高中物理高考物理直线运动解题技巧讲解及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理高考物理直线运动解题技巧讲解及练习题(含答案)
一、高中物理精讲专题测试直线运动
1.高铁被誉为中国新四大发明之一.因高铁的运行速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v 0=288km/h 的速度匀速行驶,列车长突然接到通知,前方x 0=5km 处道路出现异常,需要减速停车.列车长接到通知后,经过t l =2.5s 将制动风翼打开,高铁列车获得a 1=0.5m/s 2的平均制动加速度减速,减速t 2=40s 后,列车长再将电磁制动系统打开,结果列车在距离异常处500m 的地方停下来. (1)求列车长打开电磁制动系统时,列车的速度多大?
(2)求制动风翼和电磁制动系统都打开时,列车的平均制动加速度a 2是多大? 【答案】(1)60m/s (2)1.2m/s 2 【解析】 【分析】
(1)根据速度时间关系求解列车长打开电磁制动系统时列车的速度;(2)根据运动公式列式求解打开电磁制动后打开电磁制动后列车行驶的距离,根据速度位移关系求解列车的平均制动加速度. 【详解】
(1)打开制动风翼时,列车的加速度为a 1=0.5m/s 2,设经过t 2=40s 时,列车的速度为v 1,则v 1=v 0-a 1t 2=60m/s.
(2)列车长接到通知后,经过t 1=2.5s ,列车行驶的距离x 1=v 0t 1=200m 打开制动风翼到打开电磁制动系统的过程中,列车行驶的距离 x 2
=2800m
打开电磁制动后,行驶的距离x 3= x 0- x 1- x 2=1500m ;
2.2018年12月8日2时23分,嫦娥四号探测器成功发射,开启了人类登陆月球背面的探月新征程,距离2020年实现载人登月更近一步,若你通过努力学习、刻苦训练有幸成为中国登月第一人,而你为了测定月球表面附近的重力加速度进行了如下实验:在月球表面上空让一个小球由静止开始自由下落,测出下落高度20h m =时,下落的时间正好为
5t s =,则:
(1)月球表面的重力加速度g 月为多大?
(2)小球下落过程中,最初2s 内和最后2s 内的位移之比为多大? 【答案】1.6 m/s 2 1:4 【解析】 【详解】
(1)由h =
12g 月t 2得:20=1
2
g 月×52 解得:g 月=1.6m /s 2
(2)小球下落过程中的5s 内,每1s 内的位移之比为1:3:5:7:9,则最初2s 内和最后2s 内的位移之比为:(1+3):(7+9)=1:4.
3.在平直公路上,一汽车的速度为15m/s 。
从某时刻开始刹车,在阻力作用下,汽车以大小为2m/s 2的加速度匀减速运动,求: (1)刹车后5s 内车行驶的距离? (2)刹车后10s 内车行驶的距离? 【答案】(1)50m (2) 56.25m
【解析】设车实际运动时间为0t ,以汽车初速度方向为正方向。
由0v v at =+,得运动时间00157.52
v t s s a -=-
==-; (1)因为105t s t =<,所以汽车5s 末未停止运动,则由2
012
x v t at =+ 故22101111155255022x v t at m m ⎛⎫
=+
=⨯-⨯⨯= ⎪⎝⎭; (2) 因为2010t s t =>,,所以汽车10s 末早已停止运动 故22200011157.527.556.2522x v t at m m ⎛⎫
=+
=⨯-⨯⨯= ⎪⎝⎭。
点睛:对于匀减速直线运动,已知时间,求解速度和位移时,不能死代公式,要先判断汽车的状态后计算位移的大小。
4.如图甲所示,质量为M =3.0kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0kg 的小物体A 和B 同时从左右两端水平冲上小车,1.0s 内它们的v -t 图象如图乙所示,( g 取10m/s 2)求:
(1)小物体A 和B 与平板小车之间的动摩擦因数μA 、μB (2)判断小车在0~1.0s 内所做的运动,并说明理由?
(3)要使A 、B 在整个运动过程中不会相碰,车的长度至少为多少? 【答案】(1)0.3;(2)小车静止;(3)7.2m
【解析】试题分析:(1)由v-t图可知,在第1 s内,物体A、B的加速度大小相等,均为a =3.0 m/s2.
根据牛顿第二定律:f =μmg=ma 可得μA=μB=0.3
(2)物体A、B所受摩擦力大小均为F f=ma=3.0 N,方向相反,
根据牛顿第三定律,车C受A、B的摩擦力也大小相等,方向相反,合力为零,故小车静止。
(3)由图像可知0-1.0s内A的位移x A=4.5m B 的位移x B=1.5m
B减速到零后,对A f A=μmg=ma A解得a A=3m/s2
对B和车 f A=μmg=(M+m)a B解得a B=0.75m/s2
设经过时间t,达到相同速度v
解得:t=0.8s v=0.6m/s
相对位移m
A、B之间的相对位移,即车的最小长度为:x=x A+x B+=7.2m
考点:牛顿第二定律的综合应用.
5.如图所示,一传送皮带与水平面夹角为 =37°,正以2 m/s的恒定速率顺时针运行。
现将一质量为10kg的工件轻放于其底端,经一段时间送到高3 m的平台上,已知工件与皮带间的动摩擦因数为μ= ,g取10 m/s2,求带动皮带的电动机由于传送工件多消耗的电能。
【答案】460J
【解析】试题分析:对工件,根据牛顿第二定律:
解得:a=1m/s2
当工件的速度与传送带相等时有:
解得:t=2s
此时物块的位移:m
此过程中传送带的位移:s1=vt=4m
则相对位移:
由能量关系可知,带动皮带的电动机由于传送工件多消耗的电能:
=460J
考点:牛顿第二定律;能量守恒定律.
6.一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右
端与墙壁的距离为4.5m ,如图(a )所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v ﹣t 图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求
(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;
(3)木板右端离墙壁的最终距离.
【答案】(1)0.1和0.4.(2)6.0m (3)6.5m
【解析】试题分析:(1)根据图像可以判定碰撞前木块与木板共同速度为4/v m s = 碰撞后木板速度水平向左,大小也是4/v m s = 木块受到滑动摩擦力而向右做匀减速, 根据牛顿第二定律有2240
/1
g m s μ-=
,解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间t=1s ,位移 4.5x m =, 末速度v=4m/s ,其逆运动则为匀加速直线运动可得2
12
x vt at =+
,带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即2g a μ=,可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有()121M m g mg Ma μμ++=,可得
214
/3
a m s =
对滑块,则有加速度2
24/a m s =,滑块速度先减小到0,
此时,木板向左的位移为2111111023x vt a t m =-=, 末速度18
/3
v m s = 滑块向右位移2140
22
x t m +=
= 此后,木块开始向左加速,加速度仍为2
24/a m s =
木块继续减速,加速度仍为214
/3
a m s =
假设又经历2t 二者速度相等,则有22112a t v a t =-,解得20.5t s =
此过程,木板位移23121217
26
x v t a t m =-
=。
末速度31122/v v a t m s =-= 滑块位移此后木块和木板一起匀减速。
二者的相对位移最大为12346x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m
(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度2
11/a g m s μ==
位移23
522v x m a
== 所以木板右端离墙壁最远的距离为125 6.5x x x m ++= 考点:考查了牛顿第二定律与运动学公式的综合应用
【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力
视频
7.我国ETC 联网正式启动运行,ETC 是电子不停车收费系统的简称.汽车分别通过ETC 通道和人工收费通道的流程如图所示.假设汽车以v 0=15m/s 朝收费站正常沿直线行驶,如果过ETC 通道,需要在收费线中心线前10m 处正好匀减速至v=5m/s ,匀速通过中心线后,再匀加速至v 0正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至零,经过20s 缴费成功后,再启动汽车匀加速至v 0正常行驶.设汽车加速和减速过程中的加速度大小均为1m/s 2,求:
(1)汽车过ETC 通道时,从开始减速到恢复正常行驶过程中的位移大小; (2)汽车过ETC 通道比过人工收费通道节省的时间是多少. 【答案】(1)210m (2)27s
【解析】试题分析:(1)汽车过ETC 通道:减速过程有:
,解得
加速过程与减速过程位移相等,则有:
解得:
(2)汽车过ETC 通道的减速过程有:
得总时间为:
汽车过人工收费通道有:,x 2
=225m
所以二者的位移差为:△=x 2﹣x 1=225m ﹣210m=15m .(1分) 则有:
27s
考点:考查了匀变速直线运动规律的应用
【名师点睛】在分析匀变速直线运动问题时,由于这一块的公式较多,涉及的物理量较多,并且有时候涉及的过程也非常多,所以一定要注意对所研究的过程的运动性质清晰,对给出的物理量所表示的含义明确,然后选择正确的公式分析解题
8.一辆值勤的警车停在公路边,当警员发现从他旁边以10m /s 的速度匀速行驶的货车严重超载时,决定前去追赶,经过5s 后警车发动起来,并以2m /s 2的加速度做匀加速运动,并尽快追上货车,但警车的行驶速度必须控制在108km /h 以内.问: (1)警车在追赶货车的过程中,两车间的最大距离是多少? (2)求出警车发动后至少要多长时间才能追上货车? 【答案】(1)90m (2)12.5s 【解析】 【分析】 【详解】
()1当两车速度相同时距离最大
由v at =
可得警车达到10/m s 的时间;14t s = 在这段时间警车的位移221111
2.542022
x at m =
=⨯⨯= 货车相对于出发点的位移()21074110x m =+= 两车间的最大距离90x m =V
()2108/30/km h m s =;
由v at =
可得警车达到最大速度的时间212t s = 此时警车的位移2
3211802
x at m =
= 货车相对于出发点的位移()410712190x m =+= 由于警车的位移小于货车的位移,所以仍末追上 设再经过3t 追上,则()23010190180t -=-
得30.5t s =
则总时间为2312.5t t t s =+= 则警车发动后经过12.5s 才能追上. 故本题答案是:(1)90m (2)12.5s
9.我国ETC (不停车电子收费系统)已实现全国联网,大大缩短了车辆通过收费站的时间,假设一辆家庭轿车以20m/s 的速度匀速行驶,接近人工收费站时,轿车开始减速,至收费站窗口恰好停止,再用10s 时间完成交费,然后再加速至20m/s 继续行驶.若进入ETC 通道.轿车从某位置开始减速至10m/s 后,再以此速度匀速行驶20m 即可完成交费,然后再加速至20m/s 继续行驶.两种情况下,轿车加速和减速时的加速度大小均为2.5m/s 2.求:
(l )轿车从开始减速至通过人工收费通道再加速至20m/s 的过程中通过的路程和所用的时间;
(2)两种情况相比较,轿车通过ETC 交费通道所节省的时间. 【答案】(1)160m ,26s ;(2)15s ; 【解析】
(1)轿车匀减速至停止过程2
0110280v ax x m -=-⇒=,01108v at t s -=-⇒=;
车匀加速和匀减速通过的路程相等,故通过人工收费通道路程12160x x m ==; 所用时间为121026t t s =+=;
(2)通过ETC 通道时,速度由20m/s 减至10m/s 所需时间t 2,通过的路程x 2
102v v at -=-
解得:24t s =
22
1022v v ax -=-
解得:26x m =
车以10m/s 匀速行驶20m 所用时间t 3=2s ,加速到20m/s 所用的时间为t 4=t 2=4s ,路程也为x 4=60m ;
车以20m/s 匀速行驶的路程x 5和所需时间t 5:5242020x x x x m =---=;5
50
1x t s v == 故通过ETC 的节省的时间为:234515t t t t t t s ∆=----=;
点睛:解决本题的关键理清汽车在两种通道下的运动规律,搞清两种情况下的时间关系及位移关系,结合匀变速直线运动的位移公式和时间公式进行求解.
10.汽车智能减速系统是在汽车高速行驶时,能够侦测到前方静止的障碍物并自动减速的安全系统.如图所示,装有智能减速系统的汽车车头安装有超声波发射和接收装置,在某次测试中,汽车正对一静止的障碍物匀速行驶,当汽车车头与障碍物之间的距离为360m 时,汽车智能减速系统开始使汽车做匀减速运动,同时汽车向障碍物发射一个超声波脉冲
信号.当汽车接收到反射回来的超声波脉冲信号时,汽车速度大小恰好为10/m s ,此时汽车车头与障碍物之间的距离为320m .超声波的传播速度为340/m s .求:
(1)汽车从发射到接收到反射回来的超声波脉冲信号之间的时间间隔; (2)汽车做匀减速运动的加速度大小;
(3)超声波脉冲信号到达障碍物时,汽车的速度大小. 【答案】(1) 2s (2)210m /s a = (3)=19.4m/s v 车 【解析】 【分析】 【详解】
(1) 车在A 点向障碍物发射一个超声波脉冲信号,在B 点接收到反射回来的超声波脉冲信号,此过程经历的时间:
12
=2x x t s v 声
+=
; (2) 汽车从A 运动到B 的过程中,满足:
B A v v at =-
2121
2
A x x v t at -=-
解得:
30m/s A v = 210m/s a =;
(3) 超声波脉冲信号从发射到到达障碍物经历的时间:
11817
x t s v 声='=
超声波脉冲信号到达障碍物时,汽车的速度大小:
=19.4m/s A v v at ='-车.。