丹江口市第二中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丹江口市第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题
1.
函数是()
A.最小正周期为2π的奇函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数
2.已知,y满足不等式
430,
35250,
1,
x y
x y
x
-+≤


+-≤

⎪≥

则目标函数2
z x y
=+的最大值为()
A.3 B.13
2
C.12 D.15
3.复数
z=(其中i是虚数单位),则z
的共轭复数=()
A

﹣i B
.﹣
﹣i C

+i D
.﹣
+i
4.抛物线y=﹣8x2的准线方程是()
A.
y=B.y=2 C.
x=D.y=﹣2
5.设f(x)=e x+x﹣4,则函数f(x)的零点所在区间为()
A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)
6.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有()①三棱锥M﹣DCC1的体积为定值②DC1⊥D1M
③∠AMD1的最大值为90°④AM+MD1的最小值为2.
A.①②B.①②③ C.③④D.②③④
7.已知双曲线(a>0,b>0)的右焦点F,直线
x=与其渐近线交于A,B两点,且△ABF为
钝角三角形,则双曲线离心率的取值范围是()
A
.B
.C
.D

8.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()
A.8 B.1 C.5 D.﹣1
9.已知f(x)=,则f(2016)等于()
A.﹣1 B.0 C.1 D.2
10.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()
A.2160 B.2880 C.4320 D.8640
11.已知f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),当0<x<2时,f(x)=1﹣log2(x+1),则当0<x<4时,不等式(x﹣2)f(x)>0的解集是()
A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)
12.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()
(A)150种(B )180 种(C)240 种(D)540 种
二、填空题
13.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:
那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.
14.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.
15.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面
其中正确命题的序号是 .
16.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .
17.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ”的概率为_________.
18.在(2x+
)6
的二项式中,常数项等于 (结果用数值表示).
三、解答题
19.设函数f (x )=x 2e x . (1)求f (x )的单调区间;
(2)若当x ∈[﹣2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.
20.已知函数f (x )=在(,f ())处的切线方程为8x ﹣9y+t=0(m ∈N ,t ∈R )
(1)求m 和t 的值;
(2)若关于x 的不等式f (x )≤ax+在[,+∞)恒成立,求实数a 的取值范围.
21.已知曲线y=Asin (ωx+φ)(A >0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点
间的曲线与x 轴交于点(π,0),φ∈(﹣,).
(1)求这条曲线的函数解析式; (2)写出函数的单调区间.
22.已知f (x )=x 3+3ax 2+3bx+c 在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行. (1)求函数的单调区间;
(2)若x ∈[1,3]时,f (x )>1﹣4c 2恒成立,求实数c 的取值范围.
23.(本小题满分12分)若二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=,
且()01f =.
(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.
24.设,证明:
(Ⅰ)当x>1时,f(x)<(x﹣1);
(Ⅱ)当1<x<3时,.
丹江口市第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:因为
=
=cos(2x+)=﹣sin2x.
所以函数的周期为:=π.
因为f(﹣x)=﹣sin(﹣2x)=sin2x=﹣f(x),所以函数是奇函数.
故选B.
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
2.【答案】C
考点:线性规划问题.
【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.
3.【答案】C
【解析】解:∵z==,
∴=.
故选:C.
【点评】本题考查了复数代数形式的乘除运算,是基础题.
4.【答案】A
【解析】解:整理抛物线方程得x2=﹣y,∴p=
∵抛物线方程开口向下,
∴准线方程是y=,
故选:A.
【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.
5.【答案】C
【解析】解:f(x)=e x+x﹣4,
f(﹣1)=e﹣1﹣1﹣4<0,
f(0)=e0+0﹣4<0,
f(1)=e1+1﹣4<0,
f(2)=e2+2﹣4>0,
f(3)=e3+3﹣4>0,
∵f(1)•f(2)<0,
∴由零点判定定理可知,函数的零点在(1,2).
故选:C.
6.【答案】A
【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积
为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.
②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.
③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;
④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,
在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.
因此只有①②正确.
故选:A.
7.【答案】D
【解析】解:∵函数f(x)=(x﹣3)e x,
∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,
令f′(x)>0,
即(x﹣2)e x>0,
∴x﹣2>0,
解得x>2,
∴函数f(x)的单调递增区间是(2,+∞).
故选:D.
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
8.【答案】B
【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,
∴a=2×0+1=1.
故选:B.
9.【答案】D
【解析】解:∵f(x)=,
∴f(2016)=f(2011)=f(2006)=…=f(1)=f(﹣4)=log24=2,
故选:D.
【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.
10.【答案】C
【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.
故选C
【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.
11.【答案】D
【解析】解:∵f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2), ∴f (0)=0,且f (2+x )=﹣f (2﹣x ), ∴f (x )的图象关于点(2,0)中心对称, 又0<x <2时,f (x )=1﹣log 2(x+1), 故可作出fx (x )在0<x <4时的图象,
由图象可知当x ∈(1,2)时,x ﹣2<0,f (x )<0, ∴(x ﹣2)f (x )>0;
当x ∈(2,3)时,x ﹣2>0,f (x )>0, ∴(x ﹣2)f (x )>0;
∴不等式(x ﹣2)f (x )>0的解集是(1,2)∪(2,3) 故选:D
【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.
12.【答案】A
【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为
22333
535
3
32
2
150C C C A A A ⋅⋅+⋅=种,故选A . 二、填空题
13.【答案】1464
【解析】【知识点】函数模型及其应用
【试题解析】显然,面积大的房间用费用低的涂料,所以房间A 用涂料1,房间B 用涂料3,
房间C用涂料2,即最低的涂料总费用是元。

故答案为:1464
14.【答案】7+
【解析】解:如图所示,
设∠APB=α,∠APC=π﹣α.
在△ABP与△APC中,
由余弦定理可得:AB2=AP2+BP2﹣2AP•BPcosα,
AC2=AP2+PC2﹣2AP•PCcos(π﹣α),
∴AB2+AC2=2AP2+,
∴42+32=2AP2+,
解得AP=.
∴三角形ABP的周长=7+.
故答案为:7+.
【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.15.【答案】③.
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;
②经过空间不共线三点有且只有一个平面,故错误;
③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,
故正确命题的序号是③,
故答案为:③
16.【答案】存在x∈R,x3﹣x2+1>0.
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是:存在x ∈R ,x 3﹣x 2+1>0. 故答案为:存在x ∈R ,x 3﹣x 2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
17.【答案】
1
e e
- 【解析】解析: 由ln a b ≥得a
b e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“a
b e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为
1
1
1|a a e da e e ==-⎰
,∴随机事件“ln a b ≥”的概率为
1
e e
-. 18.【答案】 240
【解析】解:由(2x+
)6
,得
=

由6﹣3r=0,得r=2. ∴常数项等于.
故答案为:240.
三、解答题
19.【答案】
【解析】解:(1)…

∴f (x )的单增区间为(﹣∞,﹣2)和(0,+∞); 单减区间为(﹣2,0).…
(2)令
∴x=0和x=﹣2,…

∴f (x )∈[0,2e 2
]…
∴m <0…
20.【答案】
【解析】解:(1)函数f(x)的导数为f′(x)=,
由题意可得,f()=,f′()=,
即=,且=,
由m∈N,则m=1,t=8;
(2)设h(x)=ax+﹣,x≥.
h()=﹣≥0,即a≥,
h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①
若≤x≤,设g(x)=a﹣,
g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,
则g(x)≥0,即h′(x)≥0在[,]上恒成立.②
由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,
则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;
当a<时,h()<0,不合题意.
综上可得a≥.
【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.
21.【答案】
【解析】解:(1)由题意可得A=,=﹣,求得ω=.
再根据最高点的坐标为(,),可得sin(×+φ)=,即sin(×+φ)=1 ①.
再根据由此最高点到相邻最低点间的曲线与x 轴交于点(π,0),可得得sin (×+φ)=0,即sin (+φ)
=0 ②,
由①②求得φ=,故曲线的解析式为y=sin (x+).
(2)对于函数y=sin (x+),令2k π﹣≤+
≤2k π+
,求得4k π﹣
≤x ≤4k π+

可得函数的增区间为[4k π﹣,4k π+],k ∈Z .
令2k π+
≤+
≤2k π+
,求得4k π+≤x ≤4k π+,
可得函数的减区间为[4k π+
,4k π+
],k ∈Z .
【点评】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由特殊点求出φ的值,正弦函数的单调性,属于中档题.
22.【答案】
【解析】解:(1)由题意:f ′(x )=3x 2+6ax+3b 直线6x+2y+5=0的斜率为﹣3; 由已知
所以
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)
所以由f ′(x )=3x 2﹣6x >0得心x <0或x >2; 所以当x ∈(0,2)时,函数单调递减;
当x ∈(﹣∞,0),(2,+∞)时,函数单调递增.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分) (2)由(1)知,函数在x ∈(1,2)时单调递减,在x ∈(2,3)时单调递增; 所以函数在区间[1,3]有最小值f (2)=c ﹣4要使x ∈[1,3],f (x )>1﹣4c 2恒成立 只需1﹣4c 2<c ﹣4恒成立,所以c <或c >1.
故c 的取值范围是{c|c
或c >1}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)
【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题.
23.【答案】(1)()2
=+1f x x x -;(2)1m <-. 【解析】
试题分析:(1)根据二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为2
31m x x <-+,设
()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围.
试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==
()()()()2
212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,
故()2=+1f x x x -.
考点:函数的解析式;函数的恒成立问题.
【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键. 24.【答案】
【解析】证明:(Ⅰ)(证法一):
记g (x )=lnx+
﹣1﹣(x ﹣1),则当x >1时,g ′(x )=+
﹣<0,
又g (1)=0,有g (x )<0,即f (x )<( x ﹣1);…4′
(证法二)由均值不等式,当x >1时,2
<x+1,故
<+.①
令k (x )=lnx ﹣x+1,则k (1)=0,k ′(x )=﹣1<0,故k (x )<0,即lnx <x ﹣1②
由①②得当x >1时,f (x )<( x ﹣1);
(Ⅱ)记h (x )=f (x )﹣,由(Ⅰ)得,
h ′(x )=+﹣
=﹣


=,
令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,
∴h′(x)<0,…10′
因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,
于是,当1<x<3时,f(x)<…12′。

相关文档
最新文档