高中物理万有引力定律的应用的基本方法技巧及练习题及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理万有引力定律的应用的基本方法技巧及练习题及练习题(含答案)
一、高中物理精讲专题测试万有引力定律的应用
1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.
(1)求M 、N 间感应电动势的大小E ;
(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;
(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】
(1)法拉第电磁感应定律
E=BLv
代入数据得
E =1.54V
(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有
2Mm
G
mg R
= 匀速圆周运动
2
2
()Mm v G m R h R h
=++ 解得
2
2gR h R v
=-
代入数据得
h ≈4×105m
【方法技巧】
本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不
大,但第二问很容易出错,要求考生心细,考虑问题全面.
2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的
Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为
M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离
为r 时,地球与卫星组成的系统的引力势能为p GMm
E r
=-(取无穷远处的引力势能为
零),忽略地球自转和喷气后飞船质量的変化,问:
(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?
(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度
3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引
力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GM
R
【解析】 【分析】
(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;
(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】
(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动
即:2
2mM v G m R R
=
则飞船的动能为2122k GMm E mv R
=
=; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:
221211()22GMm GMm
mv mv R h R
-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:
22122GM GM
v v R h R
=+
-
+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312
Mm G
mv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GM
v R
=. 【点睛】
本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.
3.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.
(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km .
【答案】(1)22111
()2
m R h ω+;(2)11.5N 【解析】
试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.
(2)根据

因为a=,,
联立解得N=
=
≈11.5N .
根据牛顿第三定律知,人对水平地板的压力为11.5N .
4.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:
(1)卫星B 做圆周运动的周期;
(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).
【答案】(1)3/2()r T h (2)3/23/23/2
π()r h r -(arcsin R h
+arcsin R
r )T 【解析】
试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:
2Mm G h =mh 2
24T π① 2Mm G r '=m′r 2
24T π'
② 联立①②两式解得:T′=3/2
()
r
T h

(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=
t T ×2π,β=t
T '
×2π ④
若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.
由图中几何关系得:∠BOB′=2(arcsin
R h
+arcsin R
r ) ⑤
由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥
由③④⑤⑥式联立解得:t =3/23/23/2
()r h r π-(arcsin R h
+arcsin R r )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.
5.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)若A 星体的质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:
(1)A 星体所受合力的大小F A ; (2)B 星体所受合力的大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .
【答案】(1)2223Gm a (227Gm (37 (4)3
πa T Gm
= 【解析】 【分析】 【详解】
(1)由万有引力定律,A 星体所受B 、C 星体引力大小为
2
4222A B R CA m m m F G G F r a
===,
则合力大小为
2
2
A
m
F
a
=
(2)同上,B星体所受A、C星体引力大小分别为
2
22
2
22
2
A B
AB
C B
CB
m m m
F G G
r a
m m m
F G G
r a
==
==
则合力大小为
2
2
cos602
Bx AB CB
m
F F F G
a
=︒+=
2
2
sin60
By AB
m
F F
a
=︒=.
可得
2
2
B
m
F
a
==
(3)通过分析可知,圆心O在中垂线AD的中点,
4
C
R a
==
(4)三星体运动周期相同,对C星体,由
2
2
2
2
C B C
m
F F m R
a T
π
⎛⎫
=== ⎪
⎝⎭
可得
T=
6.对某行星的一颗卫星进行观测,运行的轨迹是半径为r的圆周,周期为T,已知万有引力常量为G.求:
(1)该行星的质量.
(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)
23
2
4r
M
GT
π
=(2)
2
2
400r
g
T
π
=
【解析】
(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:
2
22
4
Mm
G m r
r T
π
=,可得
23
2
4r
M
GT
π
=
(2)由
21()
10
Mm
G
mg r =,则得:222400100GM r g r T π==
7.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:
(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;
(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tana
v R t ;(4)0
2tan Rt v α【解析】 【分析】 【详解】
(1) 小球落在斜面上,根据平抛运动的规律可得:
2
00
12tan α2gt y gt x v t v ===
解得该星球表面的重力加速度:
02tan α
v g t
=
(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:
2
GMm
mg R = 则该星球的质量:
G
gR M 2
= 该星球的密度:
33tan α34423
v M g
GR GRt R ρπππ=
=
=
(3)根据万有引力提供向心力得:
22Mm v G m R R
=
该星球的第一宙速度为:
02tana v R GM
v gR R t
=
==
(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:
2R
T v
π=
所以:
0022tan αtan t Rt
T R
v R v ππα
==
点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.
8.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。

已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体。

(1)求在地球北极地面称量时弹簧秤的读数F 0,及在北极上空高出地面0.1R 处称量时弹簧秤的读数F 1;
(2)求在赤道地面称量时弹簧秤的读数F 2;
(3)事实上地球更接近一个椭球体,如图所示。

如果把小物体放在北纬40°的地球表面上,请定性画出小物体的受力分析图,并画出合力。

【答案】(1)02Mm F G R = ()120.1GMm F R R =+ (2)222
24Mm R
F G m R T
π=- (3)
【解析】 【详解】
(1)在地球北极,不考虑地球自转,则弹簧秤称得的重力则为其万有引力,有:
02
GmM
F R =
在北极上空高处地面0.1R 处弹簧秤的读数为:12
(0.1)GmM
F R R =
+;
(2)在赤道地面上,重力向向心力之和等于万有引力,故称量时弹簧秤的读数为:
2222
4GmM Rm
F R T
π=- (3)如图所示
9.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR =(2)22
3
2
4gR T h R π
= 【解析】 【详解】
(1)根据2
v mg m R
=得地球的第一宇宙速度为:
v gR =
(2)根据万有引力提供向心力有:
()2
224()Mm G m R h R h T
π=++, 又2
GM gR =,
解得:22
3
2
4gR T h R π
=

10.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动.已知某双星系统中两颗星之间的距离为 r ,运行周期为 T ,引力常量为 G ,求两颗星的质量之和.
【答案】23
2
4r GT
π
【解析】 【详解】
对双星系统,角速度相同,则:22122Mm
G
M r m r r
ωω== 解得:221Gm r r ω=; 22
2GM r r ω=;
其中2T
π
ω=
,r =r 1+r 2; 三式联立解得:23
2
4r M m GT
π+=。

相关文档
最新文档