兰州市树人中学数学有理数单元试卷(word版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)
1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:
(1)求 ________.
(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________
(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.
【答案】(1)7
(2)-3,-2,-1,0,1,2;
(3)最小;3
【解析】【解答】(1)原式=|5+2|=7.
故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.
当x<-3时,- (x+3) - (x-2) =5 ,
-x-3-x+2=5,解得x=-3(范围内不成立)
当-3≤x≤2时,(x+3) - (x-2) = 5,
x+3-x+1=4,0x=0,x为任意数,
则整数x=-3,-2,-1, 0,1,
当x>2时,(x+3) + (x-2) = 5,
x=2(范围内不成立) .
综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.
故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,
令x-3=0或x-6=0时,则x=3,x=6
当x<3时,-(x-3)-(x-6)=-2x+3﹥3
当3≤x≤6时,x-3-(x-6)=3,
当x>6时,x-3+x-6=2x-9>3
∴对于任何有理数x,有最小值为3
【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.
2.结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.
(2)如果|x+1|=3,那么x=________;
(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.
(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.
【答案】(1)3;5
(2)2或-4
(3)8
(4)6
【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:


故答案为:或(3)
或或
当时,则两点间的最大距离是,
当a=5,b=-1时,A、B两点间的距离是6,
当a=1,b=-3时,A、B两点间的距离是4,
当时,则两点间的最小距离是,
则两点间的最大距离是,最小距离是
故答案为:(4)数轴上表示a的点位于-4与2之间,则
故答案为:
【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;
(2)根据绝对值的意义去绝对值的符号,再解方程即可;
(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;
(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.
3.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.
(1)AC=________cm,BC=________cm;
(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;
(3)当t为何值时,AP=PQ?
【答案】(1)9;3
(2)3;
(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:
①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;
②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,
可得:2×[12-(4t-12)]=12-(t-3),解得t= ;
③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,
可得:2×(4t-24)=12-(t-3),解得t=7.
故当t为秒、秒或7秒时,AP=PQ.
【解析】【解答】(1)∵AB=12cm,AC=3BC
∴AC= AB=9,BC=12-9=3.
故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,
由题意,点P与点Q第一次重合于点B,
则有4t-t=9,解得t=3;
当点P与点Q第二次重合时有:
4t+t=12+3+24,解得t= .
故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.
故答案为:3;.
【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.
4.阅读材料,并回答问题
如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.
(单位:cm)
由此可得,木棒长为__________cm.
借助上述方法解决问题:
一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?
(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.
(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。

请问灰太狼有几种抓羊方案?
【答案】(1)解:如图:
点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.
由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N 所对应的数为116.
可求MN=52.
所以点A所对应的数为12,点B所对应的数为64.
即美羊羊今年12岁,村长爷爷今年64岁.
(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:
解得:,则x=4,或x=5,
即抓四只小羊一只老羊或抓五只小羊
【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.
(3)设抓小羊x只,则老羊为(5-x)只,根据“ 所抓羊的年龄之和不超过112岁且高于34岁”列不等式组,求解.
5.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2
个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.
(1)当t=1时,d=________;
(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;
(3)当点P运动到线段AB的3等分点时,直接写出d的值;
(4)当d=5时,直接写出t的值.
【答案】(1)3
(2)解:线段AB的中点表示的数是:=1.
①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,
BQ=2×3=6,即Q运动到A点,
此时d=PQ=PA=3;
②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,
AP=1× =,
则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.
故d的值为3或
(3)解:当点P运动到线段AB的3等分点时,分两种情况:
①如果AP=AB=2,那么t==2,
此时BQ=2×2=4,P、Q重合于原点,
则d=PQ=0;
②如果AP=AB=4,那么t==4,
∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,
∴此时BQ=6,即Q运动到A点,
∴d=PQ=AP=4.
故所求d的值为0或4
(4)解:当d=5时,分两种情况:
①P与Q相遇之前,
∵PQ=AB﹣AP﹣BQ,
∴6﹣t﹣2t=5,
解得t=;
②P与Q相遇之后,
∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,
∴d=AP=t=5.
故所求t的值为或5.
【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情
况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.
6.已知数轴上A,B两点对应数分别为-2和5,P为数轴上一点,对应数为x.
(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P点对应的数.
(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.
(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?【答案】(1)解:因数轴上A、B两点对应的数分别是﹣2和5,所以AB=7,又因P为线
段AB的三等分点,所以 AP=7÷3= 或AP=7÷3×2= ,所以P点对应的数为或
(2)解:若P在A点左侧,则﹣2﹣x+5﹣x=10,解得:x=﹣;
若P在A点、B中间.
∵AB=7,∴不存在这样的点P;
若P在B点右侧,则x﹣5+x+2=10,解得:x=
(3)解:设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x,①当P为AB的中点,则
5﹣6x+(﹣2﹣x)=2×(﹣3x),解得:x=3;
②当A为BP中点时,则
2×(﹣2﹣x)=5﹣6x﹣3x,解得:x= ;
③当B为AP中点时,则
2×(5﹣6x)=﹣2﹣x﹣3x,解得:x= .
答:第分钟时,A为BP的中点;第分钟时,B为AP的中点;第3分钟时,P为AB的中点.
【解析】【分析】(1)根据两点间的距离公式得出AB=7,又因P为线段AB的三等分
点,所以 AP 或,进而再根据数轴上两点间的距离公式即可求出点P所表示的数;(2)分类讨论:若P在A点左侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值;若P在A点、B中间,由于PA+PB=AB=7,故不存在这样的点P;若P在B点右侧,根据两点间的距离公式由PA+PB=10列出方程,求解算出x的值,综上所述即可得出答案;
(3)设第x分钟时,点A的位置为:﹣2﹣x,点B的位置为:5﹣6x,点P的位置为:﹣3x ,然后分类讨论:①当P为AB的中点,②当A为BP中点时,③当B为AP中点时三种情况根据线段的中点性质列出方程,求解即可。

7.已知:b是最小的正整数,且a、b满足+=0,请回答问题:
(1)请直接写出a、b、c的值;
(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
【答案】(1)解:∵b是最小的正整数
∴b=1
∵+=0
∴a = -1,c=5
故答案为:-1;1;5;
(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,
①当m<0时,|2m|=-2m;
②当m≥0时,|2m|=2m;
(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:
∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,
∴BC=3t+4,AB=3t+2
∴BC-AB=3t+4-(3t+2)=2
【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+
=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.
8.数轴上两点之间的距离等于相应两数差的绝对值,即:点A、B表示的数分别为a、b,这两点之间的距离为AB= ,如:表示数1与5的两点之间的距离可表示为,表示数-2与3的两点之间的距离可表示为 .
(借助数轴,画出图形,写出过程)
(1)数轴上表示2和7的两点之间的距离是________,数轴上表示3和-6的两点之间的距离是________;
(2)数轴上表示x和-2的两点M和N之间的距离是________,如果|MN|,则x为________;
(3)当式子: |x+2|+|x-3|+|x-4| 取最小值时,x的值为________,最小值为________.
【答案】(1)|2-7|=5;|3-(-6)|=9
(2)|x+2|;-8或4
(3)3;6
【解析】【解答】解:(1)数轴上表示2和7的两点之间的距离是:|2-7|=5;
数轴上表示-3和-6的两点之间的距离是:|3-(-6)| =9;
故答案为:5,9;
(2)数轴上表示x和-2的两点M和N之间的距离是:|x+2|,
如果|MN|=6,则|x+2|=6,
∴x+2=±6,
解得:x=4或x=-8,
故答案为:|x+2|,4或-8;
(3)|x+2|+|x-3|+|x-4|的几何意义是:数轴上表示数x的点到表示-2、3、4的三
点的距离之和,
显然只有当x=3时,取到最小值;
∴当x=3时,
最小值为:;
【分析】(1)和(2)主要是根据数轴上两点之间的距离等于相对应两数差的绝对值或直接让较大的数减去较小的数,进行计算;(3)结合数轴和两点间的距离进行分析.
9.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。

而|5|=|5-0|,即|5-0|表示5和0在数轴上对应的两点之间的距离。

类似的,有:|5-3|表示5和3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5和-3在数轴上对应的两点之间的距离。

一般地,点A、B在数轴上分别表示数a和b,那么点A和B之间的距离可表示为|a-b|。

利用以上知识:
(1)求代数式|x-1|+|x-2|+|x-3|+…+|x-100|的最小值=________。

(2)求代数式|x-1|+| x-1|+| x-3|+| x-4|的最小值。

【答案】(1)2500
(2)解:1、1……2、2……9、9……16、16,
则最中间的一个数是2,
∴当x=2,
|x-1|+|x-1|+|x-3|+|x-4|
=|x-1|+|x-2|+|x-9|+|x-16|
=(12|2-1|+6|2-2|+4|2-9|+3|2-16)|
=
=.
【解析】【解答】解:(1) 由题意得:|x-1|+|x-2|+|x-3|+…+|x-100|的最小值为:
|50.5-1|+|50.5-2|+|50.5-3|+…+|50.5-100|=2500.
【分析】(1)由于|x-1|+|x-2|+|x-3|+…+|x-100|表示数轴上某点到1、2、3……100的距离之和,因此当x所对应的点在点1和点100最中间时取最小值,这时把x=50.5代入原式求值即可.
(2)先提取将每个绝对值的系数变为整数,然后将12个1,6个2,4个9和3个16排成一组数,则最中间的一个数是2,则把2代入原式求值即是最小值.
10.如图,在数轴上A点表示的数是-8,B点表示的数是2。

动线段CD=4(点D在点C的右侧),从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒。

(1)①已知点C表示的数是-6,试求点D表示的数;
②用含有t的代数式表示点D表示的数。

(2)当AC=2BD时,求t的值。

(3)试问当线段CD在什么位置时,AD+BC或AD-BC的值始终保持不变?请求出它的值并说明此时线段CD的位置。

【答案】(1)解:①∵点C表示的数是-6,CD=4且点C在点A的右边
∴点D表示的数为-6+4=-2;
②∵从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t秒。

∴点C表示的数为-8+2t,
∵CD=4
∴点D表示的数为:-8+2t+4=-4+2t;
(2)解:∵运动t秒后,点C表示的数为-8+2t,点D对应的数为-4+2t,
∵AC=2BD,点B表示的数为2,点A表示的数为-8
∴-8+2t-(-8)=2|-4+2t-2|
∴t=-6+2t或t=6-2t
解之:t=6或2;
(3)解:①当线段CD在线段AB上时(图1)或当点B在线段CD内时(图2)
AD+BC的值保持不变,且AD+BC=AB+CD=14
②当线段CD在点B的右侧时(图3)
ADBC的值保持不变,且ADBC=AC+CDBC=AB+CD=14
【解析】【分析】(1)①由点C表示的数及CD的长及点C在点A的右边,就可求出点D 表示的数;②根据线段的运动方向及运动速度,可得到点C表示的数为-8+2t,再由CD的长,就可用含t的代数式表示出点D表示的数。

(2)求出运动t秒后点C和点D表示的数,再根据AC=2BD,建立关于t的方程,解方程求出t的值。

(3)分情况讨论:当线段CD在线段AB上时(图1)或当点B在线段CD内时(图2) ;当线段CD在点B的右侧时(图3),分别利用绝对值的性质及两点间的距离公式就可求出AB+CD的值。

11.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。

(1)PA=________,PC=________(用含t的代数式表示)
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,
①当P、Q两点运动停止时,求点P和点Q的距离;
②求当t为何值时P、Q两点恰好在途中相遇.
【答案】(1)t;36-t
(2)解:①由数轴可知:BC=10-(﹣10)=20个单位长度,
∴P从B运动到C的时间为:20÷1=20s
∵当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动
∴当P从B运动到C时,Q的运动时间也是20s
∴Q的运动路程为:20×3=60个单位长度,
∵此时P在C处
∴QP=QC=60-AC=60-36=24.
②由数轴可知:AB=(﹣10)-(﹣26)=16个单位长度,
∵当点P运动到B点时,点Q从A点出发,
∴Q比P晚出发了:16÷1=16s
故Q的运动时间为(t-16)s,
由图可知:P和Q运动总路程等于两个AC的长度
∴t+3(t-16)=2×36
解得:t=30
答:当t等于30时,P、Q两点恰好在途中相遇
【解析】【解答】解:(1)由数轴可知:AC=10-(﹣26)=36个单位长度
∵动点P从A出发,以每秒1个单位的速度向终点C移动
PA=t,PC=36-t;
【分析】(1)利用数轴上两点的距离公式求出AC的长度,根据路程=速度×时间,用t表示出AP,再利用PC=AC-AP即可;(2)①先利用数轴上两点的距离公式求出BC的长度,再利用时间=路程÷速度算出P从B运动到C的时间,算出Q的运动路程,最后减去AC即可;②先利用AB的长度算出Q比P晚出发的时间,再利用P和Q运动总路程等于
两个AC的长度列方程即可.
12.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值
(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?
(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.
【答案】(1)解:由题意得:,解得:
(2)解:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D 表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左侧,且DB+DA=DB+DB+AB=2DB+5=8,故 DB=1.5,即-2-(-2t)=1.5,解得t=1.75
(3)解:在运动过程中,MN-2PQ=4恒成立,理由如下:
当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则
D表示的数为-2t,M表示的数为-2-t,N表示的数为3+4t;
故MN的中点P表示的数为0.5+1.5t,OD的中点Q表示的数为-t;
则MN-2PQ=[(3+4t)-(-2-t)]-2[(0.5+1.5t)-(-t)]
=5+5t-2(0.5+2.5t)
=5+5t-1-5t
=4
【解析】【分析】(1)根据数轴上两点之间的距离公式即可求解.(2)根据运动速度可表达出D点坐标,根据D到A、B两点的距离之和为8,可知D点在B的左侧,根据两点之间的距离公式即可求解(3)根据运动速度可表达出M、D、N点的坐标,根据中点公式求出P、Q坐标进而求出MN、PQ线段长即可求解.。

相关文档
最新文档