备考2024年中考数学二轮复习-解直角三角形的应用﹣坡度坡角问题-综合题专训及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备考2024年中考数学二轮复习-解直角三角形的应用﹣坡度坡角问题-综合题专训及答案
解直角三角形的应用﹣坡度坡角问题综合题专训
1、
(2020开封.中考模拟) 如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面
内,CM∥AN).
(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据: =1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
2、
(2012盘锦.中考真卷) 某校门前正对一条公路,车流量较大,为便于学生安全通过,特建一座人行天桥.如图,是这座天桥的引桥部分示意图,上桥通道由两段互相平行的楼梯AB、CD和一段平行于地面的平台CB构成.已知∠A=37°,天桥高度DH为5.1米,引桥水平跨度AH为8.3米.
(1)
求水平平台BC的长度;
(2)
若两段楼梯AB:CD=10:7,求楼梯AB的水平宽度AE的长.
(参考数据:sin37°≈ ,cos37°≈ ,tan37°≈ )
3、
(2017.中考模拟) 如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情况下,坡道高度应符合以下表中的规定:
坡度1:201:161:12
最大高度(米) 1.50 1.000.75
(1)
选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;
(2)
求斜坡底部点A与台阶底部点D的水平距离AD.
4、
(2018奉贤.中考模拟) 如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.
(1)求传送带AB的长度;
(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所
成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,
≈1.41, ≈2.24)
5、
(2018苏州.中考模拟) 如图①,某超市从一楼到二楼的电梯的长为16. 50 m,坡角为32°.
(1)求一楼与二楼之间的高度 (精确到0. 01 m) ;
(2)电梯每级的水平级宽均是0.25m,如图②,小明跨上电梯时,该电梯以每秒上升2级
的高度运行,10s后他上升了多少米?
(精确到0. 01 m,参考数据: )
6、
(2018滨州.中考模拟) 已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:
(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
7、
(2016济宁.中考真卷) 某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部
门决定降低坡度,使新坡面的坡度为1:.
(1)
求新坡面的坡角a;
(2)
原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
8、
(2017新化.中考模拟) 某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部
门决定降低坡度,使新坡面的坡度为1:.
(1)
求新坡面的坡角a;
(2)
原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.
9、
(2017广东.中考模拟) 某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部
门决定降低坡度,使新坡面AC的坡度为1:.
(1)求新坡面AC的坡角∠CAB;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
10、
(2019贵阳.中考模拟) 如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1:的斜坡CD前进2 米到达点D,在点D处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.
(1)求点D的铅垂高度(结果保留根号);
(2)求旗杆AB的高度(结果保留根号).
11、
(2019
桂林.中考模拟) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:(沿斜坡从B到D时,其升高的高度与水平前进的距离之比),另一段斜坡AD的长400米,在斜坡BD的坡顶D处测得山顶A的仰角为45°
(1)求斜坡BD的坡顶D到地面BC的高度是多少米?
(2)求BC.(结果保留根号)
12、
(2018遵义.中考模拟) 为纪念遵义会议80周年献礼,遵义市政府对城市建设进行了整改,如图,已知斜坡AB长60 米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).
(1)若修建的斜坡BE的坡比为∶1,求休闲平台DE的长是多少米?
(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H 在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
13、
(2019合肥.中考模拟) 如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB
向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)
(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
14、
(2019枣庄.中考模拟) 日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.
如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为
4m.
(1)求山坡EF的水平宽度FH;
(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?
15、
(2020拱墅.中考模拟) 如图,甲、乙两座建筑物的水平距离BC为78m.从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C 处的俯角为58°,求甲、乙建筑物的高度AB和DC.
(结果取整数,参考数据:tan48°≈1.1,tan58°≈1.60)
解直角三角形的应用﹣坡度坡角问题综合题答案
1.答案:
2.答案:
3.答案:
4.答案:
5.答案:
6.答案:
7.答案:
8.答案:
9.答案:
10.答案:
11.答案:
12.答案:
13.答案:
14.答案:
15.答案:。