初高中数学知识衔接(六)二次函数及应用
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初高中数学知识衔接《二次函数的应用》
整理:键盘手
【知识要点】
1.简单的函数模型建立的基本步骤:
(1)审题——理解题意,分析条件和结论,理顺数量关系。
(2)建立函数模型——将文字语言转化成数学语言,建立相应的目标函数。
(3)求模——利用有关的函数知识,得到数学结论。
(4)还原——将用数学方法得到的结论,还原为实际问题的意义。
2.二次函数的运用
(1)利用二次函数的性质与思想方法处理方程、不等式等问题。
(2)建立二次函数模型解决实际问题。
【典型例题】
例1.某商品的进货单价为30元。
如果按单价40元销售,能买出40个。
销售单价每涨1元,销量就减少1个。
为获得最大利润,此商品的最佳售价应定为每个多少元?
例2.一根弹簧原长15cm ,已知在挂重20N 内,弹簧的长度与所受的重力成一次函数关系。
现测得当挂重4N 时,弹簧的长度为17cm ,问当弹簧长度为22cm 时,挂重多少N?
例3.如图,灌溉渠的横断面是等腰梯形,底宽及两边坡总长度为l ,边坡的倾斜角为 60。
1)求横断面面积y 与底宽x 的函数关系式;2)已知底宽]2
,4[l
l x ,求横断面的面积y 的最大值和最小值。
8000m,深m5的长方体蓄水池,池壁每例4.某水厂要建造一个容积为3
平方米的造价为a元,池底每平方米的造价为a2元。
1)把总造价y(元)表示为底的一边)
(m
x的函数,并指出其定义域;2)当底的一边x取何值时造价最省。