高二数学抽样方法复习2
高中数学 学案 分层抽样
![高中数学 学案 分层抽样](https://img.taocdn.com/s3/m/e1c8732f7dd184254b35eefdc8d376eeafaa1751.png)
2.1.3 分层抽样学 习 目 标核 心 素 养1.记住分层抽样的特点和步骤(重点)2.会用分层抽样从总体中抽取样本.(重点、难点) 3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)1.通过分层抽样的学习,培养数学运算素养.2.借助多种抽样方法的选择,提升逻辑推理素养.1.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由差异明显的几部分组成时,往往选用分层抽样的方法. 2.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层). 第二步,计算抽样比.抽样比=样本容量总体容量.第三步,各层抽取的个体数=各层总的个体数×抽样比. 第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本. 第五步,综合每层抽样,组成样本. 思考:什么情况下适用分层抽样?[提示] 当总体中个体之间差异较大时可使用分层抽样.1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样C [依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.]2.为了保证分层抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .按每层所含个体在总体中所占的比例抽样D .只要抽取的样本容量一定,每层抽取的个体数没有限制 C [分层抽样为等比例抽样.]3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8B .10,6C .9,7D .12,4C [抽样比1654+42=16,则一班被抽取人数为54×16=9人,二班被抽取人数为42×16=7人.]4.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有________个.三 [三种抽样方法均为不放回抽样.]分层抽样的概念【例1】 下列问题中,最适合用分层抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量B [A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 中,D 中总体个体无明显差异且个数较多,适合用系统抽样;B 中总体个体差异明显,适合用分层抽样.]分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.1.某校有在校高中生共1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问:应采用怎样的抽样方法?高三学生中应抽查多少人?[解] 因为不同年级的学生消费情况有明显差别,所以应采用分层抽样. 因为520∶500∶580=26∶25∶29. 所以将80分成26∶25∶29的三部分. 设三部分各抽取的个体数分别为26x,25x,29x, 由26x +25x +29x =80得x =1, 所以高三学生中应抽查29人.分层抽样的设计及应用1.怎样确定分层抽样中各层入样的个体数? [提示] 在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.2.计算各层所抽个体的个数时,如果算出的个数值不是整数怎么办? [提示] 可四舍五入取整,也可先将该层等可能地剔除多余个体. 3.分层抽样公平吗?[提示] 分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N,样本容量为n,N i 为第i 层的个体数,则第i 层抽取的个体数n i =n·N iN ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =nN.【例2】 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.思路点拨:观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→样本 [解] ∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥. ∵10020=5, ∴105=2,705=14,205=4. ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.(变条件)某大型工厂有管理人员1 200人,销售人员2 000人,车间工人6 000人,若要了解改革意见,从全厂人员中抽取一个容量为46的样本,试确定用何种方法抽取,请具体实施操作.[解] 改革关系到每个人的利益,采用分层抽样较好.抽样比:461 200+2 000+6 000=1200.∵1 200×1200=6(人),2 000×1200=10(人),6 000×1200=30(人).∴从管理人员中抽取6人,从销售人员中抽取10人,从车间工人中抽取30人. 因为各层中个体数目均较多,可以采用系统抽样的方法获得样本. 2.(变结论)在本例中的抽样方法公平合理吗?请说明理由.[解] 从100人中抽取20人,总体中每一个个体的入样可能性都是20100=15,即抽样比,按此比例在各层中抽取个体;副处级以上干部抽取10×15=2人,一般干部抽70×15=14人,工人抽20×15=4人,以保证每一层中每个个体的入样可能性相同,均为15,故这种抽样是公平合理的.分层抽样的步骤抽样方法的选择14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为( )A .分层抽样,分层抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样思路点拨:根据各抽样方法的特征、适用范围判断.D [①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.]抽样方法的选取(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查.事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按年龄分层抽样D .系统抽样C [因为不同年龄段人员的“微信健步走”活动情况有较大差异.而男女对此活动差异不大,所以按年龄段分层抽样最合理.]1.对于分层抽样中的比值问题,常利用以下关系式[解] (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体容量较大,样本容量也较大时,可采用系统抽样法. (4)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当总体由差异明显的几部分组成时,往往采用分层抽样.( )(2)由于分层抽样是在各层中按比例抽取,故每个个体被抽到的可能性不一样.( )(3)分层抽样中不含系统抽样和简单随机抽样.( )[答案](1)√(2)×(3)×2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人、30人、30人B.30人、45人、15人C.20人、30人、40人D.30人、50人、10人B[根据各校人数比例有3 600∶5 400∶1 800=2∶3∶1,由于样本容量为90,不难求出甲校应抽取30人、乙校应抽取45人、丙校应抽取15人.]3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样;②系统抽样;③分层抽样A.②③B.①③C.③D.①②③D[由三种抽样方法的特点知,应先采用分层抽样对农民家庭需用系统抽样得到样本,对工人家庭需用简单随机抽样.]4.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.W。
高二数学抽样方法
![高二数学抽样方法](https://img.taocdn.com/s3/m/bf3f5830ba1aa8114531d922.png)
总体中的个 体个数较多
总体由差异 明显的几部 分构成
抽样过程 中每个个 体被抽到 的可能性 相同
例.下列问题中,采用怎样的抽样方法较为 合理?
(1)从10台冰箱中抽取3台进行质量检查; (2)某电影院有32排座位,每排有40个座位, 座位号为1-40.有一次报告会坐满了听众, 报告会结束以后为听取意见,需留下32名 听众进行座谈;
简单随机抽样常用的方法有: (1)抽签法;⑵随机数表法
将总体平均分成几个部分,然后 按照一定的规则,从每个部分中 抽取一个个体作为样本,这样的
抽样方法称为系统抽样。
分层抽样(类型抽样):
一般地,当总体由差异明显的几 个部分组成时,为了使样本更客观地 反映总体情况,我们常常将总体中的 个体按不同的特点分成层次比较分明 的几部分,然后按各部分在总体中所 占的比例实施抽样,这种抽样方法叫
6、一个总体中的1 000个个体编号为0, 1,2,…,999,依次将其分为10个小组, 组号为0,1,2,…,9,要用系统抽样的 方法抽取一个容量为100的样本,规定如果 在第0组随机抽取的号码为x,那么依次错位 地得到后面各组的号码,即第k组中抽取的 号码的后两位数为x+33k的后两位数。
(1)当x=24时,写出所抽取样本的10个号 码;
抽样方法习题课
洪泽县中学 张军
简单随机抽样,也叫纯随机抽样.就是从
总体中不加任何分组、划类、排队等,完 全随机地抽取调查单位。特点是:每个样 本单位被抽中的可能性相同(概率相等), 样本的每个单位完全独立,彼此间无一定 的关联性和排斥性。简单随机抽样是其它 各种抽样形式的基础。通常只是在总体单 位之间差异程度较小和数目较少时,才采 用这种方法。
高二数学抽样方法
![高二数学抽样方法](https://img.taocdn.com/s3/m/f1866bf3767f5acfa0c7cd4b.png)
高中数学统计抽样方法精选题目(附答案)
![高中数学统计抽样方法精选题目(附答案)](https://img.taocdn.com/s3/m/66f10babccbff121dd3683e2.png)
高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。
02系统抽样
![02系统抽样](https://img.taocdn.com/s3/m/2db6e784d4d8d15abe234ebd.png)
系统抽样
高二数学备课组
问题情境
老三课件库
引例:某校高一年级共有 个班 个班, 引例:某校高一年级共有20个班, 每班有50名学生 名学生.为了了解高一学生 每班有 名学生 为了了解高一学生 的视力状况,从这1000人中抽取一 的视力状况,从这 人中抽取一 个容量为100的样本进行检查,应 的样本进行检查, 个容量为 的样本进行检查 该怎样抽样? 该怎样抽样?
老三课件库
分段间隔的确定: 〖说明〗(1)分段间隔的确定 说明〗 分段间隔的确定 N N 是整数时,取 ; 当 是整数时 取k= n n N 不是整数时,可以先从总体中用简单 当 不是整数时 可以先从总体中用简单 n 随机抽样剔除几个个体,使得总体中剩余的个体 随机抽样剔除几个个体 使得总体中剩余的个体
数学运用
老三课件库
(3)从2005个编号中抽取20个号码入样,采 2005个编号中抽取20个号码入样, 个编号中抽取20个号码入样 用系统抽样的方法,则抽样的间隔为( 用系统抽样的方法,则抽样的间隔为( ) C B、 C、 D、 A、99 B、99.5 C、100 D、100.5 (4)某小礼堂有25排座位,每排20个座位, 某小礼堂有25排座位,每排20个座位, 25排座位 20个座位 一次心理学讲座,礼堂中坐满了学生, 一次心理学讲座,礼堂中坐满了学生,会后为 了了解有关情况,留下座位号是15的所有25 15的所有25名 了了解有关情况,留下座位号是15的所有25名 学生进行测试, 学生进行测试,这里运用的是 系统 抽样 方法。 方法。
老三课件库
思考: 思考
(1)下列抽样中不是系统抽样的是 ( C ) 1)下列抽样中不是系统抽样的是 从标有1 15号的15个小球中任选 号的15个小球中任选3 A、从标有1~15号的15个小球中任选3个作为样 先在1 号球中用抽签法抽出l号 本,先在1~5号球中用抽签法抽出 号,再将号码为 l+5,l+10的球也抽出 ; +5, +10的球也抽出 +5 +10 工厂生产的产品, B、工厂生产的产品,用传送带将产品送入包装 车间的过程中, 车间的过程中,检验人员从传送带上每隔五分钟抽 一件产品检验 ; 搞某市场调查, C、搞某市场调查,规定在商场门口随机抽一个 人进行询问,直到调查到事先规定的调查人数为止. 人进行询问,直到调查到事先规定的调查人数为止. 电影院调查观众的某一指标,邀请每排( D、电影院调查观众的某一指标,邀请每排(每 排人数相等)座位号为14的观众留下来座谈。 14的观众留下来座谈 排人数相等)座位号为14的观众留下来座谈。
高二数学抽样方法
![高二数学抽样方法](https://img.taocdn.com/s3/m/1ce873bebb68a98271fefacd.png)
接受,就意味着瘾忍屈辱于胸怀,甘当他人的附庸。反抗,就是不惜生命,博取一个忠烈的名声。然而,无论怎么样,都是需要做出牺牲的。今天,我们难以了解当时,便无法知晓祖先们如何应对 那新旧交替、变幻莫测的时局。可能是,既有纠结,又不能不与时俱进。当然,也一定不乏赤诚忠勇之士。斗争、牺牲,是在所难免的。甚至,扬州、嘉定的“抗争”中就有我陈氏族人的身影,只是没 有留名而已。
谁料,凶猛的满族人,又将彪悍的“李闯王”剿杀在九宫山下,又一个新的政权——大清朝就此诞生了。tt体育在线
我们知道,满人与汉人的习惯多有不同。最具代表性的,可能就是男人蓄发留辫子了。
本来,满人入关,占领整个华夏大地,对汉人来说是屈辱之极,心里根本不服。满人为了显示统治者的威严,命令汉人“留发不留头,留头不留发”。可以想象得出,我陈氏族人,正宗的汉人血统, 会“听其命,任其剃”吗?
高中数学(人教B版)必修第二册:分层抽样【精品课件】
![高中数学(人教B版)必修第二册:分层抽样【精品课件】](https://img.taocdn.com/s3/m/f7202b184a73f242336c1eb91a37f111f1850ddc.png)
2.下列试验中最适合用分层抽样法抽样的是( ) A.从一箱 3 000 个零件中抽取 5 个入样 B.从一箱 3 000 个零件中抽取 600 个入样 C.从一箱 30 个零件中抽取 5 个入样 D.从甲厂生产的 100 个零件和乙厂生产的 200 个零件中抽取 6 个入样 D [D 选项中甲、乙生产的零件有差异,最适合分层抽样.]
160 [男生人数为 560×5602+80420=160.]14源自合 作探究
释 疑
难
15
分层抽样的概念 【例 1】 (1)下列各项中属于分层抽样的特点的是( ) A.从总体中逐个抽取 B.将总体分成几层,分层进行抽取 C.将总体分成几部分,按事先确定的规则在各部分中抽取 D.将总体随意分成几部分,然后进行随机抽取
(2)分成的各层互不交叉;
(3)各层抽取的比例都等于样本容量在总体中的比例,即Nn ,其中 n 为样本容量,N 为总体容量.
31
2.计算各层所抽取个体的个数时,若 Ni·Nn 的值不是整数怎么 办?
[提示] 为获取各层的入样数目,需先正确计算出抽样比Nn,若 Ni·Nn 的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多 余的个体.
21
(1)④ (2)分层抽样 [(1)①中对四个饲养房抽取的白鼠平均分, 但由于各饲养房所养数量不一,反而造成了每个个体入选的可能性 不相等,是错误的方法.②中保证了每个个体入选的可能性相等, 但由于没有注意到处在四个不同环境会产生不同差异,不如采用分 层抽样可靠性高,且统一编号、统一选择加大了工作量.③中总体 采用了分层抽样,但在每个层次中抽取时有一定的主观性,貌似随 机,实则每个个体被抽到的可能性无法保证相等.
11
3.甲校有 3 600 名学生,乙校有 5 400 名学生,丙校有 1 800 名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取 一个容量为 90 的样本,应在这三校分别抽取学生( )
高中数学第六章统计2抽样的基本方法第2课时分层随机抽样课后习题北师大版必修第一册
![高中数学第六章统计2抽样的基本方法第2课时分层随机抽样课后习题北师大版必修第一册](https://img.taocdn.com/s3/m/fcd22445cbaedd3383c4bb4cf7ec4afe04a1b12d.png)
2.2 分层随机抽样A级必备知识基础练1.对下面三个事件最适宜采用的抽样方法判断正确的是( )①从某厂生产的3 000件产品中抽取600件进行质量检验;②一次数学竞赛中,某班有10人的成绩在100分以上,40人的成绩在90~100分,10人的成绩低于90分,现在从中抽取12人的成绩了解有关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑道.A.①②适宜采用分层随机抽样B.②③适宜采用分层随机抽样C.②适宜采用分层随机抽样D.③适宜采用分层随机抽样2.我国古代数学名著《九章算术》中有如下问题:“今有北乡8 758人,西乡7 236人,南乡8 356人,现要按人数多少从三个乡共征集487人,问从各乡各征集多少人”.在上述问题中,需从南乡征集的人数大约是( )A.112B.128C.145D.1673.(2022广西玉林期末)某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是( )A.35B.40C.45D.604.(多选题)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有( )A.应该采用分层随机抽样的方法B.高一、高二年级应分别抽取100人和135人C.乙被抽到的可能性比甲大D.该问题中的总体是高一、高二年级的全体学生的视力5.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工.若用分层随机抽样方法,则40岁以下年龄段应抽取 人.6.某高中高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层随机抽样抽取一个容量为45人的样本,高一年级被抽取20人,高二年级被抽取10人.若高三年级共有300人,则此学校共有 人.7.某校按分层随机抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200人,并从中抽取了40人.(1)该校的总人数为多少?(2)三个年级分别抽取多少人?8.某高中共有学生3 000名,各年级男生与女生的人数如下表:性别高一年级高二年级高三年级女生523x y男生487490z已知在全校学生中随机抽取100名,抽到高二年级女生的人数是17.(1)问高二年级有多少名女生?(2)现对各年级用分层随机抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?B级关键能力提升练9.(多选题)某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层随机抽样的方法进行抽样调查,样本中的中年人为6人,则n和m的值可以是( )A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=1910.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层随机抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人11.(多选题)某公司生产三种型号的轿车,产量分别为1 500辆、6 000辆和2 000辆,为保证产品质量,公司质监部门要抽取57辆进行检验,则下列说法正确的是( )A.应采用分层随机抽样抽取B.应采用抽签法抽取C.三种型号的轿车依次应抽取9辆、36辆、12辆D.这三种型号的轿车,每一辆被抽到的可能性都是相等的12.某中学有高中生3 000人,初中生2 000人,男、女生所占的比例如下图所示.为了解学生的学习情况,用分层随机抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是( )A.12B.15C.20D.2113.某公司生产甲、乙两种产品的数量之比为5∶3,现用分层抽样的方法抽出一个样本,已知样本中甲种产品比乙种产品多6件,则甲种产品被抽取的件数为 .14.某大型超市有员工120人,其中男性员工90人,现管理部门按性别采用分层随机抽样的方法从超市的所有员工中抽取n人进行问卷调查,若抽取到的男性员工比女性员工多4人,则n= .15.在120人中,青年人有65人,中年人有15人,老年人有40人,从中抽取一个容量为20的样本.写出用分层随机抽样抽取样本的步骤.16.某班有42名男生,30名女生,现欲调查平均身高,若采用分层随机抽样方法,抽取男生1人,女生1人,这种做法是否合适,若不合适,应怎样抽取?C级学科素养创新练17.某单位最近组织了一次健身活动,活动小组分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次动总人数的14的职工对本次活动的满意程度,现用分层随机抽样法从参加活动的全体职工中抽取200人进行调查,试确定:(1)游泳组中,青年人、中年人、老年人所占的比例分别为 ;(2)游泳组中,青年人、中年人、老年人应抽取的人数分别为 人.2.2 分层随机抽样1.C ①从某厂生产的3000件产品中抽取600件进行质量检验,不满足分层抽样的条件;②总体由差异明显且互不重叠的几部分组成,若要从中抽取12人的成绩了解有关情况,适合采用分层抽样的方法;③运动会服务人员为参加400m决赛的6名同学安排跑道,具有随机性,适合用简单随机抽样.故选C.2.D 由题意结合分层随机抽样的方法可知,需从南乡征集的人数为487×8356 8758+7236+8356=417825≈167.3.C 由题意可得男生抽取的人数是800-350800×80=45.故选C.4.ABD 由于各年级的年龄段不一样,因此应采用分层随机抽样的方法.由于比例为23520×50+30×45=110,因此高一年级1000人中应抽取100人,高二年级1350人中应抽取135人,甲、乙被抽到的可能性都是110,因此只有C不正确,故应选ABD.5.20 分层随机抽样时,由于40岁以下年龄段占总数的50%,故容量为40的样本中在40岁以下年龄段中应抽取40×50%=20(人).6.900 高三年级被抽取45-20-10=15(人),∴20x =10y=15300,∴x=400,y=200.又z=300,∴学校共有900人.7.解高二年级所占的角度为120°.(1)设总人数为n,则120360=1200n,可知n=3600,故该校的总人数为3600.(2)高一、高二、高三人数所占的比分别为150∶120∶90=5∶4∶3,可知高一、高二、高三所抽人数分别为50,40,30.8.解(1)由题设可知x3000=17100,所以x=510.故高二年级有510名女生.(2)高三年级人数为y+z=3000-(523+487+490+510)=990,现用分层随机抽样的方法在全校抽取300名学生,应在高三年级抽取的人数为3003000×990=99.9.ABD 某单位共有老年人120人,中年人360人,青年人n人,样本中的中年人为6人,则老年人为120×6360=2,青年人为6360n=n60,故2+6+n60=m,即8+n60=m,代入选项计算,可知ABD符合,故选ABD.10.B 先求抽样比nN =903600+5400+1800=1120,再各层按抽样比分别抽取,甲校抽取3600×1 120=30(人),乙校抽取5400×1120=45(人),丙校抽取1800×1120=15(人),故选B.11.ACD 因为是三种型号的轿车,个体差异明显,所以选择分层随机抽样,选项A正确;因为个体数目多,用抽签法制签难,搅拌不均匀,抽出的样本不具有好的代表性,故选项B错误;抽样比为571500+6000+2000=3500,三种型号的轿车依次应抽取9辆、36辆、12辆,选项C正确;分层抽样中,每一个个体被抽到的可能性相同,故选项D正确.故选ACD.12.A 因为分层随机抽样的抽取比例为213000×0.7=1100,所以初中生中抽取的男生人数是2000×0.6100=12.故选A.13.15 设甲种产品被抽取的件数为x,则x∶(x-6)=5∶3,解得x=15.故答案为15.14.8 总共有120人,男性员工90人,所以女性员工有30人,由总共抽出n人,所以抽样比为n120,则男性员工抽了90×n120=3n4,女性员工抽了30×n120=n4,又抽取到的男性员工比女性员工多4人,所以3n4−n4=4,则n=8.15.解第一步 按照青年、中年、老年把总体分为三层;第二步 计算各层抽取的人数:青年人:20×65120=656≈11(人),中年人:20×15120=52≈2(人),老年人:20×40120≈7(人);第三步 在各层中采用简单随机抽样抽取样本个体:在青年人和老年人中采用随机数法,在中年人中采用抽签法;第四步 把抽取的个体组成一个样本即可.16.解由于取样比例数过小,仅抽取2人,很难准确反映总体情况,又因为男、女生差异较大,抽取人数相同,也不尽合理,故此法不合适,抽取人数过多,失去了抽样调查的统计意义,取样太少,不能准确反映真实情况,考虑到本题应采用分层随机抽样及男、女生各自的人数,故男生抽取7人,女生抽取5人,各自用抽签法或随机数法抽取组成样本.17.(1)40%,50%,10% (2)60,75,15 (1)设登山组人数为x,则游泳组人数为3x,再设游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,则有x·50%+3xa4x =42.5%,x·40%+3xb4x=47.5%,x·10%+3xc4x=10%,解得a=40%,b=50%,c=10%.所以游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60(人),抽取的中年人人数为200×34×50%=75(人),抽取的老年人人数为200×34×10%=15(人).。
(部编版)2020学年高中数学第2章统计2.1抽样方法2.1..1.3系统抽样分层抽样教学案苏教版必修19
![(部编版)2020学年高中数学第2章统计2.1抽样方法2.1..1.3系统抽样分层抽样教学案苏教版必修19](https://img.taocdn.com/s3/m/fc4117dbf8c75fbfc77db296.png)
2.1.2 & 2.1.3 系统抽样 分层抽样[新知初探]1.系统抽样 (1)系统抽样的概念将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样.(2)系统抽样的步骤假设从容量为N 的总体中抽取容量为n 的样本,其步骤为: ①采用随机的方式将总体中的N 个个体编号;②将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号; ③在第一段中用简单随机抽样确定起始的个体编号l ;④按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. (3)系统抽样的特征①系统抽样也称为“等距抽样”. ②适用于总体容量较大的情况.③将总体分成几个部分,各部分必须是均衡的,间隔是相等的.④剔除多余个体及第一段抽样都用简单随机抽样,因而系统抽样与简单随机抽样有密切联系. ⑤它是等可能抽样,每个个体被抽到的可能性都是n N. 2.分层抽样 (1)分层抽样的概念当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体的情况,常将总体中的个体按不同的特点分成层次比较明显的几个部分,然后按照各部分在总体中所占的比实施抽样,这种抽样方法称为分层抽样,其中所分成的各个部分称为“层”.(2)分层抽样的步骤:①将总体按一定标准进行分层;②计算各层的个体数与总体的个体数的比;③按各层个体数占总体的个体数的比确定各层应抽取的样本容量;④在每一层进行抽样(可用简单随机抽样或系统抽样).(3)分层抽样的特征:总体由差异比较明显的几个部分组成.3.三种抽样方法的比较[小试身手]1.简单随机抽样、系统抽样、分层抽样之间的共同点是________.①都是从总体中逐个抽取.②将总体分成几部分,按事先确定的规则在各部分抽取.③抽样过程中每个个体被抽到的可能性是相等的. ④将总体分成几层,然后分层按比例抽取. 答案:③2.采用系统抽样的方法,从个体数为1 004的总体中抽取一个容量为50的样本,则在抽样过程中,抽样间隔为________.答案:203.某学院的A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取________名学生.答案:40[典例] 某工厂有工人1 003名,现从中抽取100人进行体检,试写出抽样方案.[解] 样本容量为100,总体容量为1 003,不能被100整除,因此需要剔除3个个体,然后确定抽样间隔为1 000100=10,利用系统抽样即可.第一步,编号,将1 003名工人编号,号码为0001,0002,…,1 003. 第二步,利用随机数表法抽取3个号码,将对应编号的工人剔除. 第三步,将剩余的1 000名工人重新编号,号码为0001,0002,…,1 000. 第四步,确定分段间隔k =1 000100=10,将总体分成100段,每段10名工人. 第五步,在第1段中,利用抽签法或者随机数表法抽取一个号码m .第六步,利用抽样间隔,将m ,m +10,m +20,…,m +990共100个号码抽出. 第七步,将与号码对应的工人抽出,组成样本.[活学活用]1.高三某班有学生56人,学生编号依次为1,2,3,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为6,34,48的同学都在样本中,那么样本中另一位同学的编号应该是________.解析:由于系统抽样的样本中个体编号是等距的,且间距为56/4=14,所以样本编号应为6,20,34,48. 答案:202.从某厂生产的883辆同一型号的家用轿车中随机抽取40辆测试某项性能.现在用系统抽样的方法进行抽样,请写出抽样过程.解:采用系统抽样法的步骤如下:系统抽样的应用第一步,将883辆轿车随机编号:001,002, (883)第二步,用随机数表法从总体中随机抽取3个编号,剔除这3个个体,将剩下的880个个体重新随机编号,分别为001,002,…,880,并分成40段,每段22个编号;第三步,在第一段001,002,…,022中用简单随机抽样法随机抽取一个个体编号作为起始号(例如008); 第四步,把起始号依次加上22,即可获得抽取的样本的个体编号(例如008,030,…,866); 第五步,由以上编号的个体即可组成抽取的样本.[典例] 一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,请用分层抽样的方法抽取样本,并写出过程.[解] 分层抽样中的抽样比为20160=18.由112×18=14,16×18=2,32×18=4,可得业务人员、管理人员、后勤服务人员应分别抽取14人,2人和4人.确定样本的组成部分之后,下面进行层内抽样,用系统抽样法完成.若将112名业务人员依次编号为1,2,3,…,112,管理人员编号为113,114,…,128,后勤服务人员编号为129,130,…,160.在1~112号业务人员中第一部分的个体编号为1~8中随机抽取一个号码.如它是4号,那么可以从4号起,按系统抽样法每隔8个号码抽取1个号码,这样得到112名业务人员被抽出的14个号码依次为4,12,20,28,36,44,52,60,68,76,84,92,100,108.同样可抽出管理人员和后勤服务人员的号码分别为116,124和132,140,148,156.将以上各层抽出的个体合并起来,就得到容量为20的样本.[活学活用]1.某地区的高中分三类,A 类学校共有学生4 000人,B 类学校共有学生2 000人,C 类学校共有学生3 000人.现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从A 类学校抽取的试卷份数应为________份.解析:试卷份数应为900× 4 0004 000+2 000+3 000=400(份).答案:400分层抽样的应2.某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作. 解:由于机构改革关系到各人的不同利益,故采用分层抽样的方法为妥. ∵10020=5,105=2,705=14,205=4, ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.由于副处级以上干部与工人人数都较少,他们分别按1~10编号与1~20编号,然后采用签法分别抽取2人和4分;对一般干部70人采用00,01,…,69编号,然后用随机数表法抽取14人.[典例] 在下列问题中,各采用什么抽样方法抽取样本较为合适? (1)从8台彩电中抽取2台进行质量检验.(2)一个礼堂有32排座位,每排有40个座位(座位号为1~40),一次报告会坐满了听众,会后为听取意见留下32名听众进行座谈.(3)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本.[解] (1)总体容量为8,样本容量为2,因此选择抽签法进行样本的抽取.(2)总体容量为32×40=1 280,样本容量为32.由于座位数已经分为32排,因此用系统抽样更合适. (3)总体由差异明显的四部分组成,因此可采用分层抽样方法.[活学活用]在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为 样本.方法一:采用简单随机抽样的方法,将零件编号为00,01,…,99,用抽签法抽取 20个;方法二:采用系统抽样的方法,将所有零件分为20组,每组5个,然后从每组中随机抽取1个;方法三:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法中正确的有________.①不论采用哪种抽样方法,这100个零件中每个零件被抽到的可能性都是15②采用上述三种抽样方法,这100个零件中每个零件被抽到的可能性各不相同③在上述三种抽样方法中,方法三抽到的样本比方法一和方法二抽到的样本更能反映总体的特征 ④在上述三种抽样方法中,方法二抽到的样本比方法一和方法三抽到的样本更能反映总体的特征抽样方法的选取解析:根据三种抽样方法的定义可知,三种方法都是等可能抽样.对于明显分层的总体,方法三抽到的样本更能准确地反映总体特征,故①③正确. 答案:①③层级一 学业水平达标1.下列抽样是系统抽样的是________.(填序号)①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0,以后i 0+5,i 0+10(超过15则从1再数起)号入样;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔5 min 抽一件产品进行检验; ③搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的人数为止; ④电影院调查观众的某一指标,通知每排(每排人数相同)座位号为14的观众留下座谈. 答案:①②④2.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:为等距抽样,即为系统抽样. 答案:系统抽样3.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为________.解析:分层抽样中抽样比一定相同,设样本容量为n ,由题意得,n120=2790,解得n =36. 答案:364.在学生人数比例为2∶3∶5的A ,B ,C 三所学校中,用分层抽样方法招募n 名志愿者,若在A 学校恰好选出了6名志愿者,那么n =________.解析:由22+3+5=6n ,得n =30.答案:305.某企业共有3 200名职工,其中中、青、老年职工的比例为5∶3∶2.(1)若从所有职工中抽取一个容量为400的样本,应采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?(2)若从青年职工中抽取120人,试求所抽取的样本容量.解:(1)由于中、青、老年职工有明显的差异,采用分层抽样更合理. 按照比例抽取中、青、老年职工的人数分别为: 510×400=200,310×400=120,210×400=80, 因此应抽取的中、青、老年职工分别为200人、120人、80人. (2)由题设可知青年职工共有310×3 200=960人.设抽取的样本容量为n ,则有n3 200×960=120.∴n =400, 因此所抽取的样本容量为400.层级二 应试能力达标1.从2 016个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的分段间隔为________. 解析:先从2 016个个体中剔除16个,则分段间隔为2 00020=100.答案:1002.将参加数学竞赛的1 000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为________.解析:由题意系统抽样的组距为20, 则15+39×20=795,故第40个号码为0795. 答案:07953.某校共有2 000名学生参加跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a ∶b ∶c =2∶5∶3,全校参加登山的人数占总人数的14.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个容量为200的样本进行调查,则高三年级参加跑步的学生中应抽取________人.解析:由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取110×450=45(人).答案:454.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是________.解析:了解学生的健康情况,男、女生抽取比例应该相同,因此应用分层抽样法.由题意,25500=20400,∴本题采用的抽样方法是分层抽样法. 答案:分层抽样5.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度.其中执“一般”态度的比“不喜欢”的多12人.按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学,1位“不喜欢”摄影的同学和3位执“一般”态度的同学.那么全班学生中“喜欢”摄影的比全班学生人数的一半还多________人.解析:本班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度的人数比例为5∶1∶3,可设三种态度的人数分别是5x ,x,3x ,则3x -x =12,∴x =6.即人数分别为30,6,18.∴30-30+6+182=3.故结果是3人.答案:36.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同,若m =6,则在第7组中抽取的号码是________.解析:m +k =6+7=13,由规定知抽取号码的个位数字为3,第7组中号码的十位数字为6.所以抽取号码为63.答案:637.一工厂生产了某种产品16 800件,它们来自甲、乙、丙三条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲、丙二条生产线抽取的个体数和为乙生产线抽取的个体数的两倍,则乙生产线生产了________件产品.解析:甲、乙、丙抽取的个体数为x ,y ,z ,由题意x +z =2y ,即乙占总体的13,故乙生产线生产了16 800×13=5 600.答案:5 6008.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表:由于不小心,表格中A ,C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是______件.解析:设C 产品的数量为x ,则A 产品的数量为1 700-x ,C 产品的样本容量为a ,则A 产品的样本容量为10+a ,由分层抽样的定义可知1 700-x a +10=x a =1 300130,解得x =800.答案:8009.下面给出某村委会调查本村各户收入情况所作的抽样过程,阅读并回答问题. 本村人口:1 200人,户数:300,每户平均人口数4人; 应抽户数:30户; 抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码为12的户为第一样本户;确定第二样本户:12+40=52,编号为52的户为第二样本户; ……(1)该村委会采用了何种抽样方法? (2)说明抽样过程中存在哪些问题,并修改. (3)抽样过程中何处应用了简单随机抽样? 解:(1)系统抽样.(2)本题是对该村各户收入情况进行抽样而不是对该村个人收入情况抽样,故抽样间隔应为30030=10.其他步骤相应改为:确定随机数字:任取一张人民币,编号的最后一位为2; 确定第一样本户:编号为002的户为第一样本户;确定第二样本户:2+10=12,编号为012号的户为第二样本户; ……(3)在确定随机数字时,应用的是简单随机抽样,即任取一张人民币,记下编号的最后一位.10.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36·6=n6,技术员人数为n 36·12=n3,技工人数为n 36·18=n2, 所以n 应是6的倍数,36的约数,即n =6,12,18. 当样本容量为(n +1)时,总体容量是35,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。
2.1抽样方法概念汇总
![2.1抽样方法概念汇总](https://img.taocdn.com/s3/m/9f87961bff00bed5b9f31d5b.png)
个个体编号; (1)将总体中的 个个体编号; )将总体中的N个个体编号 (2)将这N个号码写在形状、 )将这 个号码写在形状、 个号码写在形状 大小相同的号签上; 大小相同的号签上; (3)将号签放在同一箱中,并 )将号签放在同一箱中, 搅拌均匀; 搅拌均匀; 个号签, (4)从箱中每次抽出 个号签, )从箱中每次抽出1个号签 连续抽出n次 连续抽出 次; (5)将总体中与抽到的号签编 ) 号一致的n个个体取出 个个体取出。 号一致的 个个体取出。 开始 开始 编号 55名同学从 到55编号 名同学从1到 制签 制作1到 制作 到55个号签 搅匀 将55个号签搅拌均匀 抽签 随机从中抽出10个签 随机从中抽出 个签 取出个体 对对应号码的学生检查 结束 结束
试利用上述资料设计一个抽样比为1/10的抽样方法。 的抽样方法。 试利用上述资料设计一个抽样比为 的抽样方法
练习、 个有机会中奖的号码( 练习、在1000个有机会中奖的号码(编号为 个有机会中奖的号码 000~999)中,在公证部门的监督下,按随机抽 在公证部门的监督下, ) 取的方法确定最后两位数为88的号码为中奖号码 的号码为中奖号码, 取的方法确定最后两位数为 的号码为中奖号码, 这是运用那种抽样方法确定中奖号码的? 这是运用那种抽样方法确定中奖号码的?依次写 出这10个中奖号码 个中奖号码。 出这 个中奖号码。 系统抽样 088,188,288,388,488,588,688,788, , , , , , , , , 888,988 ,
将总体均分成 在起始部分 几部分, 几部分,按预 样时采用简 总体个 数较多 先制定的规则 随机抽样 在各部分抽取 分层抽样时 总体由差 将总体分成 采用简单随 异明显的 几层, 几层,分层 机抽样或系 几部分组 进行抽取 统抽样 成
人教版高二数学必修二知识点:系统抽样
![人教版高二数学必修二知识点:系统抽样](https://img.taocdn.com/s3/m/73f0de72866fb84ae45c8def.png)
精心整理
人教版高二数学必修二知识点:系统抽样
(1)系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定 的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。 K(抽样距离)=N(总体规模)/n(样本规模)
前提条件:总体中个体的排列对于研究的变量来说,应是随机的, 即不存在某种与研究变量相关的则分布。可以在调查允许的条件下, 从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说 明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重 合。
高二数学下册《分层抽样》知识点复习
![高二数学下册《分层抽样》知识点复习](https://img.taocdn.com/s3/m/207764558e9951e79b892722.png)
高二数学下册《分层抽样》知识点复习分层抽样先将总体中的所有单位按照某种特征或标志划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
以那些有明显分层区分的变量作为分层变量。
分层的比例问题按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。
如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
练习题:1、为了了解所加工的一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度()A总体B个体c总体的一个样本D样本容量2、为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是()A8B400c96D96名学生的成绩3、一总体由差异明显的三部分数据组成,分别有m个、n个、p个,现要从中抽取a个数据作为样本考虑总体的情况,各部分数据应分别抽取____________、___________、_______________.4、某地有XX人参加自学考试,为了解他们的成绩,从中抽取一个样本,若每个考生被抽到的概率都是0.04,则这个样本的容量是_________。
高二数学 简单随机抽样
![高二数学 简单随机抽样](https://img.taocdn.com/s3/m/1fe5e6cabb4cf7ec4afed0e0.png)
【例题解析】 例1:某市为了了解本市13850名高中毕业生的 数学毕业会考的情况,要从中抽取500名进行 13850 数据分析,那么这次考察的总体数为______, 500 样本容量是____.
例2:为了了解全校240名学生的身高情况,从中 抽取40名学生进行测量,下列说法正确的是 ( D) A.总体是240 B、个体是每一个学生 C、样本是40名学生 D、样本容量是40
[问题6]你认为统计问题具有什么特点? 点评:在统计问题中,应包括两个方面的信息: ①问题所涉及的总体;②问题所涉及的变量. [问题7]在检验一批袋装牛奶是否合格的 问题中,你能够用其他的变量提出统计问题吗? (1)袋装牛奶的重量是否达标?
(2)袋装牛奶的蛋白质含量是否达标?
(3)袋装牛奶的脂肪含量是否达标?
(4)袋装牛奶的钙含量是否达标?
(5)袋装牛奶的重量、蛋白质的含量、脂肪的 含量以及钙含量是否都达标?……
[问题8]通过普查和抽样抽查来了解“一批袋装牛 奶的细菌含量”各有什么优缺点?应该采用哪种方法? 普查方法的优点:在普查的过程中不出错的情况下可 以得到这批袋装牛奶的真实细菌含量.
弊病:1.需要打开每一袋奶进行了检验,结果使得这 批奶不能够出售,失去了调查这批奶质量的意义;2.普查 需要大量的人力、物力和财力;3.当普查的过程出现很 多数据测量、录入等错误时,也会产生错误的结论.
例3:为了测量所加工一批零件的长度,抽测 了其中200个零件,在这个问题中,200个零 件的长度是( C ) A、总体 B、总体的容量 C、总体的一个样本 D、样本容量 例4:从3名男生、2名女生中随机抽取2人, 检查数学成绩,则抽到的均为女生的可能 性是 0.1 .
[问题3]如何刻画一批袋装牛奶质量是否合格?
2.1.2 系统抽样
![2.1.2 系统抽样](https://img.taocdn.com/s3/m/cd555b11856a561253d36f6e.png)
2.1.2 系统抽样[目标] 1.记住系统抽样的方法和步骤;2.会用系统抽样从总体中抽取样本;3.能用系统抽样解决实际问题.[重点] 系统抽样的步骤和应用.[难点] 对系统抽样的理解.知识点一系统抽样的概念[填一填]先将总体中的个体逐一编号,然后按号码顺序以一定的间隔进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.[答一答]1.怎样判断一种抽样是否为系统抽样?提示:判断一种抽样是否为系统抽样,关键有两点:(1)是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体被抽到的机会均等;(2)是否能将总体分成几个均衡的部分,在每个部分中是否能进行简单随机抽样.2.系统抽样有哪些特点?提示:系统抽样适用于总体容量较大的情况,它也是逐个抽取、不放回、等可能抽样.知识点二系统抽样的步骤[填一填]一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:[答一答]3.由系统抽样的步骤可知,样本中编号相邻的每两个个体的编号间隔是否相等?提示:相等.4.当不是整数时,应怎么做?提示:当不是整数时,可用简单随机抽样剔除多余个体.类型一系统抽样的判断[例1] (1)下列抽样问题中最适合用系统抽样法抽样的是( ) A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况(2)某校为了解高二的1 553名同学对教师的教学意见,现决定用系统抽样的方法抽取一个容量为50的样本,先在总体中随机剔除n个个体,然后把剩下的个体按0001,0002,0003…编号并分成m个组,则n和m应分别是( )A.53,50 B.53,30C.3,50 D.3,31[解析] (1)A中,总体容量较小,样本容量也较小,可采用抽签法;B中,总体中的个体有明显的差异不适宜用系统抽样法;D中,总体容量较大,但样本容量较小,可用随机数法;C中,总体容量较大,样本容量也较大,可用系统抽样法.(2)1 553被50除余3,故可以剔除3个个体,分成50组即可.[答案] (1)C (2)C判断一种抽样是否是系统抽样,必须看能否将总体分成几个均衡的部分,并先在第一个部分中进行简单随机抽样,接下来按照一定的规则抽取样本.当抽样行为具备系统抽样特点时,即可以认为是系统抽样.[变式训练1] 高考结束后,某市教育局为了了解该市20 000名考生的有关情况,决定从这20 000名考生中抽取200名考生的成绩进行分析,根据从1到20 000的编号,从1至100号考生中随机确定39号考生,然后依次取出139号,239号,339号,…,19 939号考生组成样本.这种抽样方法是( C )A.抽签法B.随机数法C.系统抽样法D.简单随机抽样法解析:根据抽样过程可以发现,从20 000名考生中抽取200名考生的成绩时,先从前100号考生中随机确定39号考生,然后直接等距离确定其余的199名考生,这种抽样方法是系统抽样.类型二系统抽样的设计命题视角1:是整数的系统抽样[例2] 为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.[分析] 由于总体容量恰被样本容量整除,所以分段间隔k==100,按系统抽样方法的四个步骤抽取样本.[解] (1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.当总体容量能被样本容量整除时,分段间隔k=;当用系统抽样抽取样本时,通常是将起始数l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.[变式训练2] 为了解参加某知识竞赛的1 000名学生的成绩,从中抽取容量为50的样本,采用哪种抽样方法比较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:第一步,随机地将这1 000名学生编号为1,2,3,…,1 000.第二步,将总体按编号顺序均分为50部分,每部分包括20个个体.第三步,在第1部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.第四步,将编号为18,38,58,…,978,998的个体抽出,组成样本.命题视角2:不是整数的系统抽样[例3] 某校高中二年级有253名学生,为了了解他们的视力情况,准备按15的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.[分析] →→→→→[解] (1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生.(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生.(5)以第一段即1~5号中随机抽取一个号作为起始号,如l.(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按15的比例抽取了一个样本容量为50的样本.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[变式训练3] 从73个个体中抽取含8个个体的样本,若采用系统抽样的方法抽样,则分段间隔k是9;每个个体被抽到的可能性为.解析:系统抽样是等可能抽样,即从数量为N的总体中抽取一个容量为n的样本,则总体中每个个体被抽到的机会均为.采用系统抽样的方法,因为=9.125,故分段间隔k=9,每个个体被抽到的可能性仍为.类型三系统抽样的应用[例4] 将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法,抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次是( )A.26,16,18 B.25,17,8C.25,16,9 D.24,17,9[解析] 由题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17,从而第Ⅲ营区被抽中的人数是50-25-17=8.[答案] B由于整个抽样过程中每个个体被抽到的概率相等,故可依此确定某范围上的要抽取的样本容量.[变式训练4] 某初级中学领导采用系统抽样方法,从该校预备年级800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是39.解析:因为采用系统抽样方法,每16人抽取一个人,1~16中随机抽取一个数抽到的是7,所以在第k组抽到的是7+16(k-1),所以从33~48这16个数中应取的数是7+16×2=39.1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为( D ) A.简单随机抽样B.抽签法C.随机数表法D.系统抽样解析:间隔相同,均为10.2.从2 005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为( C )A.99 B.99.5 C.100 D.100.5解析:由于不是整数,所以先剔除5个个体,再分段,分段间隔为k==100.3.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若第16组抽出的号码是126,则第1组抽出的号码是( C )A.4 B.5 C.6 D.7解析:系统抽样一般是按照事先确定的规则,即通常是将k加上间隔l的整数倍,得到第2个编号k+l,第3个编号k+2l,...,这样继续下去,直到获取整个样本,其中k是第1组中抽出的样本号码.题中的分段间隔是160÷20=8,且第16组抽出的号码是126,则k+15×8=126,解得k=6.故选C. 4.某校高三年级有男生220人,学籍编号为1,2, (220)女生380人,学籍编号为221,222,…,600,为了解学生学习的心理状态,按学籍号采用系统抽样的方法从这600名学生中抽取75人进行问卷调查(第一组采用简单随机抽样,抽到的学籍编号为5),则女生被抽取的人数为48人.解析:由题意得,抽样间隔为600÷75=8,且第1组抽到的号码为5,则每组抽到的号码数为5+8(k-1),k∈N*,当k=27时,抽到的号码为5+8×26=213,此时为男生,故男生一共可抽到27人,一共需要抽取75人,则女生人数为75-27=48.5.为了了解参加高考的2 000名学生的成绩,决定抽取一个样本容量为100的样本,应采用什么抽样方法恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这2 000名学生编号为1,2,3,…,2 000.(2)将总体按编号顺序均分成100部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是8.(4)以8为起始号码,每间隔20抽取一个号码,这样得到一个容量为100的样本:8,28,48,…,1 968,1 988.——本课须掌握的三大问题1.体会系统抽样的概念,其中关键因素是“分组”,否则不是系统抽样.系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样显得不方便.2.解决系统抽样问题的两个关键步骤为:(1)用系统抽样法抽取样本,当不为整数时,取k=,即先从总体中用简单随机抽样的方法剔除N-nk个个体,且剔除多余的个体不影响抽样的公平性.(2)按简单随机抽样的方法在其中一个部分(通常是第一部分)内抽取一个个体;依据预先确定的规则,在其余每个部分里分别抽取一个相应个体,得到满足题意的样本.3.系统抽样的优点是简单易操作,当总体个数较多的时候也能保证样本的代表性;缺点是对存在明显周期性的总体,选出来的个体,往往不具备代表性.从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.2.1.2 系统抽样[目标] 1.记住系统抽样的方法和步骤;2.会用系统抽样从总体中抽取样本;3.能用系统抽样解决实际问题.[重点] 系统抽样的步骤和应用.[难点] 对系统抽样的理解.知识点一系统抽样的概念[填一填]先将总体中的个体逐一编号,然后按号码顺序以一定的间隔进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.[答一答]1.怎样判断一种抽样是否为系统抽样?提示:判断一种抽样是否为系统抽样,关键有两点:(1)是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体被抽到的机会均等;(2)是否能将总体分成几个均衡的部分,在每个部分中是否能进行简单随机抽样.2.系统抽样有哪些特点?提示:系统抽样适用于总体容量较大的情况,它也是逐个抽取、不放回、等可能抽样.知识点二系统抽样的步骤[填一填]一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:[答一答]3.由系统抽样的步骤可知,样本中编号相邻的每两个个体的编号间隔是否相等?提示:相等.4.当不是整数时,应怎么做?提示:当不是整数时,可用简单随机抽样剔除多余个体.类型一系统抽样的判断[例1] (1)下列抽样问题中最适合用系统抽样法抽样的是( )A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况(2)某校为了解高二的1 553名同学对教师的教学意见,现决定用系统抽样的方法抽取一个容量为50的样本,先在总体中随机剔除n个个体,然后把剩下的个体按0001,0002,0003…编号并分成m个组,则n和m应分别是( )A.53,50 B.53,30C.3,50 D.3,31[解析] (1)A中,总体容量较小,样本容量也较小,可采用抽签法;B中,总体中的个体有明显的差异不适宜用系统抽样法;D中,总体容量较大,但样本容量较小,可用随机数法;C中,总体容量较大,样本容量也较大,可用系统抽样法.(2)1 553被50除余3,故可以剔除3个个体,分成50组即可.[答案] (1)C (2)C判断一种抽样是否是系统抽样,必须看能否将总体分成几个均衡的部分,并先在第一个部分中进行简单随机抽样,接下来按照一定的规则抽取样本.当抽样行为具备系统抽样特点时,即可以认为是系统抽样.[变式训练1] 高考结束后,某市教育局为了了解该市20 000名考生的有关情况,决定从这20 000名考生中抽取200名考生的成绩进行分析,根据从1到20 000的编号,从1至100号考生中随机确定39号考生,然后依次取出139号,239号,339号,…,19 939号考生组成样本.这种抽样方法是( C )A.抽签法B.随机数法C.系统抽样法D.简单随机抽样法解析:根据抽样过程可以发现,从20 000名考生中抽取200名考生的成绩时,先从前100号考生中随机确定39号考生,然后直接等距离确定其余的199名考生,这种抽样方法是系统抽样.类型二系统抽样的设计命题视角1:是整数的系统抽样[例2] 为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.[分析] 由于总体容量恰被样本容量整除,所以分段间隔k==100,按系统抽样方法的四个步骤抽取样本.[解] (1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.当总体容量能被样本容量整除时,分段间隔k=;当用系统抽样抽取样本时,通常是将起始数l 加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.[变式训练2] 为了解参加某知识竞赛的1 000名学生的成绩,从中抽取容量为50的样本,采用哪种抽样方法比较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:第一步,随机地将这1 000名学生编号为1,2,3,…,1 000.第二步,将总体按编号顺序均分为50部分,每部分包括20个个体.第三步,在第1部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.第四步,将编号为18,38,58,…,978,998的个体抽出,组成样本.命题视角2:不是整数的系统抽样[例3] 某校高中二年级有253名学生,为了了解他们的视力情况,准备按15的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.[分析] →→→→→[解] (1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生.(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生.(5)以第一段即1~5号中随机抽取一个号作为起始号,如l.(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按15的比例抽取了一个样本容量为50的样本.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[变式训练3] 从73个个体中抽取含8个个体的样本,若采用系统抽样的方法抽样,则分段间隔k是9;每个个体被抽到的可能性为.解析:系统抽样是等可能抽样,即从数量为N的总体中抽取一个容量为n的样本,则总体中每个个体被抽到的机会均为.采用系统抽样的方法,因为=9.125,故分段间隔k=9,每个个体被抽到的可能性仍为.类型三系统抽样的应用[例4] 将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法,抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次是( )A.26,16,18 B.25,17,8C.25,16,9 D.24,17,9[解析] 由题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17,从而第Ⅲ营区被抽中的人数是50-25-17=8.[答案] B由于整个抽样过程中每个个体被抽到的概率相等,故可依此确定某范围上的要抽取的样本容量.[变式训练4] 某初级中学领导采用系统抽样方法,从该校预备年级800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是39.解析:因为采用系统抽样方法,每16人抽取一个人,1~16中随机抽取一个数抽到的是7,所以在第k组抽到的是7+16(k-1),所以从33~48这16个数中应取的数是7+16×2=39.1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为( D )A.简单随机抽样B.抽签法C.随机数表法D.系统抽样解析:间隔相同,均为10.2.从2 005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为( C ) A.99 B.99.5 C.100 D.100.5解析:由于不是整数,所以先剔除5个个体,再分段,分段间隔为k==100.3.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若第16组抽出的号码是126,则第1组抽出的号码是( C )A.4 B.5 C.6 D.7解析:系统抽样一般是按照事先确定的规则,即通常是将k加上间隔l的整数倍,得到第2个编号k+l,第3个编号k+2l,…,这样继续下去,直到获取整个样本,其中k是第1组中抽出的样本号码.题中的分段间隔是160÷20=8,且第16组抽出的号码是126,则k+15×8=126,解得k=6.故选C.4.某校高三年级有男生220人,学籍编号为1,2,…,220;女生380人,学籍编号为221,222,…,600,为了解学生学习的心理状态,按学籍号采用系统抽样的方法从这600名学生中抽取75人进行问卷调查(第一组采用简单随机抽样,抽到的学籍编号为5),则女生被抽取的人数为48人.解析:由题意得,抽样间隔为600÷75=8,且第1组抽到的号码为5,则每组抽到的号码数为5+8(k-1),k∈N*,当k=27时,抽到的号码为5+8×26=213,此时为男生,故男生一共可抽到27人,一共需要抽取75人,则女生人数为75-27=48.5.为了了解参加高考的2 000名学生的成绩,决定抽取一个样本容量为100的样本,应采用什么抽样方法恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这2 000名学生编号为1,2,3,…,2 000.(2)将总体按编号顺序均分成100部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是8.(4)以8为起始号码,每间隔20抽取一个号码,这样得到一个容量为100的样本:8,28,48,…,1 968,1 988.——本课须掌握的三大问题1.体会系统抽样的概念,其中关键因素是“分组”,否则不是系统抽样.系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样显得不方便.2.解决系统抽样问题的两个关键步骤为:(1)用系统抽样法抽取样本,当不为整数时,取k=,即先从总体中用简单随机抽样的方法剔除N-nk个个体,且剔除多余的个体不影响抽样的公平性.(2)按简单随机抽样的方法在其中一个部分(通常是第一部分)内抽取一个个体;依据预先确定的规则,在其余每个部分里分别抽取一个相应个体,得到满足题意的样本.3.系统抽样的优点是简单易操作,当总体个数较多的时候也能保证样本的代表性;缺点是对存在明显周期性的总体,选出来的个体,往往不具备代表性.从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.。
03-第二节 抽样的基本方法-课时2 分层随机抽样高中数学必修一北师大版
![03-第二节 抽样的基本方法-课时2 分层随机抽样高中数学必修一北师大版](https://img.taocdn.com/s3/m/32a46d990342a8956bec0975f46527d3240ca6bb.png)
高一
高二
高三
会场
0.125 + +
0.1 + +
0.025 + +
会场
0.3 + +
0.375 + +
0.075 + +
则: : = 0.425 + + : 0.475 + + : 0.1( + + ) = 17: 19: 4.
= 4 + 2 + 6 = 12 = 12 × 15 = 180.
2.为了研究某种病毒与血型之间的关系,决定从被感染的人群中抽取样本
进行调查,这些感染人群中O型血、A型血、B型血、AB型血的人数比为
4: 3: 3: 2.现用分层随机抽样的方法抽取一个容量为的样本,已知样本中O
型血的人数比AB型血的人数多20,则 =( B
20
诗》中抽取的册数为____.
【解析】 设《毛诗》有册,《春秋》有册,《周易》有册,读书人
+ + = 94,
= 3,
数为,则
解得
= 4,
= 5,
= 120,
= 40,
= 30,
= 24.
因此用分层随机抽样的方法从中抽取47册,则要从《毛诗》中抽取的册数
C.280
D.300
700
由题意知36岁至50岁的居民所占的比例为
840+700+560
1
3
次抽样调查抽取的总人数是100 ÷ = 300.
=
1
高中数学第九章统计9.1.分层随机抽样同步练习含解析第二册
![高中数学第九章统计9.1.分层随机抽样同步练习含解析第二册](https://img.taocdn.com/s3/m/ae0f982103020740be1e650e52ea551810a6c91f.png)
课时素养评价三十五分层随机抽样(15分钟30分)1.我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣()A。
104人B。
108人C。
112人D。
120人【解析】选B.由题意可知,这是一个分层随机抽样的问题,其中北乡抽取的人数为300×=300×=108。
【补偿训练】某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为() A。
33,34,33 B.25,56,19C.20,40,30 D。
30,50,20【解析】选B。
因为125∶280∶95=25∶56∶19,所以抽取人数分别为25,56,19。
2.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样和分层随机抽样两种不同方法抽取样本时,总体中每个个体被抽中的可能性的大小分别为p1,p2,则() A。
p1<p2B。
p2<p1C.p1=p2D.大小关系不能确定【解析】选C.由于两种抽样过程中,每个个体被抽到的可能性都是相等的,因此p1=p2。
3.已知某单位有职工120人,男职工有90人,现采用分层随机抽样(按性别分层)抽取一个样本,若已知样本中有18名男职工,则样本量为() A。
20 B。
24 C.30 D。
40【解析】选B。
设样本量为n,则=,n=24.【补偿训练】某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层随机抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250【解析】选A。
方法一:由题意可得=,解得n=100。
方法二:由题意,得抽样比为=,总体容量为3 500+1 500=5 000,故n=5 000×=100。
教育最新K122018-2019学年高中数学苏教版必修3教学案:复习课(二)-统计-含解析
![教育最新K122018-2019学年高中数学苏教版必修3教学案:复习课(二)-统计-含解析](https://img.taocdn.com/s3/m/1f51608102768e9950e7384b.png)
复习课(二) 统计抽样方法高考对抽样方法的考查主要是基础题,难度不大.系统抽样和分层抽样是考查的热点,考查形式以填空题为主.[考点精要]1.简单随机抽样(1)特征:①一个一个不放回的抽取.②每个个体被抽到可能性相等.(2)常用方法:①抽签法.②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.[典例](1)(山东高考改编)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为________.(2)(江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为______.[解析] (1)抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939,落入区间[451,750]的有459,489,…,729共10人,即做B 卷的有10人.(2)设应从高二年级抽取x 名学生,则x 50=310,∴x =15.(3)该地区中小学生人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取高中生近视眼人数为2 000×2%×50%=20. [答案] (1)10 (2)15 (3)200,20 [类题通法](1)系统抽样中,易无视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除.(2)分层抽样中,易无视每层抽取的个体的比例是相同的.[题组训练]1.为了解1 000名学生的学习情况,采用系统抽样的方法从中抽取容量为40的样本,则分段的间隔为________.解析:根据系统抽样的特点可知,分段间隔为1 00040=25.答案:252.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.解析:抽样比为40150+150+400+300=4100.因此丙专业应抽取4100×400=16(人).答案:163.(北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为______.类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300解析:设该样本中老年教师人数为x ,则有x 900=3201 600,故x =180.答案:180高考对各种统计图表的考查主要是基础题,频率分布条形图和直方图是考查的热点,但也要注意关注茎叶图。
高二期中考试数学章节复习要点:简单随机抽样
![高二期中考试数学章节复习要点:简单随机抽样](https://img.taocdn.com/s3/m/a250052311661ed9ad51f01dc281e53a580251c2.png)
高二期中考试数学章节复习要点:简单随机抽样数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,查字典数学网为大伙儿举荐了高二期中考试数学章节复习要点,请大伙儿认真阅读,期望你喜爱。
统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一样从总体中随机抽取一部分:x1,x2 ,....,xx 研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
确实是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③运算机模拟法③使用统计软件直截了当抽取。
在简单随机抽样的样本容量设计中,要紧考虑:①总体变异情形;②承诺误差范畴;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②预备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
专门是写议论文,初中水平以上的学生都明白议论文的“三要素”是论点、论据、论证,也通晓议论文的差不多结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时:抽样方法(二)
【目标引领】
1.学习目标:
理解什么是系统抽样,会用系统抽样从总体中抽取样本。
2.学法指导:
系统抽样形象地讲是等距抽样。
对系统抽样我们可以从以下三个方面来理解:
①系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样显得不方便。
②系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样。
③与简单随机抽样一样,系统抽样也属于等可能抽样。
【教师在线】
1.解析视屏:
(1)系统抽样的步骤为:
①采取随机方式将总体中的个体编号。
②将整个的编号均衡地分段,确定分段间隔k。
N
n
是整数时,
N
k
n
;
N
n
不是整数时,从
N中剔除一些个体,使得其为整数为止。
③第一段用简单随机抽样确定起始号码l。
④按照规则抽取样本:l;l+k;l+2k;……l+(n-1)k;
(2)课本中指出,当总体中的个体数不能被样本容量整除时,可先用简单随机抽样从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行。
这时在整个抽样过程中每个个体被抽取的可能性仍然相等。
(3)本课重点是系统抽样的要领的理解及如何用系统抽样获得样本。
结合具体实例我们自己可以归纳出系统抽样的操作步骤。
2.经典回放:
例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时,开始按次序起牌,对任何一家来说,都是从52张总体中抽取13张的样本。
问这样的抽样方法是否为简单随机抽样?
分析:简单随机抽样的实质是逐个地从总体中随机抽取。
而这里只是随机地确定了起始张,这时其他各张虽然是逐张起牌的,但其实各张在谁手里已被确定了,所以不是简单随机抽样,据其“等距”起牌的特点,应将其归纳为系统抽样。
答:不是简单随机抽样,是系统抽样。
点评:逐张随机抽取与随机确定一张为起始牌后逐张起牌不是一回事。
本题的关键只要抓住“等距”的特点就不难确定是属于哪类抽样。
例2:为了了解某大学一年级新生英语学习的情况,拟从503名大学一年级学生中抽取50名作为样本,如何采用系统抽样方法完成这一抽样?
分析:由题设条件可知总体的个数为503,样本的容量为50,不能整除,可采用随机抽样的方法从总体中剔除3个个体,使剩下的个体数500能被样本容量50整除,然后再采用系统抽样方法。
解:第一步,将503名学生用随机方式编号为1,2,3, (503)
第二步,用抽签法或随机数表法,剔除3个个体,这样剩下500名学生,对剩下的500名学生重新编号,或采用补齐号码的方式。
第三步,确定分段间隔k ,5001050
k ==,将总体分为50个部分,每一部分包括10个个体,这时,每1部分的个体编号为1,2,...,10;第2部分的个体编号为11,12,...,20;依此类推,第50部分的个体编号为491,492, (500)
第四步,在第1部分用简单随机抽样确定起始的个体编号,例如是5。
第五步,依次在第2部分,第3部分,…,第50部分,取出号码为15,25,…,495这样得到一个容量为50的样本。
点评: 总体中的每个个体,都必须等可能地入样,为了实现“等距”入样且又等可能,因此,应先剔除,再“分段”,后定起始位。
采用系统抽样,是为了减少工作量,提高其可操作性,减少人为的误差。
【同步训练】
1.在一次有奖明信片的100000个有机会中奖的号码(编号00000~99999)中,邮政部门
按照随机抽取的方式确定后两位为37的为中奖号码,这是运用____________的抽样方法来确定中奖号码。
依次写出这1000个中奖号码中的前5个和最后5个依次是 _ _________________ ____________。
2.系统抽样又称为等距抽样,若从N 个个体中抽取n 个个体为样本,先要确定抽样间隔,
即抽样距k ,其中k= ;从第一段1,2,3,…,k 个号码中随机抽取一个入样号码i 0,则i 0+k ,i 0+2k ,…,i 0+(n-1)k 均为入样号码;这些号码对应的个体构成 ;每个个体的入样可能性为 。
3.N 个编号中抽n 个号码作样本,考虑用系统抽样方法,抽样间距为 ( )
A .n N
B .n
C .⎥⎦⎤⎢⎣⎡n N
D .⎥⎦
⎤⎢⎣⎡n N +1 4.从个体数为103的总体中采用系统抽样,抽取一个容量为10的样本。
说明具体的操作方
法。
【拓展尝新】
5.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量
状况.请你设计一个调查方案
【解答】
1.系统抽样,00037,001037,00237,00337,00437,99537,99637,99737,
99837,99937。
2.⎥⎦
⎤⎢⎣⎡n N ,样本,n N 3.C 4.同例2 5.解:(1)分段:362/40商是9余数为2,抽样距为9;(2)先用简单抽样从这些书中抽取2册书不检验;(3)将剩下的书编号:0,1,…,359;(4)从第一组(编号为0,1,…,8)书中按照简单随机抽样的方法抽取一册书,比如其编号为k;(5)顺序地抽取编号为下面数字的书:k+9n(1≤n ≤39),总共得到40个样本。