[全]高等数学之定积分的应用方法总结[下载全]
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学之定积分的应用方法总结
关于定积分的应用这一部分内容,考研数学大纲要求掌握用定积分表达和计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。在定积分的应用中,经常采用所谓元素法。经常用到的关于定积分应用的计算公式如下:
(一)平面图形面积
(二)平面曲线的弧长
(三)旋转体体积
(四)旋转曲面面积
题型一:求平面图形的积
例1.
分析:该心形线所围成图形为心状,根据求曲边扇形面积计算公式可得
解:
题型二:求平面曲线的弧长
例2:
解:
题型三:求旋转体的体积
例3.
解:
总结:对于定积分的应用需要熟练掌握在各种情形下计算公式,然后直接套用公式计算得到结果。
关于定积分的应用这一部分内容,考研数学大纲要求掌握用定积分表达和计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。在定积分的应用中,经常采用所谓元素法。经常用到的关于定积分应用的计算公式如下:
(一)平面图形面积
(二)平面曲线的弧长
(三)旋转体体积
(四)旋转曲面面积
题型一:求平面图形的积
例1.
分析:该心形线所围成图形为心状,根据求曲边扇形面积计算公式可得
解:
题型二:求平面曲线的弧长
例2:
解:
题型三:求旋转体的体积
例3.
解:
总结:对于定积分的应用需要熟练掌握在各种情形下计算公式,然后直接套用公式计算得到结果。