特别说明:1.本系列群只探讨初、高中数学教学研究、数学试题研究等相关话题;2.由于本群是集“研究—写作—发表(出版)”于一体的“桥梁”,涉及业务合作,特强调真诚交流,入群后立即群名片:教师格式:省+市+真实姓名,如:四川成都张三编辑格式:公司或者刊物(简写)+真实姓名欢迎各位老师邀请你身边热爱初、高中数学教研(不喜欢研究的谢绝)的教师好友(学生谢绝)加入,大家共同研究,共同提高!群主二维码:见右图————————————————————————————————————。

高考数学:函数与导数压轴题高频考点与破解妙招.doc

高考数学:函数与导数压轴题高频考点与破解妙招.doc

高考数学:函数与导数压轴题高频考点与破解妙招1以导数面目包装的函数性质的综合应用有关函数与导数的小题压轴题是新课标全国卷的高频考题,高频题型:①以导数面目包装的函数性质题(单调性、奇偶性、最值等);②用导数法判断函数f(x)的图象或已知函数图象求参数的取值范围;③函数与集合、不等式、数列、平面向量、新定义等知识相交汇.【命题意图】本题主要考查函数与导数、函数的单调性、函数的最值、函数的零点等知识,意在考查考生的化归与转化能力、数形结合能力和运算求解能力.【攻略秘籍】破解以导数面目包装的函数性质综合题需过双关:第一关是“还原关”,即先还原出函数的解析式;第二关是“数形关”,即不等式恒成立问题与有解问题多需要数形结合,即可轻松解决.2利用导数研究函数的单调性、极值与最值利用导数研究函数的单调性、极值与最值是高考的一棵“常青树”,高频题型:①判断函数f(x)的单调性或求函数f(x)的单调区间;②求函数f(x)的最值或极值;③由函数的单调区间、最值或极值求参数的值.【命题意图】本题主要考查函数的极值、利用函数的单调性求参数的取值范围,意在考查分类讨论思想和方程思想,考查考生的化归与转化能力、运算求解能力.【攻略秘籍】破解此类题的关键:一是方程思想,即对于含有参数的可导函数有极值的关键是对参数进行分类讨论,并寻找其导数为零的根,以及在根的左、右两侧导数的符号;二是转化思想,即可导函数f(x)在某个区间D内单调递增(或递减),则有f ′(x)≥0(或f ′(x)≤0)在区间D内恒成立,从而把已知函数的单调性问题转化为恒成立问题来解决,这里需注意“=”的情形.3函数、导数与零点相交汇如稍加留神,便可以发现,函数、导数与函数的零点(方程的根)相交汇的考题在近年的高考中扮演着重要的角色,高频题型:①判断函数的零点(方程的根)的个数问题;②已知函数在给定区间的零点(方程在给定区间的解)的情况,求参数的取值范围或证明不等式成立.【命题意图】本题主要考查函数的零点、函数的最值、导数及其应用、基本不等式等知识,考查推理论证能力、运算求解能力、创新意识.【攻略秘籍】破解此类难题要过好三关:第一关,应用关,即利用导数法求函数的单调区间与最值,一般是求导数,在定义域范围内,令导函数大于(小于)零,得其单调递增(减)区间,从而求出函数的单调区间,再由函数的单调性,可求其最值;第二关,转化关,即把判断函数的零点个数问题转化为判断函数最值的符号问题;第三关,构造函数关,即通过构造函数,把比较大小问题转化为判断函数的单调性问题.4函数、导数与不等式相交汇函数、导数与不等式相交汇的试题是2015年高考题中比较“抢眼”的一种题型.对于只含有一个变量的不等式问题,常通过构造函数,利用函数的单调性和极值来证明,高频题型:①用导数法解决含参不等式恒成立问题;②用导数法解决含参不等式有解问题;③证明不等式.【命题意图】本题主要考查函数的单调性与极值点、不等式恒成立问题、证明不等式等知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想.【攻略秘籍】破解此类不等式证明的关键是通过构造函数、利用导数法判断函数的单调性来证明不等式.根据题设条件的结构特征构造一个函数,一是需要预设与所证不等式有相同的结构;二是需要熟练掌握简单复合函数的求导变换.不等式恒成立求参数的取值范围常利用“分离参数法”,也可以单刀直入地利用导数法,通过分类讨论使问题获解.注意恒成立问题与能成立问题的区别.从以上四例可以看出,只要我们对“函数与导数类”压轴题常见类型心中有数,把握其实质,掌握其规律,规范其步骤,做到“胸中有法”,那么不论高考“函数与导数类”压轴题的构思多么新颖,我们都能做到以不变应万变,此类压轴题就能迎刃而解.。

破解“函数与导数”试题的四种技巧

破解“函数与导数”试题的四种技巧




x=
1 e

,不



等号。
而∀x>0,ex-1≥x(当 且 仅 当 x=1 时,
不等



号 ),又
1 e

elnx+x 1 >0,即
21 elnx+x >x
,所以elnx+
1 x
1 >x
1 ≥ex-1
,所

exlnx+2exx-1
>1



归纳:有些 问 题 可 以 按 照 常 规 思 路 和 方
1 e,+∞ 时,g'(x)>0。
所 以 g(x)min=g
1 e
=
-
1。 e


,求

h(x)max=h(1)=
-
1 e



g(x)>h(x),即 f(x)>1。 思路2:利 用 不 等 式 的 基 本 性 质 先 进 一
步适当放缩后再构造函数不等式。



exln x
2ex-1 +x
>1(x
>0),等

当0<x≤1 e时,1+lnx≤0,所 以 g'(x)
≤0;当 x> 1 e 时 ,1+lnx>0,所 以 g'(x)>0。
所 以函数g(x)=exlnx+1(x>0)的减
区间为 0,1 e
,增 区 间 为
1 e
,+

导数压轴题解题技巧

导数压轴题解题技巧

导数压轴题解题技巧
嘿,朋友们!今天咱就来聊聊导数压轴题解题技巧,这可真是个让人又爱又恨的家伙啊!
你看哈,导数压轴题就像是一场刺激的游戏!比如说,给你个函数,哎呀,那弯弯曲曲的图象就像是复杂的迷宫,你得找到出路!就像你在森林里迷路了,得想办法走出来呀!
先来谈谈怎么求导吧!这可是基础。

像有个函数f(x)=x²+3x,那求导可得 f'(x)=2x+3 呀!就好比你走路,求导就是弄清楚往哪个方向走得快,能不走错路嘛!
再说说构造新函数吧!有时候题目里的条件乱七八糟,咋办呢?那就巧妙地构造个新函数呗!比如说,给你两个函数 f(x)和 g(x),它们之间有某种关系,那咱就把它们组合起来弄个新函数 H(x) 呀!这就好像把不同的积木拼在一起搭出个新造型。

还有分类讨论哦!遇到各种情况都要考虑到。

比如一个函数在不同区间上的单调性不一样,那咱就得仔细分析呀!“嘿,这可不能马虎!”不认真分析怎么能得高分呢?
哎呀,导数压轴题真不是盖的,有时候确实难倒一大片人呢!但咱别怕呀,只要掌握了这些技巧,多练多总结,还怕它不成?记住,每一道导数压轴题都是一个挑战,但也是一个让我们进步的机会呀!
咱就是说,导数压轴题解题技巧真的能让我们在数学的海洋里畅游得更畅快!大家可得好好学起来,攻克这道难关,走向数学的辉煌呀!。

《导数大题压轴题难点突破》(PDF)

《导数大题压轴题难点突破》(PDF)

2
时,
f
(x)

1 2
,


上是增函数;
(Ⅲ)若对任.意.的 a (1,2),总存.在.x0


1 2
,1
,使不等式
f
(x0 )

m(1
a2 )
成立,求实
数 m 的取范围.
3
高考数学 2018 届◆难点突破系列
12.已知函数 f x x3 1 a x2 a a 2 x a R , f ' x 为 f x 的导数. (Ⅰ)当 a 3 时,证明 y f x 在区间 1,1 上不.是.单.调.函数;
9.已知函数 f (x) ax3 3x2 1(a,x R) .
(Ⅰ)当 a 0 时,求函数 f(x)的极值.
(Ⅱ)设函数 h(x) 1 f '(x) (2a 1)x 1 ,x (1,b](b 1) ,如果存在 a (, 1], , 3
对任意 x (1,b] 都有 h(x) 0 成立,试求 b 的最大值.
2
高考数学 2018 届◆难点突破系列
(Ⅱ)如果当 x 1时,不等式 f (x) 5 x2 (a 3)x 1 恒成立,试求实数 a 的取值范围. 2
6.设 f (x) a x ln x , g(x) x3 x2 3 . x
(Ⅰ)当 a 2 时,求曲线 y f (x) 在 x 1 处的切线方程;
(Ⅲ)若 x (0, e2 ] 时,函数 y f (x) 的图象恰好位于两条平行直线 l1 : y kx ; l2 : y kx m 之间,当 l1 与 l2 间的距离最小时,求实数 m 的值. 20.已知函数 f (x) ln(x a) ax.

压轴题04 函数与导数常见经典压轴大题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04  函数与导数常见经典压轴大题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.【解析】(1)当12a =时,()211ln 42f x x x x x =--+,其定义域为(0,+∞),且()1ln 112f x x x =+--'1ln 2x x =-,所以()1ln 2g x x x =-,所以()112(0)22xg x x x x'-=-=>,令()0g x '>,得02x <<;令()0g x '<,得2x >,所以()g x 在(0,2)上单调递增,在(2,)+∞上单调递减.①当12t +≤,即01t <≤时,()g x 在[t ,t +1]上单调递增,所以()()()()max 111ln 122h t g x g t t t ==+=+--;②当2,12t t ≤+>,即12t <≤时,()()()max 2ln21h t g x g ===-;③当2t >时,g (x )在[t ,t +1]上单调递减,所以()()()max 1ln 2h t g x g t t t ===-,综上所述11ln(1),01,22()ln 21,12,1ln , 2.2t t t h t t t t t ⎧+--<≤⎪⎪=-<≤⎨⎪⎪->⎩(2)因为112emmx x +<,所以121ln ln m x m x +<+,由题意知()f x 的定义域为(0,),+∞()ln f x x ax '=-,故12,x x 是关于x 的方程()ln 0f x x ax '=-=的两个根,所以()()111222ln 0,ln 0f x x ax f x x ax ='-=-'==,即1122ln ,ln x ax x ax ==,所以121ln ln m x m x +<+,等价于()12121m ax max a x mx +<+=+.因为120,0m x x ><<,所以原式等价于121ma x mx +>+,又1122ln ,ln x ax x ax ==,作差,得()1122lnx a x x x =-,即1212lnx x a x x =-,所以原式等价112122ln 1xx m x x x mx +>-+,因为120x x <<,所以()()1212121lnm x x x x x mx +-<+恒成立.令12x t x =,则(0,1)t ∈,故不等式()()11ln m t t t m+-<+在(0,1)t ∈上恒成立,令()()11()ln m t t t t mϕ+-=-+.又因为()()()()()()2222111t t m m t t t m t t m ϕ--+'=-=++,当21m ≥时,得(0,1)t ∈,所以()0t ϕ'>在(0,1)上单调递增,又()10ϕ=,所()0t ϕ<在(0,1)上恒成立,符合题意;当21m <时,可得2(0,)t m ∈时,()0t ϕ'>,()2,1t m ∈时,()0t ϕ'<,所以()t ϕ在2(0,)m 上单调递增,在2(,1)m 上单调递减,又因为()10ϕ=,所以()t ϕ在(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式112emmx x +<恒成立,只需满足21m ≥,又0m >,故m 1≥,即正数m 的取值范围为[1,)+∞.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.【解析】(1)函数()22ln f x x x x =+的定义域为()0,∞+,又()()2ln 22ln 3f x x x x x x x '=++=+,令()0f x '<得320e x -<<,令()0f x ¢>得32e x ->,所以()f x 在320,e -⎛⎫ ⎪⎝⎭上单调递减,在32e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,所以()f x 在32e x -=处取得极小值3321e e 2f --⎛⎫=- ⎪⎝⎭,无极大值.(2)由()2e x f x x m x≥+得2ln e x x x x x m -+≥,即对任意的1,e x ∞⎡⎫∈+⎪⎢⎣⎭,2ln exx x x xm -+≤恒成立,令()2ln e xx x x xh x -+=,1,e x ∞⎡⎫∈+⎪⎢⎣⎭,则()()()1ln 2e x x x x h x '--+=,令()ln 2x x x ϕ=-+,则()1xx xϕ'-=,所以当11ex <<时()0x ϕ'>,当1x >时()0x ϕ'<,所以()x ϕ在1,1e ⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,又1110e e ϕ⎛⎫=-> ⎪⎝⎭,()110ϕ=>,()22e 4e 0ϕ=-<,所以当1,e x ∞⎡⎫∈+⎪⎢⎣⎭时()x ϕ在()21,e 内存在唯一的零点0x ,所以当1,1e x ⎛⎫∈ ⎪⎝⎭时()0x ϕ>,()0h x '>,()h x 单调递增,当()01,x x ∈时()0x ϕ>,()0h x '<,()h x 单调递减,当()0,x x ∈+∞时()0x ϕ<,()0h x '>,()h x 单调递增,所以()()0min1,e h x h x h ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,12e 1e e h --⎛⎫=- ⎪⎝⎭,因为()000ln 20x x x ϕ=-+=,所以00ln 11x x -+=-,020e x x -=,所以()()00000220000000002ln 1ln e 1e e e e ex x x x x x x x x x x x x h x --+-+--=====-,因为e 122e e ---->-,所以()01e h h x ⎛⎫> ⎪⎝⎭,所以()()02min 1e h x h x ==-,所以实数m 的取值范围为21,e ⎛⎤-∞- ⎥⎝⎦.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.【解析】(1)当1a =时,()111221f =-+=,且()()11,11f x x f x=-+'∴=',∴函数()f x 在点()()1,1f 处的切线方程112y x -=-,即2210x y --=.(2)()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,∴方程21ln 02x x x a-+=,即22ln 20x a x ax --=在()0,∞+有唯一实数解.设()22ln 2g x x a x ax =--,则()2222x ax ag x x--'=.令()0g x '=,即20.0,0,x ax a a x --=>> 20x ax a ∴--=的两个根分别为1402a a a x =(舍去),2x =当()20,x x ∈时,()()0,g x g x '<在()20,x 上单调递减,当()2,x x ∈+∞时,()()0,g x g x '>在()20,x 上单调递增,当2x x =时,()()0,g x g x '=取最小值()2g x ,要使()g x 在()0,∞+有唯一零点,则须()()220,0,g x g x ⎧=⎪⎨='⎪⎩即22222222ln 20,0,x a x ax x ax a ⎧--=⎨--=⎩()22222ln 0,0,2ln 10.*a x ax a a x x ∴+-=>∴+-= 设函数()2ln 1,h x x x =+-当0x >时()h x 是增函数,()h x ∴至多有一解.⋅()10,h =∴ 方程()*的解为21x =1=,解得12a =,∴实数a 的值为12.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.【解析】(1)由已知可得,函数()f x 定义域为()0,∞+,()1ea f x x =-'.①当0a ≤时,()10eaf x x =->'在()0,∞+上恒成立,所以()f x 在()0,∞+上单调递增,此时函数()f x 无极值;②当0a >时,()e e axf x x-=',解()e 0e axf x x-=='可得e x a =.当e 0x a <<时,()0f x ¢>,所以()f x 在e 0,a ⎛⎫⎪⎝⎭上单调递增;当e x a >时,()0f x '<,所以()f x 在e ,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以,函数()f x 在ex a=处取得极大值e f a ⎛⎫ ⎪⎝⎭.由已知,e 1f a ⎛⎫≥ ⎪⎝⎭,即e e ln 11f a a ⎛⎫=-≥ ⎪⎝⎭,解得10ea <≤,所以,a 的取值范围为10,e ⎛⎤⎥⎝⎦.(2)因为()()()112211e 212e 22x x x f x x x f x --⎛⎫⎛⎫+-++=++- ⎪ ⎪⎝⎭⎝⎭,又因为0x >,所以只需证明()12e212x f x x -<-+即可.当e a =时,()ln f x x x =-,由(1)知()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以,()f x 在1x =处取得极大值,也是最大值()()max 11f x f ==-.记()12e212x g x x -=-+,0x >,则()1112222211ee e 221122x x x x x g x x x ---⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭'==⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增,所以,()g x 在12x =处取得极小值,也是最小值()min 112g x g ⎛⎫==- ⎪⎝⎭.因为()max f x 与()min g x 不能同时取到,所以结论成立.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.【解析】(1)由题可知(0)0,()(cos sin )e 2πx f f x x x x -'==--+,因为(0)1πf =+',所以,()y f x =在(0,(0))f 处的切线方程为(1π)y x =+.(2)()f x m =存在两个非负零点12,x x ,设12x x <,由(1)可知()y f x =在(0,(0))f 处的切线方程为(1π)y x =+,注意到π1(π)0,(π)πe f f =-'=-,所以,()y f x =在(π,0)处的切线方程为π1π(π)e y x ⎛⎫=--- ⎪⎝⎭.下证:当[0,π]x ∈时,()(1π)f x x ≤+,且π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.(i )要证()(1π)f x x ≤+,即证2sin e xx x x ≤+,只需证()2sin e x x x x ≤+.①设()sin ,0,()1cos 0g x x x x g x x -=-'=≥≥,故()g x 在[0,)+∞上单调递增,故()(0)0g x g ≥=,即sin ,[0,)x x x ≤∀∈+∞恒成立.要证①,只需证()2e xx x x ≤+.当0x =时上式成立;当0x >时,即证1(1)e x x ≤+,此时,由于11,e 1x x +≥≥,故(1)e 1x x +≥,于是,当0x ≥时,()(1π)f x x ≤+.(ii )要证1()π(π)e x f x x ⎛⎫≤--- ⎪⎝⎭,只需证2πsin 1ππ(π)e e x x x x x ⎛⎫-+≤--- ⎪⎝⎭,即证2sin 1ππ(π)0,[0,π]e e x x x x x x x ⎛⎫-+++-≤∈ ⎪⎝⎭.设2πsin 1()ππ(π),[0,π]e e x x h x x x x x ⎛⎫=-+++-∈ ⎪⎝⎭,则πcos sin 1()2ππ,(π)0e e x x x h x x h -''=-+++=.设πcos sin 1()2ππ,[0,π]e e xx x m x x x -=-+++∈,则()2cos cos 221e e x x x x m x -⎛⎫=-=-+ ⎝'⎪⎭.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,cos 0,e 0,()0x x m x ≥><',当,2x π⎛⎤∈π ⎥⎝⎦时,π2cos 0,|cos |1,e e 1x x x <≤>>,故cos 10,()0e x x m x '+><.于是()0,[0,π]m x x <∀∈'恒成立,故()m x 在[0,]π上单调递减.从而()(π)0m x m ≥=,即()0,[0,π]h x x ≥∀∈'恒成立,故()h x 在[0,]π上单调递增,从而()(π)0h x h ≤=,于是π1()π(π)e f x x ⎛⎫≤--- ⎪⎝⎭.设(1π)x m +=的零点为31,π(π)e x x x m ⎛⎫---= ⎪⎝⎭的零点为4x ,则()341(1π),ππe x m x m π⎛⎫+=---= ⎪⎝⎭.因为()311(1π)(1π)x m f x x +==≤+,所以31x x ≤,因为()()()422π11ππππe e x m f x x π⎛⎫⎛⎫---==≤--- ⎪ ⎪⎝⎭⎝⎭,所以42x x ≥,又34π,π11ππex m mx ==-++,所以2143π2ππ11π1ππe mm m x x x x -≤-=--≤-+++,所以212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.【解析】(1)当2a =-时,可得()212ln 2f x x x x =+-,可得()2(2)(1)1x x f x x x x+-'=+-=,所以()22f '=且()242ln 2f =-,所以切线方程为(42ln 2)2(2)y x --=-,即22ln 20x y --=,即曲线所以曲线()y f x =在点(2,(2))f 处的切线方程为22ln 0x y x --=.(2)由函数()()211ln 2f x x a x a x =-++,可得函数()f x 的定义域为(0,)+∞,又由()()(1)x a x f x x--'=,令()0f x '=,解得1x a =,11x =,当a<0时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,1)1(1,)+∞()f x '-+()f x极小值↗所以函数的极小值为()112f a =--,也是函数()f x 的最小值,所以当a<0时,函数()f x 的最小值为12a --(3)当0a =时,()212f x x x =-,令()0f x =,解得122,0x x ==(舍去)所以函数()y f x =在(0,)+∞上有一个零点;当01a <<时,()f x 与()f x '在区间(0,)+∞的情况如下表:x (0,)a a(,1)a 1(1,)+∞()f x '+0-0+()f x ↗极大值极小值↗所以函数()f x 在(0,)a 单调递增,在(,1)a 上单调递减,此时函数()f x 的极大值为()21ln 02f a a a a a =--+<,所以函数()y f x =在(0,1)上没有零点;又由()1102f a =--<且函数()f x 在(1,)+∞上单调递增,且当x →+∞时,()f x →+∞,所以函数()f x 在(1,)+∞上只有一个零点,综上可得,当01a ≤<时,()f x 在(0,)+∞上有一个零点.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.【解析】(1)函数()f x 的定义域为()0,∞+,由题意,()11ax f x a x x-'=-=.当0a ≤时,()0f x ¢>,函数()f x 在()0,∞+上单调递增,不合题意;当0a >时,由()0f x ¢>得10x a <<,所以函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.又函数()y f x =在区间[)1,+∞上单调递减,所以,11a≤,即1a ≥.因此,实数a 的取值范围是[)1,+∞.(2)由题意()2ln 10f x x ax +=-+=,于是1122ln 1ln 1x ax x ax +=⎧⎨+=⎩,令21x t x =,则由212x x >可得,2t >.于是221111ln 1ln ln 1ln 1ln 1x x t x t x x x +++===++,即1ln ln 11t x t =--.从而21ln ln ln ln 11t tx t x t =+=--.另一方面,对212332e x x >两端分别取自然对数,则有12ln 2ln 5ln 23x x +>-,于是,即证ln 2ln 35ln 2311t t t t t +->---,即()12ln 5ln 21t t t +>-,其中2t >.设()()12ln 1t t g t t +=-,2t >.则()()()()()221212ln 112ln 3ln 2111t t t t t t t t t g t t t +⎛⎫+--+-+-- ⎪⎝⎭'==--,设()13ln 21t t t tϕ=-+--,2t >.则()()()22222113123120t t t t t t t t t ϕ----+'=++==>在()2,+∞上恒成立,于是,()t ϕ在()2,+∞上单调递增,从而()()1523ln 2413ln 2022t ϕϕ>=-+--=->.所以,()0g t '>,即函数()g t 在()2,+∞上单调递增,于是()()25ln 2g t g >=.因此,212332e x x >,即原不等式成立.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.【解析】(1)证明:由()e cos 2xf x x =+-可得()00e cos020f =+-=,当0x <时,e 1x <,cos 1≤x ,所以e cos 2x x +<,故e cos 20x x +-<,故()f x 在区间(),0∞-上无零点.当0x ≥时,()e sin xf x x '=-,而e 1x ≥,sin 1x -≥-,且等号不会同时取到,所以()e sin 0xf x x =->',所以当0x ≥时,函数()f x 单调递增,所以()()00f x f ≥=,故函数()f x 在区间[)0,∞+上有唯一零点0,综上,函数()f x 在定义域上有唯一零点.(2)由()sin f x ax x >-在区间()0,∞+上恒成立,得e cos 2sin x x ax x +->-,即e sin cos 20x x x ax ++-->在区间()0,∞+上恒成立.设()e sin cos 2xg x x x ax =++--,则()0g x >在区间()0,∞+上恒成立,而()e cos sin xg x x x a =+--',()e cos sin x m x x x a =+--,则()e sin cos x m x x x =-'-.设()e 1xh x x =--,则()e 1x h x '=-,当0x >时,()0h x '>,所以函数()h x 在区间()0,∞+上单调递增,故在区间()0,∞+上,()()00h x h >=,即在区间()0,∞+上e 1x x >+,设函数()()0n ,si ,p x x x x ∞=-∈+,则()1cos 0p x '=-≥,所以函数()p x 在区间()0,∞+上单调递增,故在区间()0,∞+上()()00p x p >=,即在区间()0,∞+上,sin x x >,所以在区间()0,∞+上,e 1sin cos x x x x >+>+,即()e sin cos 0xm x x x =-->',所以在区间()0,∞+上函数()g x '单调递增.当2a ≤时,()020g a '=-≥,故在区间()0,∞+上函数()0g x '>,所以函数()g x 在区间()0,∞+上单调递增.又()00g =,故()0g x >,即函数()sin f x ax x >-在区间()0,∞+上恒成立.当2a >时,()020g a '=-<,()()()ln 22cos ln 2sin ln 2g a a a a a '+=+++-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()π2ln 204a ⎛⎫=+-> ⎪⎝⎭,故在区间()()0,ln 2a +上函数()g x '存在零点0x ,即()00g x '=,又在区间()0,∞+上函数()g x '单调递增,故在区间()00,x 上函数()()00g x g x ''<=,所以在区间()00,x 上函数()g x 单调递减,又()00g =,所以在区间()00,x 上函数()(0)0g x g <=,与题设矛盾.综上,a 的取值范围为(],2-∞.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2xx >,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.【解析】(1)2221()ln ,()a a ax x af x x ax f x a x x x x-+-'=-+∴=--= ,①当12a ≥时,此时2140a ∆=-≤,则()0f x '≤恒成立,则()f x 的减区间为()0,∞+,②当102a <<时,令()0f x ¢>,解得11,22x a a ⎛+∈⎪ ⎪⎝⎭,则()f x 的增区间为⎝⎭令()0f x '<,解得1141140,,22x a a ⎛⎫⎛⎫∈⋃+∞ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,则()f x 的减区间为110,,,22a a ⎛⎛⎫+∞⎪ ⎪ ⎪⎝⎭⎝⎭,综上当12a ≥时,()f x 的减区间为()0,∞+,无增区间;当102a <<时,()f x 的增区间为⎝⎭,减区间为110,,22a a ⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.(2)欲证2ln 2e ()2e 10,2xx x a g x a x x-=+-+<需证ln 22e 02e xxax x ax x +-+<,即需证()ln 2e 2e 02ex xxax ax x -+<,令2e x t x =,即需证ln 0a t at t-+<,设()ln a h t t at t =-+12e x t x => ,由(1)知当12a ≥时,()h t 的减区间为()0,,∞+所以()(1)0,h t h <=故()0.g x <(3)由(2)知,当11,2t a >=时,11ln 2t t t ⎛⎫<- ⎪⎝⎭,令()*21N t n n=+∈,则2121122ln 11122222(21)1n n n n n n n n n n ⎛⎫⎪⎛⎫⎛⎫⎛⎫+<+-=+-=< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎪+⎝⎭+即2ln(2)ln n n n+-<所以2ln(3)ln(1)1n n n +-+<+2ln(4)ln(2)2n n n +-+<+2ln(5)ln(3)3n n n +-+<+......ln(21)ln(21)212n n n +--<-ln(22)l )22n(2n n n+-<以上各式相加得:11111ln(22)ln(21)ln ln(1)212212n n n n n n n n n ⎛⎫+++--+<+++⋯++ ⎪++-⎝⎭()()()212211111112ln ln 4ln 212212212n n n n n n n n n n ++⎛⎫+++⋯++>=+> ⎪++-+⎝⎭10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.【解析】(1)当1a =时,1()e ln x f x x -=-,函数()f x 的定义域为(0,)+∞,求导得11()e x f x x-'=-,显然函数()f x '在(0,)+∞上单调递增,且()01f '=,因此当(0,1)x ∈时,()0,()'<f x f x 单调递减,当(1,)x ∈+∞时,()0,()'>f x f x 单调递增,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)[0,π]x ∈,令()2(1)cos 2e 2ln(1)cos x g x f x x a x x =+-=-+-,求导得2()2e sin 1x ag x x x '=-++,当0a ≤时,()0g x '>,则()g x 在[0,π]上单调递增,0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,当0a >时,设()()h x g x '=,则22()2e cos 0(1)xah x x x '=++>+,因此函数()h x ,即()g x '在[0,π]上单调递增,而0(0)2e 2sin 022g a a '=-+=-,(i)当01a <≤时,()(0)220,()g x g a g x ''≥=-≥在[0,π]上单调递增,于是0()(0)2e 2ln1cos 01g x g a ≥=--=,满足题意,(ii)当π2(π)2e sin π0π1ag '=-+≤+,即π(π1)e a ≥+时,对[0,π],()0x g x '∀∈≤,则()g x 在(0,π)上单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,(iii )当π1(1)e a π<<+时,因为()g x '在[0,π]上单调递增,且π2(0)(π)(22)(2e )0π1ag g a ''=--<+,于是0[0,π]x ∃∈,使()00g x '=,且当()00,x x ∈时,()g x '单调递减,此时0()(0)2e 2ln1cos 01g x g a <=--=,不合题意,所以实数a 的取值范围为(,1]-∞.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.【解析】(1)()ln ()ln ln (())e e e e ()xh x g x x x x x y f h x x g x =======(2)利用复合函数的求导法则可求得2(2)2(2)(ln 21)x g x x x '=+,令2(2)2(2)(ln 21)0x g x x x '=+=,可求得:令(2)0g x '=,0x >,20(2)x x ∴>,所以ln 210x +=,解得12e x =,当102e x <<时,(2)0g x '<,此时()2g x 单调递减,当12e x >时,(2)0g x '>,此时()2g x 单调递增,所以函数(2)y g x =的最小值为e 11e ⎛⎫ ⎪⎝⎭.(3)()()e ()ln xf x h x H x x a x x ax x-=++=-++由()2222e (1)e (1)1e (1)()1x x x x x x x x x H x x x x x +----+'=-+==,0,e 0x x x >∴+> ,令()0H x '>,解得1x >,此时()H x 单调递增,令()0H x '<,解得1x <,此时()H x 单调递减,因为函数()()y H x H x =⋅'有三个不相同的零点123,,x x x .而()y H x '=的零点为1,不妨设31x =,则()y H x =的零点为12,x x .不妨设12x x <,则()()12121101,1,0x x H x H x x <<<>==.令1()()K x H x H x ⎛⎫=- ⎪⎝⎭,则()11222211e 1e (1)1(1)()e e 11x x x x x x x x x K x x x x x x x⎛⎫⎛⎫+- ⎪ ⎪+-⎛⎫⎝⎭-⎝⎭'=+⨯=+-- ⎪⎝⎭.令1()e e 1x xp x x x =+--,则()111211e 1e e e 1e 1xxx xx p x x x x ⎛⎫=+-+⨯=++- ⎝'⎪⎭,所以当(0,1)x ∈时,()0p x '>,所以当(0,1)x ∈时,()p x 是严格单调递增的,所以当(0,1)x ∈时,()(1)0p x p <=,所以当(0,1)x ∈时,()0K x '>,则1()()K x H x H x ⎛⎫=- ⎪⎝⎭在(0,1)上单调递增,所以在(0,1)上,1()()(1)0K x H x H K x ⎛⎫=-<= ⎪⎝⎭,所以()1110H x H x ⎛⎫-< ⎪⎝⎭.又()()120H x H x ==,所以()2110H x H x ⎛⎫-< ⎪⎝⎭,即()211H x H x ⎛⎫< ⎪⎝⎭.又函数()y H x =在(1,)+∞上单调递增,所以211x x <,即121x x <.综上,1231x x x <.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >【解析】(1)由题意得,函数()f x 的定义域为(0,)+∞.由2()ln f x x ax =-得:2112()2ax f x ax x x-'=-=,当0a ≤时,()0,()'>f x f x 在(0,)+∞上单调递增;当0a >时,由()0f x '>得0x <()0f x '<得x >所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减.(2)因为12,x x 是方程2ln 0x ax -=的两不等实根,即12,x x 是方程22ln 20x ax -=的两不等实根,令2(0)t x t =>,则221122,t x t x ==,即12,t t 是方程ln 2ta t=的两不等实根.令ln ()tg t t=,则21ln ()t g t t -'=,所以()g t 在(0,e)上递增,在(e,)+∞上递减,1(e)eg =,当0t →时,()g t →-∞;当t →+∞时,()0g t >且()0g t →.所以102a e <<,即102ea <<.令121e t t <<<.(i )要证22122e x x +>,只需证122e t t +>,解法1:令()()(2e ),(1,e)h t g t g t t =--∈,则ln ln(2e )(2e )ln ln(2e )()()(2e )2e (2e )t t t t t t h t g t g t t t t t ----=--=-=--,令()(2e )ln ln(2e )t t t t t ϕ=---,则()22e 2e ()1ln ln(2e )ln 2e 2e 2e t t tt t t t t t t t tϕ-'=----+=+--+--2e 202e t t t t->+->-,所以()t ϕ在(1,e)上递增,()(e)0t ϕϕ<=,所以()()(2e )0h t g t g t =--<,所以()(2e )g t g t <-,所以()()()2112e g t g t g t =<-,所以212e t t >-,即122e t t +>,所以22122e x x +>.解法2:先证121212ln ln 2x x x xx x -+<-,令120x x <<,只需证212121ln 2ln x x x x x x -<+-,只需证2112ln 011x x x x x x ⎛⎫--<=> ⎪+⎝⎭,令1()2ln (1)1x x x x x ϕ-=->+,22241(1)()0(1)(1)x x x x x x ϕ--'=-=<++,所以()ϕx 在(1,)+∞上单调递减,所以()(1)0x ϕϕ<=.因为1212ln ln t t t t =,所以1212121212ln ln ln ln 2t t t t t t t t t t +-+=<+-,所以12ln ln 2t t +>,即212e t t >,所以122e t t +>>.解法3:由()1212121e ln ln t t t t t t =<<<,设112111ln ln ln (0),t t t t t t λλλλ+=>=,所以11ln ln ln t t λλ+=,即1212ln ln (1)ln ln ,ln ,ln ln 111t t t t λλλλλλλλ+==+=---,构造函数2(1)()ln (1)1x g x x x x -=->+,22214(1)()0(1)(1)x g x x x x x -'=-=>++,所以()g x 在(1,)+∞上单调递增,所以()(1)0g x g >=.(ii)要证:12x x >12e 2t t a >,只需证:12ln ln 1ln 2t t a +>-,只需证:12221ln 2at at a +>-,只需证:121ln 22at t a-+>,212121ln ln 2t t t tt t -+<-令112t a =得22211222ln 22t t a aat a -+<+即222ln 212(ln 21)02a at a t a a+-++>①令212t a =得1111122ln 222t t a aa at -+<--即211ln 212(ln 21)02a at a t aa ⎛⎫----+>⎪⎝⎭②①+②得:()()2221212(ln 21)0a t t a t t -+-->,即121ln 22at t a-+>.13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.【解析】(1)法一:首先证明sin x x ≤,[)0,x ∈+∞,理由如下:构造()sin j x x x =-,[)0,x ∈+∞,则()cos 10j x x '=-≤恒成立,故()sin j x x x =-在[)0,x ∈+∞上单调递减,故()()00j x j ≤=,所以sin x x ≤,[)0,x ∈+∞,()()sin ln 1f x x x =-+,[]0,1x ∈,()22111cos 12sin 1212121x x f x x x x x ⎛⎫'=-=--≥--⎪+++⎝⎭()21111012121x x x x x=--≥--≤≤++,故()()2122202222x x x x x f x x x-+---'≥=>++在[]0,1x ∈上恒成立,所以()f x 在[]0,1单调递增,故()()00f x f ≥=法二:()()sin ln 1f x x x =-+,[]0,1x ∈,()1cos 1f x x x'=-+,且()00f '=,令()()1cos 1f x x xq x '=-=+,则()()21sin 1q x x x '=-++,令()()()21sin 1w q x x x x =-+='+,则()()32cos 01w x x x '=--<+在[]0,1x ∈上恒成立,所以()()21sin 1q x x x '=-++单调递减,又()010q '=>,其中π1sin1sin62>=,故()1sin1014q =-+<',故()00,1x ∃∈,使得()00q x '=,且当()00,x x ∈时,()0q x '>,当()0,1x x ∈时,()0q x '<,所以()f x '先增后减,又()00f '=,()11cos102f '=->,∴()0f x ¢>在()0,1x ∈上恒成立,所以()f x 单调递增,()()00f x f ≥=;(2)法一:()()2e 2sin ln 1xg x x a x =--++,()()()()()2e 1sin ln 11ln 10x g x x x x x x a x =--+-+-++++≥,下证:()e 100xx x --≥≥,()0sin 0x x x -≥≥,()()0ln 10x x x -+≥≥,且在0x =处取等号,令()()0e 1x x r x x -=-≥,则()()e 100x r x x -≥'=≥,故()()0e 1xx r x x -=-≥单调递增,故()()00r x r ≥=,且在0x =处取等号,()0sin 0x x x -≥≥在(1)中已证明;令()()()0ln 1t x x x x =-≥+,则()()101011x t x x x x '=-≥++≥=,故()()()0ln 1t x x x x =-≥+单调递增,故()()00t x t ≥=,且在0x =处取等号,当0x >时,()ln 10x +>,当10a +≥时,即1a ≥-时,()0g x ≥符合题意,当1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞;法二:()()2e 2sin ln 1x g x x a x =--++,()2e cos 1xag x x x '=-++,()0,πx ∈,①当0a ≥时,()2e 10xg x '≥->,()0,πx ∈,()g x 在[]0,π单调递增,且()()00g x g ≥=符合题意,②当a<0时,()2e cos 1xag x x x '=-++在()0,π单调递增,()0211g a a '=+-=+,③当10a +≥时,即10a -≤<时,()()010g x g a ''≥=+≥()g x 在[]0,π单调递增,()()00g x g ≥=符合题意,②当10a +<时,即1a <-时,()00g =,()2e cos 1x ag x x x '=-++,()010g a ='+<,其中当1a <-时,2e 2e a ->,()cos 1a -≤,11111111a a a a a -+-==-≤-+-+-+,故()()2e cos 01aag a a a -'-=--+>-+,令()()2e cos 1xau x g x x x '==-++,[]0,πx ∈,则()()22e sin 01xau x x x '=+->+在[]0,πx ∈上恒成立,故()g x '在[]0,πx ∈上单调递增,故()10,x a ∃∈-,使得()10g x '=,()g x 在()10,x 单调递减,故()()100g x g <=与()0g x ≥矛盾,舍去;综上:a 的取值范围为[)1,-+∞.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)【解析】(1)1()cos 1f x a x x'=-+ (10-<≤x )a 为正实数,∴函数()f x '在区间(1,0]-上单调递增,且(0)1f a '=-.①当01a <≤时,()(0)0f x f ''≤≤,所以函数()f x 在(1,0]-上单调递减,此时()(0)0f x f ≥=,符合题意.②当1a >时,11(0)10,1cos 10f a f a a a a a a ⎛⎫⎛⎫''=->-=--<-= ⎪ ⎪⎝⎭⎝⎭,由零点存在定理,0(1,0)x ∃∈-时,有()00f x '=,即函数()f x 在()01,x -上递减,在()0,0x 递增,所以当()0,0x x ∈时,有()(0)0f x f <=,此时不符合.综上所述,正实数a 的最大值为1.(2)由(1)知,当1,(1,0)a x =∈-时,sin ln(1)x x >+,令21x i =-时,有2222111sin ln 1ln i i i i -⎛⎫⎛⎫->-= ⎪ ⎪⎝⎭⎝⎭,即2221sin ln 1i i i <-,累加得,2212232sinln ln ln 2ln ln 2132111ni n n n i n n n =⎛⎫<⋅⋅==+< ⎪+++⎝⎭∑ .(3)因为1()e ln(1)x g x x +=-+,所以11()e 1x g x x +'=-+,即函数()g x '在(1,)-+∞上递增,又1(0)e 10,202g g ⎛⎫''=->-=< ⎪⎝⎭,由零点存在定理,11,02x ⎛⎫∃∈- ⎪⎝⎭时,有()10g x '=,即1111e 1x x +=+,因此()11111lnln 11x x x +==-++,而函数()g x 在()11,x -上递减,在()1,x +∞上递增,所以()()()11111min 111111e ln 1ln 1111x m g x g x x x x x x +===-+=+=+++++,即52,2m ⎛⎫∈ ⎪⎝⎭.要证方程1e ln(1)0x m x +--+=有唯一的实数解,只要证方程1e e ln(1)0x m x +-+=有唯一的实数解.设15()ee ln(1)22xmH x x m +⎛⎫=-+<< ⎪⎝⎭,则()1e e 1mxH x x+'=-+,所以函数()H x '在(1,)-+∞上递增,又(0)e e 0mH '=-<,e (1)(1)0mm H m m-'-=>,由零点存在定理,2(0,1)x m ∃∈-时,2()0H x '=,即212e e1mx x +=+,因此()221ln 1m x x =+++,又1111ln 11m x x =+++,设()ln m x x x =+,则函数()m x 在(0,)+∞上递增,于是21111x x +=+且()21ln 11x x +=+,而函数()H x 在()21,x -上递减,在()2,x +∞上递增,()()()()()21min 2221121()e e ln 1e ln 1e 1101x m m m H x H x x x x x x +⎛⎫∴==-+=-+=+-+= ⎪+⎝⎭,即函数()H x 有唯一零点2x ,故方程1e ln(1)0x m x +--+=有唯一的实数解.15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.【解析】(1)由()e ln xf x a x =-,可得()1e x f x a x'=-,因为()f x 在[)1,+∞上单调递增,则()0f x '≥在[)1,+∞上恒成立,即1e xa x ≥在[)1,+∞上恒成立,令()()1,1e x g x x x =≥,则()()()2211e e 0e e x x x x x g x x x x +'=-+=-<在[)1,+∞上恒成立,即()g x 在[)1,+∞上单调递减,所以()()max 11eg x g ==,由1e x a x ≥在[)1,+∞上恒成立,可得()max1ea g x ≥=,所以实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)因为函数()e 1x x x φ=--,()e 1xx φ'=-,令()0x φ'=,则0x =,即0x >时,()0x φ'>,则()x φ单调递增;即0x <时,()0x φ'<,则()x φ单调递减;所以()()0110x φφ≥=-=,即e 1x x ≥+(当且仅当0x =取等号),因为函数()ln 1x x x ϕ=-+,()0x >,则()11x xϕ'=-,令()0x ϕ'=,则1x =,当01x <<时,()0x ϕ'>,则函数()x ϕ单调递增;当1x >时,()0x ϕ'<,则函数()x ϕ单调递减;所以()()10110x ϕϕ≤=-+=,即ln 1≤-x x (当且仅当1x =取等号),因为21ea ≥,且e 1xx ≥+(当且仅当0x =取等号),ln 1≤-x x (当且仅当1x =取等号),所以()()221e ln e 1e 1exxx f x a x x x -=->⋅--=-+(两个等号不同时成立这里反为大于号),令()()2e1,0x h x x x -=-+>,即证()0h x ≥,因额为()2e1x h x -'=-,令()0h x '=,可得20e e 1x -==,所以2x =,当02x <<时,()0h x '<,则函数()h x 单调递减;当2x >时,()0h x '>,则函数()h x 单调递增;所以()()22min 2e 210h x h -==-+=,所以()()20h x h ≥=,即当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.【解析】(1)因为()ln af x x x=+,所以21()a f x x x '=-,又()f x 在1x =处的切线方程为y b =,所以(1)10,f a ='-=故1a =,又()1ln11f a =+=,所以切线方程为1y =,故1b =,所以()1ln f x x x=+,则22111().x f x x x x -'=-=当01x <<时,()0f x '<,()f x 单调递减;当1x ≥时,()0f x '≥,()f x 单调递增.综上,()f x 的单调递减区间为()0,1,单调递增区间为[)1,+∞.(2)22e ()e e ln e ln (),0,1x x x x x f x mx x x mx x mF x x x x x x x -+++===>---且1x ≠.由曲线()y F x =恒在直线1y x =+的上方,知e ln 11x x m x x +>+-.当1x >时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +>-,即2e ln 10.x x x m -++>设2 ()e ln 1(1),x g x x x m x =-++>则112()e (ln )2e (ln )ex xx x g x x x x x x '=+-=+-.由(1)可知,当1x >时,()1ln f x x x=+单调递增,所以()()11f x f >=.设2()e x x h x =,则2(1)()e xx h x -'=,当1x >时,()0h x '<,所以()h x 在()1,+∞上单调递减,所以2()(1)1eh x h <=<.所以当1x >时,12()e (ln 0exx xg x x x '=+->,所以()g x 在()1,+∞上单调递增,所以()(1)g x g m >=,所以0m ≥.当01x <<时,e ln 11x x mx x +>+-等价于2e ln 1x x m x +<-,即2e ln 10.x x x m -++<设2()e ln 1(01),x g x x x m x =-++<<由①可知12()e (ln e x xxg x x x '=+-.。

函数压轴题中的任意与存在性问题(去底纹,精编学生版)

函数压轴题中的任意与存在性问题(去底纹,精编学生版)

函数压轴题中的任意与存在性问题【真题感悟】例1.(2018年江苏高考)记()(),f x g x ''分别为函数()(),f x g x 的导函数.若存在0x R ∈,满足()()00f x g x =且()()00f x g x ='',则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与()222g x x x =+-不存在“S 点”;(2)若函数()21f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数()2f x x a =-+,()xbe g x x =.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”,并说明理由.例2.(2014年江苏高考)已知函数()x x f x e e -=+,其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()1x mf x e m -≤+-在(0,)+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0(1,)x ∈+∞,使得3000()(3)f x a x x <-+成立,试比较1a e -与1e a -的大小,并证明你的结论.例3.(2016年江苏高考)已知函数f(x)=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f(x)=2的根;②若对任意x ∈R ,不等式f(2x)≥mf(x)−6恒成立,求实数m 的最大值;(2)若0<a <1,b >1,函数g(x)=f(x)−2有且只有1个零点,求ab 的值.【典题导引】命题规律:含有参数的方程(或不等式)中的“任意性”与“存在性”问题,历来是高考考查的一个热点,也是高考复习中的一个难点。

破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键。

求高手指点 高中数学 导数大题 答题思路 和一些方法, 感激不尽

求高手指点 高中数学 导数大题 答题思路 和一些方法, 感激不尽

求高手指点高中数学导数大题答题思路和一些方法,感激不尽高中数学中的导数大题是许多学生都非常头疼的一块。

虽然数学在学习上属于理性思维,但是对于掌握导数大题,在数学解决过程中,也会有一定的技巧与策略,因此,想要突破导数大题,可以采取一定的技巧与策略,如下:一、正确的分析问题:解答数学大题前,首先要做的就是正确的分析题目,即弄清楚题目的问题点,明确作者想要考察的问题,如:本题考查的是什么?有哪些关键点?要求能求出什么?等等。

只有把握住了题目中的知识点,才能够更快地把问题解决,才能最快地完成题目,并得到老师的肯定。

二、掌握数学公式:能够快速地解答数学大题,最根本的是要熟悉数学公式,并且掌握一定的方法与技巧。

比如在运用积分法求解导数大题时,需要对导数、积分、微分方程等知识有所掌握,并且掌握基本方法,例如积分求导数,函数求导数,求特解等,才能够解答大题。

三、熟悉解题方法:掌握解题方法,也是应该考虑的重点。

在解答数学大题时,应该会先考虑所学知识涉及到的方法。

比如导数大题,可以采用积分法、函数求导数等方法,采用这样的方法,便可以解决大部分的导数大题;当遇到比较复杂的导数求解时,还可以通过对函数的研究,来分析函数的准确性、导数性,并进一步求取所需要解决的导数。

四、详细推导解决步骤:最后,在解答大题时,要注意每一步的计算过程和推导方法,应该细致的推导问题的解数,并及时定义函数,进行计算,不要简单的只写出数学公式,这样老师不能够看出你的推导过程,也不能让老师看出你的数学思维的深度。

总的来说,高中数学中的导数大题,要想解决得当,在解答大题之前,首先要正确的分析题目,以及掌握数学公式和熟悉解题方法,最后还要注意详细推导步骤,只有这样,才能够更好地把握导数大题,得到老师的肯定与表扬。

导数压轴题与解题套路

导数压轴题与解题套路

导数压轴题与解题套路
导数压轴题是高中数学中比较有难度的题目之一,很多同学在考试中遇到这种题目时会感到比较头疼。

但是,只要理解了导数的概念和解题套路,就能够轻松地解决这类题目。

首先,我们需要明确导数的定义和意义,即导数表示函数在某一点处的变化率。

根据这个定义,我们可以通过求导数来求函数在某一点处的切线斜率、函数的最值等。

对于导数压轴题,我们可以采用以下解题套路:
1.找出函数的定义域和导数的定义域,确定导数的存在性。

2.计算函数的导数,并化简。

3.求出导数为0或不存在的点,这些点可能是函数的极值点或拐点。

4.求出导数的正负性,确定函数的单调性。

5.求出导数的符号变化点,确定函数的凸凹性和拐点。

6.结合上述信息,画出函数的草图。

通过这样的解题流程,我们就可以轻松地解决导数压轴题。

当然,实际解题时还需要注意一些细节问题,比如边界点处的导数计算等。

总之,掌握导数的概念和解题套路是解决导数压轴题的关键。

只要多加练习,相信大家都能够轻松地应对这类题目。

- 1 -。

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧以下是 8 条关于导数压轴题题型归纳及处理技巧的内容:1. 哎呀,导数压轴题里有一种常见的题型就是求最值问题呀!就像在登山的时候,要找到那最高的山峰!比如函数y=x³-3x²+5,你能快速找到它的最值吗?2. 嘿,还有判断函数单调性的题型呢!这就像开汽车,要清楚什么时候加速什么时候减速。

像函数 f(x)=xlnx,你能判断它的单调性吗?3. 哇塞,导数里那种恒成立问题也很让人头疼啊!就好比要让一个球一直保持在一个固定的位置。

比如f(x)≥a 在某个区间恒成立,这可得好好琢磨琢磨怎么处理哦!像函数 f(x)=e^x+x,若f(x)≥kx 恒成立,你能搞定吗?4. 哦哟,导数压轴题里的不等式证明可不好惹呢!就像是要跨过一条很难跨的沟。

比如要证明某个不等式成立,怎么把导数的知识用上呀?比如 x>0 时,证明 e^x>1+x,你知道怎么下手吗?5. 嘿呀,有一种题型是利用导数求曲线的切线方程呢!这就像在给一条曲线画上漂亮的切线。

比如给定曲线y=x²,在某点处的切线怎么求呢,你会吗?6. 哇哦,那些与极值点有关的题型也挺有趣的嘛!就如同在一群小朋友里找到那个最特别的。

比如给定一个函数,怎么去找它的极值点呢?像函数g(x)=x³-3x,它的极值点在哪儿呀?7. 哈哈,还有根据导数信息画函数图象的题型呢!这可像是根据描述去画一幅神秘的画。

比如知道了导数的一些情况,那函数图象大概长啥样呢?你能想象出来吗?8. 哎呀呀,最后还有一类是把导数和其他知识综合起来的题型呢!这就像把不同的拼图块拼成一幅完整的画。

比如和数列结合起来,那可真是够有挑战性呢!像这样的综合题,你能勇敢挑战吗?我觉得导数压轴题虽然难,但只要掌握了这些题型和处理技巧,多练习多总结,就一定能攻克它!。

高一数学导数压轴题解题技巧

高一数学导数压轴题解题技巧

高一数学导数压轴题解题技巧
1.熟练掌握导数公式和定义,理解导数的几何意义。

2.灵活运用导数的基本性质,如求和法则、积商法则等。

3.掌握导数的运算方法,如高阶导数、隐函数求导、参数方程求导等。

4.注意判断导数存在的条件,如左右导数是否相等、是否可导等。

5.注意运用中值定理和罗尔定理等基本定理,解决导数相关的优化问题和函数图像的性质。

6.熟练掌握微分和导数的关系,运用微分求近似值和误差估计等。

7.加强练习,注意理论和实例的结合,培养数学思维和解决实际问题的能力。

8.多与同学交流,探讨解题方法和思路,加深对导数概念的理解和记忆。

以上是高一数学导数压轴题解题技巧,希望对同学们有所帮助。

- 1 -。

高中数学易错题,导数极值压轴难题,解题思路分享

高中数学易错题,导数极值压轴难题,解题思路分享

高中数学易错题,导数极值压轴难题,解题思路分享
导数极值是高中数学中许多学生都比较不清楚的知识点。

它需要学生掌握函数
的性质,把握方程式的知识,并且能够综合运用,推导出对应的极值结论。

如何解
决这一难题,如何让学生轻松地推导出导数极值,是数学教师们面临的一大考题。

首先,要解决导数极值难题,学生要有全面掌握函数的性质。

从设置函数项、
掌握函数基础原理到使用导数、变量上下启动思考及解出结论,要熟练掌握导数极
值算法,充分准确地理解函数变化的规律以及该变化规律背后含义的意义。

另外,学生应充分理解极值的概念,包括极大值和极小值,以及极值的可行性。

学生要全面明白极值的性质,把握好函数变化规律,才能根据导数极值求取函数极
值。

此外,学生在解决导数极值时,也可以通过不断试验、步步推导等手段,逐步
提高解答的速度和正确率。

通过不断练习,增加学生的经验积累,培养学生的独立
思考和解决问题的能力,使学生能够在应用当中发现规律,学会将知识转化成技能,
在实践中进行更深入的理解,有助于提高学生的学习效率。

总之,要解决导数极值压轴难题,学生要充分理解函数变化规律,在理论上扎
实掌握,并且熟练掌握求取极值算法,增强经验积累,熟练运用知识,提高准确率
与速度,从而轻松解决这一考题。

高考数学 函数与导数”压轴大题的3大难点及破解策略 教案 含解析题

高考数学 函数与导数”压轴大题的3大难点及破解策略 教案   含解析题

第4课时 压轴考法自主选——“函数与导数”压轴大题的3大难点及破解策略难点一 隐零点问题在求解函数问题时,很多时候都需要求函数f (x )在区间I 上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f (x )在区间I 上存在唯一的零点(例如,函数f (x )在区间I 上是单调函数且在区间I 的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x 0.因为x 0不易求出(当然,有时是可以求出但无需求出),所以把零点x 0叫做隐零点;若x 0容易求出,就叫做显零点,而后解答就可继续进行.实际上,此解法类似于解析几何中“设而不求”的方法. [典例] 设函数f (x )=e x -ax -2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值.[解题观摩](1)当a ≤0时,f (x )的单调递增区间是(-∞,+∞),无单调递减区间;当a >0时,函数f (x )的单调递减区间是(-∞,ln a ),单调递增区间是(ln a ,+∞).(解答过程略)(2)由题设可得(x -k )(e x -1)+x +1>0, 即k <x +x +1e x -1(x >0)恒成立.令g (x )=x +1e x -1+x (x >0),得g ′(x )=e x -1-(x +1)e x (e x -1)2+1=e x (e x -x -2)(e x -1)2(x >0).由(1)的结论可知,函数h (x )=e x -x -2(x >0)是增函数.又因为h (1)<0,h (2)>0,所以函数h (x )的唯一零点α∈(1,2)(该零点就是h (x )的隐零点). 当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0, 所以g (x )min =g (α)=α+1e α-1+α. 又h (α)=e α-α-2=0, 所以e α=α+2且α∈(1,2), 则g (x )min =g (α)=1+α∈(2,3), 所以k 的最大值为2. [名师微点]本题的关键就是利用h (x )=e x -x -2及h (1)<0,h (2)>0确定h (x )的隐零点,从而作出判断. [针对训练]1.设函数f (x )=(x -1)e x -kx 2(k ∈R ).当k ∈⎝⎛⎦⎤12,1时,求函数f (x )在[0,k ]上的最大值M . 解:f ′(x )=x (e x -2k ).由f ′(x )=0,得x =0或x =ln 2k . 事实上,可证ln 2k <k , 设g (k )=ln 2k -k ⎝⎛⎭⎫12<k ≤1, 则g ′(k )=1-k k ≥0⎝⎛⎭⎫12<k ≤1, 所以g (k )在⎝⎛⎦⎤12,1上是增函数, 所以g (k )≤g (1)=ln 2-1<0,即ln 2k <k .所以f (x )在(0,ln 2k )上是减函数,在(ln 2k ,k ]上是增函数,所以M =max{f (0),f (k )}. 设h (k )=f (k )-f (0)=(k -1)e k -k 3+1⎝⎛⎭⎫12<k ≤1, 则h ′(k )=k (e k -3k )⎝⎛⎭⎫12<k ≤1. 又令φ(k )=e k -3k ⎝⎛⎭⎫12<k ≤1, 则φ′(k )=e k -3≤e -3<0⎝⎛⎭⎫12<k ≤1, 所以函数φ(k )在⎝⎛⎦⎤12,1上是减函数. 又因为φ⎝⎛⎭⎫12>0,φ(1)<0,所以函数φ(k )在⎝⎛⎭⎫12,1上存在唯一的零点k 0. 所以当12<k <k 0时,φ(k )>0,即h ′(k )>0,当k 0<k ≤1时,φ(k )<0,即h ′(k )<0, 所以函数h (k )在⎝⎛⎦⎤12,1上是先增后减. 又因为h ⎝⎛⎭⎫12=78-e 2>0,h (1)=0, 所以h (k )=f (k )-f (0)≥0, f (k )≥f (0)⎝⎛⎭⎫12<k ≤1, 故M =f (k )=(k -1)e k -k 3.难点二 极值点偏移问题在近几年的高考中,极值点偏移问题常作为压轴题出现,题型复杂多变,面对此类问题时常会感到束手无策.事实上,只要掌握这类问题的实质,巧妙消元、消参、构造函数,问题便能迎刃而解.1.极值点偏移的含义若单峰函数f(x)的极值点为x0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x0函数值的大小关系图示极值点不偏移x0=x1+x22f(x1)=f(2x0-x2)极值点偏移左移x0<x1+x22峰口向上:f(x1)<f(2x0-x2)峰口向下:f(x1)>f(2x0-x2)右移x0>x1+x22峰口向上:f(x1)>f(2x0-x2)峰口向下:f(x1)<f(2x0-x2)2.函数极值点偏移问题的题型极值点偏移问题的题设一般有以下四种形式:(1)若函数f(x)在定义域上存在两个零点x1,x2(x1≠x2),求证:x1+x2>2x0(x0为函数f(x)的极值点);(2)若在函数f(x)的定义域上存在x1,x2(x1≠x2)满足f(x1)=f(x2),求证:x1+x2>2x0(x0为函数f(x)的极值点);(3)若函数f(x)存在两个零点x1,x2(x1≠x2),令x0=x1+x22,求证:f′(x0)>0;(4)若在函数f(x)的定义域上存在x1,x2(x1≠x2)满足f(x1)=f(x2),令x0=x1+x22,求证:f′(x0)>0.[典例]已知函数f(x)=ln x-ax(x>0),a为常数,若函数f(x)有两个零点x1,x2(x1≠x2).证明:x 1x 2>e 2.[解题观摩]法一:巧抓“根商”——c =x 1x 2构造函数不妨设x 1>x 2,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2), 所以ln x 1-ln x 2x 1-x 2=a .欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令c =x 1x 2(c >1),则不等式变为ln c >2(c -1)c +1.令h (c )=ln c -2(c -1)c +1,c >1, 所以h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增, 所以h (c )>h (1)=ln 1-0=0, 即ln c -2(c -1)c +1>0(c >1),因此原不等式x 1x 2>e 2得证. [名师微点]该方法的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:(1)联立消参:利用方程f (x 1)=f (x 2)消掉解析式中的参数a .(2)抓商构元:令c =x 1x 2,消掉变量x 1,x 2,构造关于c 的函数h (c ).(3)用导求解:利用导数求解函数h (c )的最小值,从而可证得结论. 法二:抓极值点构造函数由题意,函数f (x )有两个零点x 1,x 2(x 1≠x 2),即f (x 1)=f (x 2)=0,易知ln x 1,ln x 2是方程x =a e x 的两根.设t1=ln x1,t2=ln x2,g(x)=x e-x,则g(t1)=g(t2),从而x1x2>e2⇔ln x1+ln x2>2⇔t1+t2>2. 下证:t1+t2>2.g′(x)=(1-x)e-x,易得g(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减,所以函数g(x)在x=1处取得极大值g(1)=1 e.当x→-∞时,g(x)→-∞;当x→+∞时,g(x)→0且g(x)>0.由g(t1)=g(t2),t1≠t2,不妨设t1<t2,作出函数g(x)的图象,如图所示,由图知必有0<t1<1<t2,令F(x)=g(1+x)-g(1-x),x∈(0,1],则F′(x)=g′(1+x)-g′(1-x)=xe x+1(e2x-1)>0,所以F(x)在(0,1]上单调递增,所以F(x)>F(0)=0对任意的x∈(0,1]恒成立,即g(1+x)>g(1-x)对任意的x∈(0,1]恒成立.由0<t1<1<t2,得1-t1∈(0,1),所以g[1+(1-t1)]=g(2-t1)>g[1-(1-t1)]=g(t1)=g(t2),即g(2-t1)>g(t2),又2-t1,t2∈(1,+∞),且g(x)在(1,+∞)上单调递减,所以2-t1<t2,所以t1+t2>2,即x1x2>e2.[名师微点]上述解题过程就是解决极值点偏移问题的最基本的方法,共有四个解题要点:(1)求函数g(x)的极值点x0;(2)构造函数F(x)=g(x0+x)-g(x0-x);(3)确定函数F(x)的单调性;(4)结合F(0)=0,确定g(x0+x)与g(x0-x)的大小关系.法三:巧抓“根差”——s=Δt=t2-t1构造函数由题意,函数f(x)有两个零点x1,x2(x1≠x2),即f(x1)=f(x2)=0,易知ln x1,ln x2是方程x =a e x的两根.设t1=ln x1,t2=ln x2,设g(x)=x e-x,则g(t1)=g(t2),从而x1x2>e2⇔ln x1+ln x2>2⇔t1+t2>2.下证:t1+t2>2.由g (t 1)=g (t 2),得t 1e -t 1=t 2e -t 2,化简得e t 2-t 1=t 2t 1.①不妨设t 2>t 1,由法二知,0<t 1<1<t 2,令s =t 2-t 1,则s >0,t 2=s +t 1,代入①式,得e s =s +t 1t 1, 解得t 1=se s -1.则t 1+t 2=2t 1+s =2se s -1+s ,故要证t 1+t 2>2,即证2se s -1+s >2,又e s -1>0,故要证2se s -1+s >2,即证2s +(s -2)(e s -1)>0.② 令G (s )=2s +(s -2)(e s -1)(s >0), 则G ′(s )=(s -1)e s +1,G ″(s )=s e s >0,故G ′(s )在(0,+∞)上单调递增,所以G ′(s )>G ′(0)=0, 从而G (s )在(0,+∞)上单调递增,所以G (s )>G (0)=0, 所以②式成立,故t 1+t 2>2,即x 1x 2>e 2. [名师微点]该方法的关键是巧妙引入变量s ,然后利用等量关系,把t 1,t 2消掉,从而构造相应的函数,转化所证问题.其解题要点为:(1)取差构元:记s =t 2-t 1,则t 2=t 1+s ,利用该式消掉t 2. (2)巧解消参:利用g (t 1)=g (t 2),构造方程,解之,利用s 表示t 1.(3)构造函数:依据消参之后所得不等式的形式,构造关于s 的函数G (s ). (4)转化求解:利用导数研究函数G (s )的单调性和最小值,从而证得结论. [针对训练]2.若关于x 的方程x ln x =m 有两个不相等的实数解x 1,x 2,求证:x 1·x 2<1e 2(e 是自然对数的底数).证明:不妨设x 1>x 2,要证x 1x 2<1e 2,即证x 1x 2⎝⎛⎭⎫1x 2-1x 1<1e 2⎝⎛⎭⎫1x 2-1x 1, 整理得x 1+1e 2x 1<x 2+1e 2x 2.又因为x 1ln x 1=x 2ln x 2,即证x 1ln x 1-k ⎝⎛⎭⎫x 1+1e 2x 1>x 2ln x 2-k ⎝⎛⎭⎫x 2+1e 2x 2,k >0. 设h (x )=x ln x -kx -ke 2x, 使h (x )在(0,+∞)上单调递增, 所以有h ′(x )=ln x +1-k +ke 2x 2≥0在(0,+∞)上恒成立,令h ″(x )=1x -2ke 2x 3=0,解得x =2k e ,列表可知h ′(x )在⎝⎛⎭⎫0,2k e 上单调递减,在⎝⎛⎭⎫2k e ,+∞上单调递增, 令h ′⎝⎛⎭⎫2k e =12ln(2k )-k +12=12(ln(2k )-2k +1)≥0, 解得k =12,此时有h ′(x )≥0在(0,+∞)上恒成立,原命题得证.难点三 利用洛必达法则求解不等式恒成立问题函数与导数应用的问题中,求参数的取值范围是重点考查的题型.在平时教学中,教师往往介绍利用变量分离法来求解.但部分题型利用变量分离法处理时,会出现“00”型的代数式,而这是大学数学中的不定式问题,解决这类问题的有效方法就是利用洛必达法则. [洛必达法则]法则1 若函数f (x )和g (x )满足下列条件 (1)li m x →a f (x )=0及li m x →a g (x )=0;(2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l , 那么li m x →af (x )g (x )=li m x →a f ′(x )g ′(x )=l . 法则2 若函数f (x )和g (x )满足下列条件 (1)li m x →a f (x )=∞及li m x →a g (x )=∞;(2)在点a 的去心邻域内,f (x )与g (x )可导且g ′(x )≠0; (3)li m x →af ′(x )g ′(x )=l , 那么li m x →af (x )g (x )=li m x →a f ′(x )g ′(x )=l . [典例] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0. (1)求a ,b 的值;(2)如果当x >0,且x ≠1时,f (x )>ln x x -1+kx,求k 的取值范围.[解题观摩](1)f ′(x )=a ⎝⎛⎭⎫x +1x -ln x (x +1)2-bx 2.由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1. (2)法一:由(1)知f (x )=ln x x +1+1x, ∴f (x )-⎝⎛⎭⎫ln x x -1+kx=11-x 2⎣⎡⎦⎤2ln x +(k -1)(x 2-1)x . 设h (x )=2ln x +(k -1)(x 2-1)x (x >0),则h ′(x )=(k -1)(x 2+1)+2xx 2.①设k ≤0.由h ′(x )=k (x 2+1)-(x -1)2x 2知,当x ≠1时,h ′(x )<0,h (x )单调递减. 而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; 当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-⎝⎛⎭⎫ln x x -1+kx >0,即f (x )>ln x x -1+kx.②设0<k <1.由于y =(k -1)(x 2+1)+2x =(k -1)x 2+2x +k -1的图象开口向下,且Δ=4-4(k -1)2>0,对称轴x =11-k>1,∴当x ∈⎝⎛⎭⎫1,11-k 时,(k -1)(x 2+1)+2x >0,故h ′(x )>0,而h (1)=0,故当x ∈⎝⎛⎭⎫1,11-k 时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾,③设k ≥1.此时h ′(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾.综上所述,k 的取值范围为(-∞,0].(法一在处理第(2)问时很难想到,现利用洛必达法则处理如下) 法二:由题设可得,当x >0,x ≠1时,k <2x ln x1-x 2+1恒成立.令g (x )=2x ln x1-x 2+1(x >0,x ≠1), 则g ′(x )=2·(x 2+1)ln x -x 2+1(1-x 2)2,再令h (x )=(x 2+1)ln x -x 2+1(x >0,x ≠1), 则h ′(x )=2x ln x +1x -x ,又h ″(x )=2ln x +1-1x 2,易知h ″(x )在(0,+∞)上为增函数,且h ″(1)=0, 故当x ∈(0,1)时,h ″(x )<0,当x ∈(1,+∞)时,h ″(x )>0,∴h ′(x )在(0,1)上为减函数,在(1,+∞)上为增函数,故h ′(x )>h ′(1)=0,∴h (x )在(0,+∞)上为增函数.又h (1)=0,∴当x ∈(0,1)时,h (x )<0,当x ∈(1,+∞)时,h (x )>0, ∴当x ∈(0,1)时,g ′(x )<0,当x ∈(1,+∞)时,g ′(x )>0, ∴g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 由洛必达法则知,lim x →1 g (x )=2li m x →1 x ln x 1-x 2+1=2lim x →1 1+ln x -2x+1=2×⎝⎛⎭⎫-12+1=0, ∴g (x )>0,∴k ≤0,故k 的取值范围为(-∞,0]. [名师微点]解决本题第(2)问时,如果直接讨论函数的性质,相当烦琐,很难求解.采用参数与变量分离较易理解,但是分离出来的函数式的最值无法求解,而利用洛必达法则却较好地处理了它的最值,这是一种值得借鉴的方法.[针对训练]3.设函数f (x )=1-e -x ,当x ≥0时,f (x )≤xax +1,求a 的取值范围. 解:由f (x )≤xax +1,得a ≤x e x -e x +1x (e x -1),设t (x )=(x -1)e x +1(x >0),得t ′(x )=x e x >0(x >0),所以t (x )是增函数,t (x )>t (0)=0(x >0). 又设h (x )=(x -2)e x +x +2(x >0),得h ′(x )=t (x )>0(x >0),所以h (x )是增函数,h (x )>h (0)=0(x >0).再设g (x )=x e x -e x +1x (e x -1)(x >0),连续两次使用洛必达法则,得lim x →0 g (x )=lim x →0 x e xx e x +e x -1=lim x →0 x e x +e x x e x +2e x =12, 所以g (x )的下确界是12,即g (x )>12(x >0).题设即“当x ≥0时,1-e -x ≤x ax +1恒成立”,所求a 的取值范围是⎣⎡⎦⎤0,12. [课时跟踪检测]1.定义在R 上的奇函数f (x ),当x >0时,f (x )=ln x -ax +1,若f (x )有5个零点,求实数a 的取值范围.解:因为f (x )是定义在R 上的奇函数,所以f (0)=0,所以要使f (x )在R 上有5个零点,只需f (x )在(0,+∞)上有2个零点,等价于方程a =ln x +1x在(0,+∞)上有2个根,等价于y =a 与g (x )=ln x +1x (x >0)的图象有2个交点.g ′(x )=-ln xx 2,当x 变化时,g ′(x ),g (x )的变化情况如下表:所以g (x )因为x →0时,g (x )→-∞;x →+∞时,由洛必达法则可知: lim x →+∞g (x )=lim x →+∞(ln x +1)′(x )′=lim x →+∞ 1x =0, 所以0<a <g (1),所以0<a <1. 故实数a 的取值范围为(0,1).2.已知函数f (x )=ax e x (a ∈R ),g (x )=ln x +x +1.若f (x )≥g (x )恒成立,求实数a 的取值范围. 解:f (x )≥g (x )恒成立,即ax e x ≥ln x +x +1恒成立. 因为x >0,所以a ≥ln x +x +1x e x. 令h (x )=ln x +x +1x e x,则h ′(x )=(x +1)(-ln x -x )x 2e x. 令p (x )=-ln x -x ,则p ′(x )=-1x -1<0, 故p (x )在(0,+∞)上单调递减,又p ⎝⎛⎭⎫1e =1-1e>0,p (1)=-1<0, 故存在x 0∈⎝⎛⎭⎫1e ,1,使得p (x 0)=-ln x 0-x 0=0,故ln x 0+x 0=0,即x 0=e -x 0.当x ∈(0,x 0)时,p (x )>0,h ′(x )>0;当x ∈(x 0,+∞)时,p (x )<0,h ′(x )<0.所以h (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以h (x )max =h (x 0)=ln x 0+x 0+1x 0e x 0=1. 故实数a 的取值范围是[1,+∞).3.已知函数f (x )=ax +b x +c (a >0)的图象在点(1,f (1))处的切线方程为y =x -1.(1)试用a 表示出b ,c ;(2)若f (x )≥ln x 在[1,+∞)恒成立,求a 的取值范围.解:(1)f ′(x )=a -b x 2, 由⎩⎪⎨⎪⎧f (1)=a +b +c =1-1=0,f ′(1)=a -b =1,得b =a -1,c =1-2a . (2)题设即“a ≥ln x +1x -1x +1x -2(x >1),或a ≥x ln x -x +1(x -1)2(x >1) 恒成立”. 设g (x )=12(x -1)2+(x -1)-x ln x (x ≥1), 则g ′(x )=x -ln x -1(x ≥1),又g ″(x )=1-1x 恒大于0(x >1),所以g ′(x )单调递增(x >1),所以g ′(x )>g ′(1)=0,所以g (x )单调递增(x >1),所以g (x )≥g (1)=0(x ≥1),当且仅当x =1时g (x )=0,故x ln x -x +1(x -1)2<12(x >1),lim x →1+ x ln x -x +1(x -1)2=12. 所以若a ≥x ln x -x +1(x -1)2(x >1)恒成立,则a ≥12, 即a 的取值范围是⎣⎡⎭⎫12,+∞.4.已知函数f (x )=ln x -a x -m (a ,m ∈R )在x =e(e 为自然对数的底数)时取得极值,且有两个零点记为x 1,x 2.(1)求实数a 的值,以及实数m 的取值范围;(2)证明:ln x 1+ln x 2>2.解:(1)f ′(x )=1x ·x -(ln x -a )x 2=a +1-ln x x 2(x >0), 由f ′(x )=0,得x =e a +1,且当0<x <e a+1时,f ′(x )>0, 当x >e a +1时,f ′(x )<0,所以f (x )在x =e a+1时取得极值, 所以e a +1=e ,解得a =0.所以f (x )=ln x x -m (x >0),f ′(x )=1-ln x x 2, 函数f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,f (x )max =f (e)=1e-m . 又x →0(x >0)时,f (x )→-∞;x →+∞时,f (x )→-m ,由f (x )有两个零点x 1,x 2,得⎩⎪⎨⎪⎧ 1e -m >0,-m <0,解得0<m <1e.所以实数m 的取值范围为⎝⎛⎭⎫0,1e . (2)证明:不妨设x 1<x 2,由题意知⎩⎪⎨⎪⎧ln x 1=mx 1,ln x 2=mx 2. 则ln x 1x 2=m (x 1+x 2),ln x 2x 1=m (x 2-x 1)⇒m =lnx 2x 1x 2-x 1. 欲证ln x 1+ln x 2>2,只需证ln x 1x 2>2,只需证m (x 1+x 2)>2,即证x 1+x 2x 2-x 1ln x 2x 1>2. 即证1+x 2x 1x 2x 1-1ln x 2x 1>2,设t =x 2x 1>1, 则只需证ln t >2(t -1)t +1,即证ln t -2(t -1)t +1>0. 记u (t )=ln t -2(t -1)t +1(t >1), 则u ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0. 所以u (t )在(1,+∞)上单调递增,所以u (t )>u (1)=0,所以原不等式成立,故ln x 1+ln x 2>2.5.已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1. 解:(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x .令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0.即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x e x有两个根. 设φ(x )=2x e x ,则φ′(x )=2-2x ex , 当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0; 当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0; 当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e, 故实数k 的取值范围是⎝⎛⎭⎫0,2e . 证明:由图可知函数f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=k e x 1-2x 1=0得k =2x 1ex 1, 所以f (x 1)=k e x 1-x 21=2x 1e x 1e x 1-x 21=-x 21+2x 1=-(x 1-1)2+1.由于x1∈(0,1),所以0<-(x1-1)2+1<1. 所以0<f(x1)<1.。

高考函数导数压轴题分析及应对策略

高考函数导数压轴题分析及应对策略

高考函数导数压轴题分析及应对策略
高考函数导数压轴题分析及应对策略
高考中,函数导数压轴题常常会出现在数学试卷中,其中最重要的就是理解函数导数概念及掌握计算导数的方法。

函数导数是指在某一个点的函数变化率,它是当我们求函数的导数时,最重要的概念。

考试中的一些压轴题往往都是考察对函数导数基本概念的认识,以及计算导数的能力。

解决高考函数导数压轴题的策略主要有两点:
一是预习,复习函数、导数的基本概念,主要考察方程式求导、不定积分概念,以及极限求值等技能,应誊写出公式,掌握计算导数的方法。

二是练习,找一批真题和习题,在解题过程中复习所学的知识,感知其思想和计算步骤,不断练习,解决相关的题目,把这些细节牢记在心,以提供解题时的参照,
争取考试时有少量准备时就能解答出来。

总之,考生要认真对待每一题,敢于试错,不到最后时刻都不要放弃,也不要丧失信心,只要坚持认真、严谨的态度,相信自己一定能取得理想的成绩。

导数压轴题的几种处理方法

导数压轴题的几种处理方法

导数压轴题的几种处理方法导数压轴题在高等数学中属于比较重要的部分,对于学生来说也是比较难以掌握和解答的问题。

在解决导数压轴题的过程中,有一些常用的处理方法可以帮助我们更好地理解题目、分析问题以及解决问题。

接下来,我将介绍一些常见的导数压轴题处理方法。

1.代数化简法:对于一些复杂的函数表达式,我们可以通过代数化简的方法将它转化为更简单的形式。

在处理导数压轴题时,代数化简法也是一种常用的处理方法。

可以通过分子有理化、公式换元、加减引理等方法对函数进行化简,从而更方便地进行导数运算。

2.函数性质法:当给定函数的性质或公式时,可以通过利用函数的性质和公式进行求导。

对于一些常见函数,如指数函数、对数函数、三角函数等,有一些基本的求导公式,可以通过直接套用公式进行求导。

3.极限转换法:在求导过程中,有时候我们可以通过将导数的定义转化为极限的形式,然后利用极限的性质来求导。

极限转换法通常适用于一些特殊的函数形式,如分段函数、绝对值函数等。

4.高阶导数法:对于一些特殊的问题,我们还可以通过求取高阶导数来解决。

通过求取函数的一阶、二阶、甚至更高阶导数,可以更全面地了解函数的性质和特点,从而更好地解答问题。

5.导数的几何意义法:导数的几何意义是描述函数变化率的概念,一些导数压轴题可以通过对导数的几何意义进行分析来解决。

例如,利用导数的几何意义可以判断函数的增减性、极值点和拐点等。

6.隐函数求导法:一些函数的表达式难以直接求导,可以通过对方程两边同时求导的方法来解决。

这种方法通常适用于隐函数关系的导数压轴题,可以通过对隐函数关系进行求导然后解方程得到结果。

7.递归求导法:对于一些重复出现的函数表达式,可以通过递归求导法直接求取导数的表达式。

这种方法适用于一些具有规律性的函数,可以通过重复进行相同的导数运算来求取导数。

8.利用导数性质法:导数具有一些特定的性质,如导数的和、差、积、商、复合函数等性质。

在求导过程中,可以通过利用这些性质来简化计算过程,从而更快速地求解导数问题。

【函数与导数压轴题突破】巧辩存在任意问题

【函数与导数压轴题突破】巧辩存在任意问题

f
' ( x)
a x2
Hale Waihona Puke a xa1
x x2
.
所以,当 a 0 时, f ' x 0 , f x 在 (0, ) 上递减;
当 a 0 时, f ' x 0 ,所以, f x 在 (0, ) 上递增.
(II)在 1,e 上存在一点 x0 使 f (x0 ) g(x0 ) 成立,
即函数 h(x) a a ln x x 1 在 1, e 上 的最小值小于 0,
此时值域为
3a2
2a
5,
4
2a
,则
3a2 2a
4
2a
1 e
5
0
,解得1
a
2
1 2e
;
综上所述,实数
a
的取值范围为
1,
2
1 2e
.
类型三 f(x),g(x)是闭区间 D 上的连续函数,“∀x1,x2∈D,使得 f(x1)>g(x2)”与“∃x1,x2∈D, 使得 f(x1)>g(x2)”的辨析
② 当 a 0 时, g(x) 0 的解集为 (a, ) , g(x) 0 的解集为 (0, a) , 故函数 g(x) 在 (0, a) 上单调递减,在 (a, ) 上单调递增,
且 g(0) 4 2a, g(1) 3a2 2a 5 ,
(i) 当 0 a 1时,函数 g(x) 在 (0, a) 上单调递减,在 (a,1) 上单调递增,此时值域为
【2020·江西瑞金一中期中】已知函数 f x x ln x a b ,曲线 y f x 在点 1, f 1 处的切线为
2x y 1 0 . (1)求 a , b 的值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021高考数学压轴题命题区间探究与突破专题第一篇 函数与导数专题08 巧辨“任意性问题”与“存在性问题” 一.方法综述含有参数的方程(或不等式)中的“任意性”与“存在性”问题,历来是高考考查的一个热点,也是高考复习中的一个难点.破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键.本专题举例说明辨别“任意性问题”与“存在性问题”的方法、技巧. 二.解题策略类型一 “∀x ,使得f(x)>g(x)”与“∃x ,使得f(x)>g(x)”的辨析 (1)∀x ,使得f(x)>g(x),只需h(x)min =[f(x)-g(x)]min >0.如图①.(2)∃x ,使得f(x)>g(x),只需h(x)max =[f(x)-g(x)]max >0.如图②. 【例1】【2020·河南濮阳一中期末】已知函数1()ln (0),()a f x a x a g x x x x=-≠=--. (Ⅰ)求()f x 的单调区间;(Ⅱ)当0a >时,若存在0[1,]x e ∈,使得()()00f x g x <成立,求实数a 的取值范围.【解析】(I )()f x 的定义域为'221(0,),().a a x f x a x x x++∞=--=- 所以,当0a >时,()'0f x <,()f x 在(0,)+∞上递减;当0a <时,()'0f x >,所以,()f x 在(0,)+∞上递增.(II )在[]1e ,上存在一点0x 使00()()f x g x <成立, 即函数1()ln a h x a x x x x=-++在[]1,e 上的最小值小于0, ()'222(1)1+1()1x x a a a h x x x x x +-⎡⎤⎣⎦=--+-=.①当1+a e ≥,即1a e ≥-时,()h x 在[]1,e 上单调递减, 所以()h x 在[]1,e 上的最小值为()h e ,由()10ah e e a e+=+-<, 得222111,1,111e e e a e a e e e +++>>-∴>---; ②当11a +≤,即0a ≤时,0a >,不合乎题意; ③当11a e<+<,即01a e <<-时,()h x 的最小值为()1h a +,0ln(1)1,0ln(1),a a a a <+<∴<+<故(1)2ln(1)2h a a a a +=+-+>.此时(1)0h a +<不成立.综上所述,a 的取值范围是211e a >e +-.【指点迷津】(1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当x 0≥0时,总有f(x 0)≥g(x 0),即f(x 0)-g(x 0)≥0(注意不是f(x)min ≥g(x)max ),可以转化为当x ≥0时,h(x)=f(x)-g(x)≥0恒成立问题.(2)存在x ≥0,使得f(x)≥g(x),即至少有一个x 0≥0,满足f(x 0)-g(x 0)不是负数,可以转化为当x ≥0时,h(x)=f(x)-g(x)的函数值至少有一个是非负数. 【举一反三】【2020·江西瑞金一中期中】已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=. (1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b = (2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11xx m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2h x x x =--,则()111x h x x x-'=-= ∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<,()422ln 20h =-> ()03,4x ∴∃∈,使得()00h x = 当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--= 00ln 2x x ∴=- ()()()()0000min0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为3类型二 “若1122x D x D ∃∈∃∈,,,使得()()12f x g x =”与“1122x D x D ∀∈∃∈,,使得()()12f x g x =”的辨析(1) 1122x D x D ∃∈∃∈,,使得()()12f x g x =等价于函数f(x)在D 1上的值域A 与g(x)在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图③.其等价转化的目标是两个函数有相等的函数值.(2) 1122x D x D ∀∈∃∈,,使得()()12f x g x =等价于函数f(x)在D 1上的值域A 是g(x)在D 2上的值域B 的子集,即A ⊆B ,如图④.其等价转化的目标是函数y =f(x)的值域都在函数y =g(x)的值域之中.说明:图③,图④中的条形图表示函数在相应定义域上的值域在y 轴上的投影.【例2】【2020河北衡水中月考】已知函数()()()11ln 1f x a x x =---+,()1xg x xe -=.(1)求()g x 在区间(]0,e 上的值域;(2)是否存在实数a ,对任意给定的(]00,x e ∈,在[]1,e 存在两个不同的()1,2i x i =使得()()0i f x g x =,若存在,求出a 的范围,若不存在,说出理由.【解析】(1)()()1'1xg x x e -=-,()0,1x ∈时,()'0g x >,()g x 单调递增,(]1,x e ∈时,()'0g x <,()g x 单调递减,()00g =,()11g =,()10e g e e e -=⨯>, ∴()g x 在(]0,e 上值域为(]0,1. (2)由已知得1()1f x a x='--,且[]1,x e ∈, 当0a ≤时,()'0f x ≥,()f x 在[]1,e 上单调递增,不合题意.当11a e ≥-时,()'0f x ≤,()f x 在[]1,e 上单调递减,不合题意.当101a e <<-时,()0f x '=得011x a =-.当1(1,)1x a ∈-时()'0f x <,()f x 单调递减, 当1()1x e a ,∈-时,()'0f x >,()f x 单调递增,∴()min 11f x f a ⎛⎫= ⎪-⎝⎭.由(1)知()g x 在(]0,e 上值域为(]0,1,而()11f =,所以对任意(]00,x e ∈,在区间[]1,e 上总有两个不同的()1,2i x i =,使得()()0i f x g x =.当且仅当()1101f e f a ⎧≥⎪⎨⎛⎫≤ ⎪⎪-⎝⎭⎩,即()()()()()1111ln 1102a e a a ⎧--≥⎪⎨+-+≤⎪⎩, 由(1)得111a e ≤--. 设()()ln 11h a a a =+-+,10,1a e ⎛⎫∈- ⎪⎝⎭,()1'111a h a a a =-=--, 当10,1a e ⎛⎫∈- ⎪⎝⎭,()'0h a <,()h a 单调递减,∴()11110h a h e e ⎛⎫>-=-> ⎪⎝⎭. ∴()0h a ≤无解.综上,满足条件的a 不存在. 【指点迷津】本例第(2)问等价转化的基本思想是:函数g(x)的任意一个函数值都与函数f(x)的某两个函数值相等,即f(x)的值域都在g(x)的值域中. 【举一反三】【2020·河南南阳一中期中】已知函数1()ln 1f x x x=+-, 32()324g x x a x a =--+, []0,1x ∈,其中0a ≥.(1)求函数()f x 的单调区间;(2)若对任意[]11,x e ∈,总存在[]20,1x ∈,使得()()12f x g x =成立,求a 的取值范围. 【解析】(1)函数()f x 的定义域为(0,)+∞,22111()x f x x x x-'=-+=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,∴函数()f x 的减区间为(0,1),增区间为(1,)+∞;(2)依题意,函数()f x 在[]1,e 上的值域包含于函数g x ()在[]0,1上的值域,由(1)可知,函数()f x 在[]1,e 上单调递增,故值域为10,e ⎡⎤⎢⎥⎣⎦, 由32()324g x x a x a =--+得22()333()()g x x a x a x a '=-=+-,①当0a =时,()0g x '≥恒成立,故函数g()x 在[]0,1上单调递增,此时值域为[]224,3254,5a a a ⎡⎤-+--+=⎣⎦,故0a =不符合题意;② 当0a >时,()0g x '>的解集为(,)a +∞,()0g x '<的解集为(0,)a ,∴ 故函数()g x 在(0,)a 上单调递减,在(,)a +∞上单调递增,且2(0)42,(1)325g a g a a =-=--+,()i 当01a <<时,函数g()x 在(0,)a 上单调递减,在(,1)a 上单调递增,此时值域为{}32224,42,325a a max a a a ⎡⎤--+---+⎣⎦, 则此时需要32240a a --+≤,即320a a +-≥,当01a <<时,320a a +-≥不可能成立,故01a <<不符合题意;()ii 当1a ≥时,()0g x '≤在[]0,1上恒成立,则函数g()x 在[]0,1上单调递减,此时值域为2325,42a a a ⎡⎤--+-⎣⎦,则23250142a a a e ⎧--+≤⎪⎨-≥⎪⎩,解得1122a e ≤≤-; 综上所述,实数a 的取值范围为11,22e ⎡⎤-⎢⎥⎣⎦.类型三 f(x),g(x)是闭区间D 上的连续函数,“∀x 1,x 2∈D ,使得f(x 1)>g(x 2)”与“∃x 1,x 2∈D ,使得f(x 1)>g(x 2)”的辨析(1)f(x),g(x)是在闭区间D 上的连续函数且∀x 1,x 2∈D ,使得f(x 1)>g(x 2),等价于f(x)min >g(x)max .其等价转化的目标是函数y =f(x)的任意一个函数值均大于函数y =g(x)的任意一个函数值.如图⑤.(2)存在x 1,x 2∈D ,使得f(x 1)>g(x 2),等价于f(x)max >g(x)min .其等价转化的目标是函数y =f(x)的某一个函数值大于函数y =g(x)的某些函数值.如图⑥.【例3】【2020·甘肃天水一中月考】已知函数(1)(1ln )()3x x f x m x++=-,()ln g x mx x =-+(R)m ∈.(1)求函数()g x 的单调区间与极值.(2)当0m >时,是否存在[]12,1,2x x ∈,使得12()()f x g x >成立?若存在,求实数m 的取值范围,若不存在,请说明理由.【解析】(1)1()(0)g x m x x=-+>',当0m ≤时,1()0g x m x=-+>'恒成立,即函数()g x 的单调增区间为∞(0,+),无单调减区间,所以不存在极值.当0m >时,令1()0g x m x =-+=',得1x m =,当10x m <<时,()0g x '>,当1x m>时,()0g x '<,故函数()g x 的单调增区间为10m (,),单调减区间为1m+∞(,),此时函数()g x 在1x m =处取得极大值,极大值为111()ln 1ln g m m m m m =-⨯+=--,无极小值.综上,当0m ≤时,函数()g x 的单调增区间为()0+∞,,无单调减区间,不存在极值.当0m >时,函数()g x 的单调增区间为10m ⎛⎫⎪⎝⎭,,单调减区间为1m ⎛⎫+∞ ⎪⎝⎭,,极大值为1ln m --,无极小值(2)当0m >时,假设存在[]12,1,2x x ∈,使得12()()f x g x >成立,则对[]1,2x ∈,满足max min ()()f x g x >由(1)(1ln )()3x x f x m x++=-[]1,2x ∈()可得,221(1ln 1)(1)(1ln )ln ()x x x x x x x f x x x +++-++-=='. 令[]()ln 1,2h x x x x =-∈(),则1()10h x x'=-≥,所以()h x 在[]1,2上单调递增,所以()(1)1h x h ≥=,所以()0f x '>,所以()f x 在[]1,2上单调递增,所以max (21)(1ln 2)3(1ln 2)()(2)3322f x f m m +++==-=-由(1)可知,①当101m<≤时,即m 1≥时,函数()g x 在[]1,2上单调递减,所以()g x 的最小值是(2)2ln 2g m =-+. ②当12m ≥,即102m <≤时,函数()g x 在[]1,2上单调递增, 所以()g x 的最小值是(1)g m =-. ③当112m <<时,即112m <<时,函数()g x 在11,m ⎡⎤⎢⎥⎣⎦上单调递增,在1,2m ⎡⎤⎢⎥⎣⎦上单调递减.又(2)(1)ln 22ln 2g g m m m -=-+=-,所以当1ln 22m <<时,()g x 在[]1,2上的最小值是(1)g m =-.当ln 21m ≤<时,()g x 在[]1,2上的最小值是(2)ln 22g m =- 所以当0ln 2m <<时,()g x 在[]1,2上的最小值是(1)g m =-,故3(1ln 2)32m m +->-, 解得3(1ln 2)4m +>,所以ln 20m >>. 当ln 2m ≤时,函数()g x 在[]1,2上的最小值是(2)ln 22g m =-,故3(1ln 2)3ln 222m m +->-, 解得3ln 22m +>,所以3ln 2ln 22m +≤<.故实数m 的取值范围是3ln 20,2+⎛⎫⎪⎝⎭【指点迷津】1.本例第(2)问从形的角度看,问题的本质就是函数f(x)图象的最低点低于g(x)图象的最高点.2.题设中,使得成立可转化为,进而求出参数.【举一反三】【2020·四川石室中学月考】已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;②若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e为自然对数的底数),不等式()()1211f xg x k -≤-恒成立, 求实数k 的取值范围. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{f x x >>'得01x <<,由()0{0f x x <>'得1x >,∴()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ∴函数()f x 的最大值为(1)1f =-; (2)∵()a g x x x=+,∴2()1a g x x =-',(Ⅰ)由(1)知,1x =是函数()f x 的极值点,又∵函数()f x 与()ag x x x=+有相同极值点,∴1x =是函数()g x 的极值点,∴(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(ⅱ)∵211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ∵2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,∴1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(ⅰ)知1()g x x x =+,∴21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,∵11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,∴1(1)()(3)g g g e <<,∴1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f x g x k -≤-恒成立 12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,∵12()()(1)(1)123f x g x f g -≤-=--=-,∴312k ≥-+=-,又∵1k >,∴1k >,②当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f x g x k -≤-, 12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,∵121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,∴342ln 33k ≤-+,又∵1k <, ∴342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞.类型四 “∀x 1∈D 1,∃x 2∈D 2,使f(x 1)>g(x 2)”与“∀x 1∈D 1,∃x 2∈D 2,使f(x 1)<g(x 2)”的辨析(1)∀x 1∈D 1,∃x 2∈D 2,使f(x 1)>g(x 2),等价于函数f(x)在D 1上的最小值大于g(x)在D 2上的最小值,即f(x)min >g(x)min (这里假设f(x)min ,g(x)min 存在).其等价转化的目标是函数y =f(x)的任意一个函数值大于函数y =g(x)的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f(x 1)<g(x 2),等价于函数f(x)在D 1上的最大值小于g(x)在D 2上的最大值,即f(x)max <g(x)max .其等价转化的目标是函数y =f(x)的任意一个函数值小于函数y =g(x)的某一个函数值.如图⑧.【例4】【2020·江西抚州二中期末】已知函数()42ln af x a x x x-=-++. (1)当4a ≥时,求函数()f x 的单调区间;(2)设()26x g x e mx =+-,当22a e =+时,对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2122f x e g x +≥,求实数m 的取值范围. 【解析】(1)函数()f x 的定义域为(0,)+∞,224()1a a f x x x -'=-++2(2)[(2)]x x a x ---=,由()0f x '=,得2x =或2=-x a .当4a >即22a ->时,由()0f x '<得22x a <<-, 由()0f x '>得02x <<或2x a >-;当4a =即22a -=时,当0x >时都有()0f x '≥;∴当4a >时,单调减区间是(2,2)a -,单调增区间是(0,2),(2,)a -+∞;当4a =时,单调增区间是()0,∞+,没有单调减区间.(2)当22a e =+时,由(1)知()f x 在()22,e 上单调递减,在()2,e +∞上单调递增,从而()f x 在[)2,+∞上的最小值为22()6f e e =--.对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2212g x f x e ≤+,即存在[)21x ∈+∞,,使()g x 的值不超过()22e f x +在区间[)2,+∞上的最小值26e -.由2266xe e mx ≥+--,22e e xm x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()22222()x x e x e xh x e x ---'=()232x x e xe e x+-=-,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22x xe xe e +-20x x xe e >-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-,从而2m e e ≤-. 【指点迷津】“对任意x 1∈(0,2),总存在x 2∈[1,2],使f(x 1)≥g(x 2)”等价于“f(x)在(0,2)上的最小值大于或等于g(x)在[1,2]上的最小值”. 【举一反三】【2020重庆西南大学附中月考】已知函数()()()11ln x x f x x++=,()()ln g x x mx m R =-∈ .(1)求函数()g x 的单调区间;(2)当0m >时,对任意的[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,试确定实数m 的取值范围.【解析】(1)由()()ln 0g x x mx x =->,得()'1g x m x=-.当0m ≤时,()'0g x >,所以()g x 的单调递增区间是()0,∞+,没有减区间.当0m >时,由()'0g x >,解得10x m<<;由()'0g x <,解得1x m >,所以()g x 的单调递增区间是10,m ⎛⎫ ⎪⎝⎭,递减区间是1,m ⎛⎫+∞ ⎪⎝⎭.综上所述,当0m ≤时,()g x 的单调递增区间是()0,∞+,无递减区间;当0m >时,()g x 的单调递增区间是10,m ⎛⎫⎪⎝⎭,递减区间是1,m ⎛⎫+∞ ⎪⎝⎭. (2)当0m >时,对任意[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,只需()()min min 3f x m g x ->成立. 由()()()11ln ln 1ln 1x x x f x x xxx++==+++,得()'2221ln 11ln x x xf x x x x x --=+-=.令()()ln 0h x x x x =->,则()'1x h x x-=.所以当()0,1x ∈时,()'0h x <,当()1,x ∈+∞时,()'0h x >.所以()h x 在()0,1上递减,在()1,+∞上递增,且()11h =,所以()()()min 110h x h x h ≥==>.所以()'0f x >,即()f x 在()0,∞+上递增,所以()f x 在[]1,2上递增,所以()()min 12f x f ==.由(1)知,当0m >时,()g x 在10,m ⎛⎫ ⎪⎝⎭上递增,在1,m ⎛⎫+∞ ⎪⎝⎭上递减, ①当101m<≤即m 1≥时,()g x 在[]1,2上递减,()()min 2ln22g x g m ==-; ②当112m <<即112m <<时,()g x 在11,m ⎡⎫⎪⎢⎣⎭上递增,在1,2m ⎛⎤ ⎥⎝⎦上递减,()()(){}min min 1,2g x g g =,由()()()21ln22ln2g g m m m -=---=-,当1ln22m <≤时,()()21g g ≥,此时()()min 1g x g m ==-, 当ln21m <<时,()()21g g <,此时()()min 2ln22g x g m ==-, ③当12m ≥即102m <≤时,()g x 在[]1,2上递增,()()min 1g x g m ==-, 所以当0ln2m <≤时,()()min 1g x g m ==-,由0ln223m m m<≤⎧⎨->-⎩,得0ln2.m <≤当ln2m >时,()()min 2ln22g x g m ==-,由ln223ln22m m m>⎧⎨->-⎩,得 ln22ln2m <<-.∴ 02ln2m <<-.综上,所求实数m 的取值范围是()0,2ln2-.三.强化训练1.【2020·江西萍乡一中期中】已知函数ln ()xx af x e +=. (1)当1a =时,求()f x 的极值;(2)设()x g x xe a -=-,对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,求实数a 的取值范围.【解析】(1)当1a =时,ln 1()xx f x e +=,所以函数()f x 的定义域为(0,)+∞, 所以1ln ()xx x xf x xe--'=,且0x xe >, 令()1ln h x x x x =--,所以当01x <<时,10,ln 0x x x -><, 所以()1ln 0h x x x x =-->. 又()2ln h x x '=--,所以当1x >时,()2ln 0h x x '=--<,所以()h x 在(1,)+∞上单调递减,故()(1)0h x h <=. 同理当01x <<时,()0f x '>; 当1x >时,()0f x '<,所以()f x 在(0,1)是单调递增,在(1,)+∞单调递减, 所以当1x =时,()f x 的极大值为1(1)f e=,无极小值. (2)令()()x m x xe f x ax =-,因为对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,所以()()12min max m x g x >. 因为()()ln x m x xe f x ax x x =-=, 所以()1ln m x x '=+.令()0m x '>,即1ln 0x +>,解得1x e>;令()0m x '<,即1ln 0x +<,解得10x e<<.所以()m x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以min 11()m x m e e ⎛⎫==- ⎪⎝⎭. 因为()x g x xe a -=-,所以()(1)x g x x e -'=-,当0x >时0x e ->,令()0g x '>,即10x ->,解得01x <<;令()0g x '<,即10x -<,解得1x >. 所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以max 1()(1)g x g a e==-,所以11a e e->-,所以2a e >,即实数a 的取值范围为2,e ⎛⎫+∞ ⎪⎝⎭. 2.【2020·河北邯郸期末】已知函数()f x 满足:①定义为R ;②2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.【解析】(1)2()2()9x xf x f x e e +-=+-,…① 所以2()2()9xx f x f x e e ---+=+-即1()2()29xxf x f x e e -+=+-…② 由①②联立解得:()3x f x e =-. (2)设2()(2)6x x a x ϕ=-+-+,()()()1333x x x F x x e e xe x =--=+--,依题意知:当11x -≤≤时,min max ()()x F x ϕ≥()()33x x x x F x e e xe xe '+=-+=-+又()(1)0x F x x e ''=-+<在(1,1)-上恒成立, 所以()F x '在[1,1]-上单调递减()(1)30min F x F e ∴'='=-> ()F x ∴在[1,1]-上单调递增,max ()(1)0F x F ∴==(1)70(1)30a a ϕϕ-=-≥⎧∴⎨=+≥⎩, 解得:37a -≤≤实数a 的取值范围为[3,7]-.(3)()g x 的图象如图所示:令()T g x =,则()1g T =1232,0,ln 4T T T ∴=-==当()2g x =-时有1个解3-,当()0g x =时有2个解:(12)-+、ln3,当()ln 4g x =时有3个解:ln(3ln 4)+、12(1ln 2)--故方程[()]10g g x -=的解分别为:3-,(12)-、ln3,ln(3ln 4)+、12(1ln 2)--3.【2020·天津滨海新区期末】已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在021,22x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=-- 化简得:322ln 220x y +-+=()2对函数求导可得,()()221'0ax ax f x x x-+=>令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得121,1x x a a=-=+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<2112x a ∴=+<+()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在122⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+0122x ⎡⎤∴∃∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意②当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦4.【2020·全国高三专题练习】已知函数()321(1)32a x x ax f x +=-+.(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)对于任意1x ,2[02]x ∈,,都有122()()3f x f x -≤,求实数a 的取值范围.【解析】(Ⅰ)当1a =时,因为()3213x x x f x =-+所以()221x x f x =-+',(0)1f '=.又因为(0)0f =,所以曲线()y f x =在点()0,(0)f 处的切线方程为y x =.(Ⅱ)因为()321(1)32a x x ax f x +=-+,所以2()(1)0f x x a x a '=-++=. 令()0f x '=,解得x a =或1x =.若1a >,当()0f x '>即1x <或x a >时, 故函数()f x 的单调递增区间为()(),1,,a -∞+∞;当()0f x '<即1x a <<时,故函数()f x 的单调递减区间为()1,a . 若1a =,则22()21(1)0f x x x x '=-+=-≥,当且仅当1x =时取等号,故函数()f x 在(),-∞+∞上是增函数. 若1a <,当()0f x '>即x a <或1x >时, 故函数()f x 的单调递增区间为()(),,1,a -∞+∞;当()0f x '<即1<<a x 时,故函数()f x 的单调递减区间为(),1a .综上,1a >时,函数()f x 单调递增区间为(1)()a -∞∞,,,+,单调递减区间为(1,)a ; 1a =时,函数()f x 单调递增区间为(,)-∞+∞;1a <时,函数()f x 单调递增区间为()(1)a -∞∞,,,+,单调递减区间为(,1)a . (Ⅲ) 由题设,只要()()max min 23f x f x -≤即可. 令2()(1)0f x x a x a '=-++=,解得x a =或1x =. 当0a ≤时,随x 变化,(),()f x f x ' 变化情况如下表:由表可知(0)0(1)f f =>,此时2(2)(1)3f f ->,不符合题意.当01a <<时,随x 变化,()()'f x f x , 变化情况如下表:由表可得3211112(0)0()(1)(2)62263f f a a a f a f ==-+=-=,,,,且(0)()f f a <,(1)(2)f f <,因()()2203f f -=,所以只需()(2)(1)(0)f a f f f ≤⎧⎨≥⎩,即3211262311026a a a ⎧-+≤⎪⎪⎨⎪-≥⎪⎩ ,解得113a ≤<.当1a =时,由(Ⅱ)知()f x 在[]0,2为增函数, 此时()()()()max min 2203f x f x f f -=-=,符合题意. 当12a <<时,同理只需(1)(2)()(0)f f f a f ≤⎧⎨≥⎩,即3211226311062a a a ⎧-≤⎪⎪⎨⎪-+≥⎪⎩ ,解得513a <≤.当2a ≥时,2()(1)32f f >=,()2()0(311)f f f =->,不符合题意. 综上,实数a 的取值范围是15,33⎡⎤⎢⎥⎣⎦.5.【2020·河南安阳期末】已知函数()ln f x x x x =+,()xxg x e =. (1)若不等式()()2f xg x ax ≤对[)1,x ∈+∞恒成立,求a 的最小值;(2)证明:()()1f x x g x +->.(3)设方程()()f x g x x -=的实根为0x .令()()()00,1,,,f x x x x F x g x x x ⎧-<≤⎪=⎨>⎪⎩若存在1x ,()21,x ∈+∞,12x x <,使得()()12F x F x =,证明:()()2012F x F x x <-.【解析】(1)()()2f xg x ax ≥,即()2ln x x x x x ax e +⋅≥,化简可得ln 1x x a e+≤.令()ln 1x x k x e+=,()()1ln 1x x x k x e -+'=,因为1x ≥,所以11x ≤,ln 11x +≥. 所以()0k x '≤,()k x 在[)1,+∞上单调递减,()()11k x k e≤=. 所以a 的最小值为1e.(2)要证()()1f x x g x +->,即()ln 10x xx x x e+>>. 两边同除以x 可得11ln x x x e+>. 设()1ln t x x x =+,则()22111x t x x x x -'=-=.在()0,1上,()0t x '<,所以()t x 在()0,1上单调递减.在()1,+∞上,()0t x '>,所以()t x 在()1,+∞上单调递增,所以()()11t x t ≥=. 设()1xh x e =,因为()h x 在()0,∞+上是减函数,所以()()01h x h <=. 所以()()t x h x >,即()()1f x x g x +->.(3)证明:方程()()f x g x x -=在区间()1,+∞上的实根为0x ,即001ln x x e =,要证 ()()2012F x F x x <-,由()()12F x F x =可知,即要证()()1012F x F x x <-.当01x x <<时,()ln F x x x =,()1ln 0F x x '=+>,因而()F x 在()01,x 上单调递增. 当0x x >时,()x x F x e =,()10xxF x e-'=<,因而()F x 在()0,x +∞上单调递减. 因为()101,x x ∈,所以0102x x x ->,要证()()1012F x F x x <-. 即要证01011122ln x x x x x x e --<. 记()0022ln x x x xm x x x e--=-,01x x <<. 因为001ln x x e =,所以0000ln x x x x e =,则()00000ln 0x xm x x x e=-=.()0000022212121ln 1ln x x x x x xx x x xm x x x e e e ---+--'=++=++-.设()t t n t e =,()1t tn t e -'=,当()0,1t ∈时,()0n t '>.()1,t ∈+∞时,()0n t '<,故()max 1n t e=. 且()0n t >,故()10n t e <<,因为021x x ->,所以002120x x x xe e ---<<. 因此()0m x '>,即()m x 在()01,x 上单调递增.所以()()00m x m x <=,即01011122ln x x x x x x e --<. 故()()2012F x F x x <-得证.6.【2020·山东邹平一中期末】已知函数()()sin ,ln f x x a x g x x m x =-=+. (1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立; (2)求函数()g x 的极值;(3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <.【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤,()11cos 0a f x a x '∴≤=-≥,, ()sin f x x a x =-在()0+∞,上为增函数, 所以当()0,x ∈+∞时,恒有()()00f x f >=成立; (2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=> 当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值 当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值, 综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值.(3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数,由(2)知,当0m ≥,()g x 在()0+∞,上为增函数, 这时,()()f x g x +在()0+∞,上为增函数, 所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠ 所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--② 由①②式可得:()()()2121211ln ln 22m x x x x x x -->--- 即()()21213ln ln 02m x x x x -->-> 又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③ 又要证12249x x m <,即证21294m x x > 120,0m x x <<<即证m ->所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x xx x -> 设211x t x =>,只需证1ln t t->即证()ln 01t t ->>令()()ln 1h t t t => 由()()()2101h t t h t '=>>,在()1+∞,上为增函数, ()()10h t h∴>=2121ln ln x x x x -∴>-,所以由③知,0m ->>成立, 所以12249x x m <成立. 7.【2020·陕西西安中学高三期末】已知函数21()ln 1()2f x x a x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若20a -≤<,对任意[]12,1,2x x ∈,不等式121211()()f x f x m x x -≤-恒成立,求实数m 的取值范围.【解析】(1)∵依题意可知:函数()f x 的定义域为()0,∞+,∴2()a x a f x x x x-'=-=,当0a ≤时,()0f x '>在()0,∞+恒成立,所以()f x 在()0,∞+上单调递增. 当0a >时,由()0f x'>得x ()0f x'<得0x << 综上可得当0a ≤时,()f x 在()0,∞+上单调递增; 当0a >时,()f x 在(上单调递减;在)+∞上单调递增.(2)因为20a -≤<,由(1)知,函数()f x 在[]1,2上单调递增, 不妨设1212x x ≤≤≤,则121211()()f x f x mx x -≤-, 可化为2121()()m m f x f x x x +≤+, 设21()()ln 12m mh x f x x a x x x=+=-++,则12()()h x h x ≥,所以()h x 为[]1,2上的减函数, 即2()0a mh x x x x=--≤'在[]1,2上恒成立,等价于3m x ax ≥-在[]1,2上恒成立, 设3()g x x ax =-,所以max ()m g x ≥,因20a -≤<,所以2()30>'=-g x x a ,所以函数()g x 在[]1,2上是增函数, 所以max ()(2)8212g x g a ==-≤(当且仅当2a =-时等号成立) 所以12m ≥.8.【2020·浙江温州期末】已知函数()()2log ln a f x x x x =+-,1a >. (1)求证:()f x 在()1,+∞上单调递增;(2)若关于x 的方程()1f x t -=在区间()0,∞+上有三个零点,求实数t 的值;(3)若对任意的112,,x x a a -⎡⎤∈⎣⎦,()()121f x f x e -≤-恒成立(e 为自然对数的底数),求实数a 的取值范围.【解析】(1)()()2ln 1'21ln x f x xx a =⋅+-,∵1x >,∴()'0f x >,故()f x 在()1,+∞上单调递增.(2)()()()()2222ln ln ln 'ln x x a a f x x a +-=,令()()()222ln ln ln g x x x a a =+-,()()22'ln 0g x a x=+>,()10g =, 故当()0,1x ∈,()'0g x <,()1,x ∈+∞,()'0g x >,即()f x 在()0,1x ∈上单调递减;在()1,x ∈+∞上单调递增.()11f =, 若()()11f x t f x t -=⇔=±在区间()0,∞+上有三个零点,则11t -=,2t =.(3)()f x 在1,1x a -⎡⎤∈⎣⎦上单调递减;在(]1,x a ∈上单调递增.故()()min 11f x f ==,()()max 1max ,f x ff a a ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭, 令()()112ln h a f f a a a a a ⎛⎫=-=+- ⎪⎝⎭,∴()0h a <,故()max 1ln f x a a =+-,∴ln 1ln 1a a e a a e -≤-⇒-≤-, 因为1a >,设()ln a a a ϕ=-则1'()10a aϕ=->,故()ln a a a ϕ=-为增函数, 又()ln 1e e e e ϕ=-=-. ∴(]1,a e ∈.9.【2020·浙江台州期末】已知函数()ln f x a x x b =-+,其中,a b ∈R . (1)求函数()f x 的单调区间;(2)使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【解析】(1)因()f x 的定义域为()0,∞+,()()'10af x x x=->, 当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; (2)()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=.∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥,令()()21ln ln ln 'x x x x b x x bg g x x x x +-++-+-=⇒=,由(1)()ln p x x x b ⇒=-+-在()1,+∞上递增;(1)当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增; ∴()()min 122c g x g b b c b ===⇒+==.(2)当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减; ∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.(3)当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,则当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>. ∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增, ()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦.10.【2020·蒙阴实验中学期末】设函数()212ln 222af x ax x x -=+++,a R ∈. (1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程; (2)2x =是函数()f x 的极值点,求函数()f x 的单调区间;(3)在(2)的条件下,()217ln 422g x x x x ⎛⎫=-++- ⎪⎝⎭,若[)11,x ∀∈+∞,()20,x ∃∈+∞,使不等式()()1122mf xg x x x -≥+恒成立,求m 的取值范围. 【解析】(1)()f x 的定义域为()0,∞+,2a =时,()2ln 2f x x x =++,()12f x x x'=+, ()13f '=,()13f =,所以切线方程为()331y x -=-,即30x y -=.(2)()()22221222ax a x a f x ax x x+-+-'=++=, 2x =是函数的极值点,()8422204a a f +-+'==,可得1a =-,所以()2232(0)2x x f x x x-++'=>,令()0f x '>,即22320x x --<,解得1,22x ⎛⎫∈- ⎪⎝⎭,结合定义域可知()f x 在()0,2上单调递增,在()2,+∞上单调递减. (3)令()()()2ln ln 26h x f x g x x x x x =-=+++,[)11,x ∀∈+∞,[)20,x ∃∈+∞,使得()()1122m f x g x x x -≥+恒成立,等价于()()2min21mh x x x x ≥+≥⎡⎤⎣⎦, ()12ln 2h x x x x x '=++-,因为1x ≥,所以2ln 0x x ≥,12x x+≥,即()'0h x ≥, 所以()h x 在[)1,+∞上单调递增,()()14h x h ≥=, 即()20,x ∃∈+∞使得函数4mx x+≤,即转化为240x x m -+≤在()0,∞+有解, ()22424x x m x m -+=--+,所以40m -+≤,4m ≤.。

相关文档
最新文档