人教版立体几何多选题同步练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版立体几何多选题同步练习
一、立体几何多选题
1.在三棱柱111ABC A B C -中,ABC ∆是边长为2
3的等边三角形,侧棱长为43,则
( )
A .直线1A C 与直线1B
B 之间距离的最大值为3
B .若1A 在底面AB
C 上的投影恰为ABC ∆的中心,则直线1AA 与底面所成角为60︒ C .若三棱柱的侧棱垂直于底面,则异面直线AB 与1A C 所成的角为30
D .若三棱柱的侧棱垂直于底面,则其外接球表面积为64π 【答案】AD 【分析】
建立空间直角坐标系,用向量法求解. 【详解】
如图示,以A 为原点,AC 为y 轴正方向,Ax 为x 轴正方向,过A 点垂直于面ABC 的向上方向为z 轴正方向建系,则()()()
0,0,0,3,0,0,23,0,A B C 设()()()
100010001000,,,3,3,,,23,,A x y z B x y z C x y z ++
所以()()()
1
000100011,23,,,,,3,3,0,AC x y z BB x y z A B =---== 对于A:设n 为直线1A C 与直线1BB 的公垂线的方向向量,则有:11
·0·0AC n BB n ⎧=⎪⎨=⎪⎩,
即()()
000000230
0x x y y zz x x y y zz ⎧-+-=⎪⎨++=⎪⎩解得:()00,0n z x =- 设直线1A C 与直线1BB 之间距离为d ,则
2
2
011222200009||||z A B n
d d x z n x z ===++ 22009x d ≥∴≤,即3d ≤,故A 正确;
对于B :若1A 在底面ABC 上的投影恰为ABC ∆的中心,则()
11,3,211A 底面法向量()()
10,0,1,1,3,211m AA ==,设直线 1AA 与底面所成角为θ,则:
121133
sin |cos ,|6143
AA n θ==
=⨯,故B 错误; 对于C : 三棱柱的侧棱垂直于底面时,则
(
)()()
1110,0,43,3,3,43,0,23,43,A B C
则()()1
3,3,0,0,23,43,AB AC ==-
设异面直线AB 与1A C 所成的角为θ,则
1
1
15cos |cos ,|||||||
23215AB AC AB AC AB AC θ====⨯,故C 错误;
对于D :若三棱柱的侧棱垂直于底面时,外接球的球心O 为上下底面中心DD 1连线的中点,所以外接球的半径()
2
22324R =+=,所以2464S R ππ==.
故D 正确
故选:AD 【点睛】
向量法解决立体几何问题的关键: (1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.
2.如图,在棱长为2的正方体ABCD A B C D ''''-中,M 为BC 边的中点,下列结论正确的有( )
A .AM 与D
B ''所成角的余弦值为
1010
B .过三点A 、M 、D 的正方体ABCD A B
C
D ''''-的截面面积为92
C .四面体A C B
D ''的内切球的表面积为
3
π D .正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动并且使
MAC PAC ''∠=∠,那么点P 的轨迹是椭圆 【答案】AB 【分析】
构建空间直角坐标系,由异面直线方向向量的夹角cos ,||||
AM D B AM D B AM D B ''
⋅''<>=
''为
AM 与D B ''所成角的余弦值判断A 的正误;同样设(,,0)P x y 结合向量夹角的坐标表示,
22215
5
43
x y =
++⨯P 的轨迹知D 的正误;由立方体的截面为梯形,分别求,,,MN AD AM D N '',进而得到梯形的高即可求面积,判断B 的正误;由四面体的体积与内切球半径及侧面面积的关系求内切球半径r ,进而求内切球表面积,判断C 的正误. 【详解】
A :构建如下图所示的空间直角坐标系:
则有:(0,0,2),(1,2,2),(0,2,0),(2,0,0)A M B D '', ∴(1,2,0),(2,2,0)AM D B ''==-,
10
cos ,10||||58
AM D B AM D B AM D B ''⋅''<>=
==''⨯,故正确.
B :若N 为C
C '的中点,连接MN ,则有//MN A
D ',如下图示,
∴梯形AMND’为过三点A 、M 、D 的正方体ABCD A B C D ''''-的截面, 而2,2,5MN AD AM D N ''=
===32
2
, ∴梯形的面积为132932222
S =
⨯=,故正确. C :如下图知:四面体A C BD ''的体积为正方体体积减去四个直棱锥的体积,
∴118
848323
V =-⨯⨯⨯=
,而四面体的棱长都为22,有表面积为142222sin 8323
S π
=⨯⨯⨯⨯=,
∴若其内切圆半径为r ,则有1
8833
3r ⨯⋅=
,即33
r =,所以内切球的表面积为2443
r π
π=
.故错误. D :正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动且
MAC PAC ''∠=∠,即P 的轨迹为面A B C D ''''截以AM 、AP 为母线,AC’为轴的圆锥体侧面所得曲线,如下图曲线GPK ,
构建如下空间直角坐标系,232(0,0,2),(2),(0,22,0)22
A M C '-
,若(,,0)P x y ,则232
(,,0),(0,22,2),(,,2)22
AM AC AP x y '=-
=-=-,
∴15
cos ||||512
AM AC MAC AM AC '⋅'∠=
=='⨯
222cos ||||
43
AP AC PAC AP AC x y '
⋅'∠=
='++⨯22215
5
43
x y =
++⨯,整理得22(102)9216(0)y x y +-=>,即轨迹为双曲线的一支,故错误.
故选:AB 【点睛】
关键点点睛:应用向量的坐标表示求异面直线的夹角,并结合等角的余弦值相等及向量数量积的坐标表示求动点的轨迹,综合立方体的性质求截面面积,分割几何体应用等体积法求内切球半径,进而求内切球的表面积.
3.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P P 点有且只有一个 B .若12A P ,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 2
D .若12
A P 且1//A P 平面11
B D
C ,则平面11A PC 截正方体外接球所得截面的面积为23
π
【答案】ABD 【分析】
选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 2P 与B 或D 重合,利用12sin 60A P r =
︒,求出6
r =,进而求出面积.
对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C
满足,故A 正确;
对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =
-=的小圆圆弧上,在
底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;
对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面
11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD
上,则1A P 长的最大值为12A B =,则
C 不正确; 对选项
D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333
A B r r S r π
π=
=∴=∴==
︒.故D 正确.
故选:ABD
(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,
d 为球心到小圆距离);
(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.
4.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )
A .侧面11CDD C 上存在点F ,使得11
B F CD ⊥ B .直线1B F 与直线B
C 所成角可能为30︒
C .平面1A BE 与平面11CD
D C 所成锐二面角的正切值为2
D .设正方体棱长为1,则过点
E ,
F ,A 5 【答案】AC 【分析】
取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;
【详解】
取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,
1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .
取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;
设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=
1tan 3023
︒<=,所以B 错误;
平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11
111tan B C B FC C F
∠==22,所以C 正确;
因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为
6
2
,故D 错误. 故选:AC.
【点睛】
本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.
5.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )
A .//OF 平面BCE
B .BF ⊥平面ADF
C .点A 到平面CDFE 的距离为
217
D .三棱锥C BEF -5π 【答案】ABC 【分析】
由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;
B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以
AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.
C ,由C DAF A CDF V V --=可求点A 到平面CDFE 的距离为
7
,C 正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误. 【详解】
解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE ,
OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.
线段AB 为圆O 的直径,所以BF FA ⊥,
矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD 平面ABEF AB =,AD ⊂平

ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥ AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =, 所以BF ⊥平面ADF ,故B 正确.
1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===, //DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,
BF =2CF ==,
DF ===
2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高
==
1
2CDF S ==
△ //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC
平面ADF ,点C 到平面ADF 的距离为BF = 11
1122
DAF S =⨯⨯=△,C DAF A CDF V V --=,
设点A 到平面CDFE 的距离为h ,
11
33ADF CFD S FB S h ⨯⨯=⨯⨯△△,111323h ⨯=,
所以h =
,故C 正确. 取DB 的中点M ,则//MO AD ,1
2
MO =
,所以MO ⊥平面CDFE ,
所以2
1512ME MF MB MC ⎛⎫====+= ⎪⎝⎭
所以M 是三棱锥C BEF -5
, 三棱锥C BEF -外接球的体积为3
344
55533V r ππ==⨯=⎝⎭
,故D 错误, 故选:ABC. 【点睛】
综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.
6.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面
1111D C B A 上的动点,给出下列四个结论中正确结论为( )
A .若3PD =,则满足条件的P 点有且只有一个
B .若3PD =,则点P 的轨迹是一段圆弧
C .若P
D ∥平面1ACB ,则DP 长的最小值为2
D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94
π
【答案】ABD 【分析】
若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =,,则
12PD =P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为3
2
=,可得D . 【详解】 如图:
∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =,又侧棱11AA =, ∴()
2
212213DB =
+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;
∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为
()
2
2213+=,故C 错误;
由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为22213
22122++=,面积为94
π,故D 正确. 故选:ABD . 【点睛】
本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.
7.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下
面结论中正确结论的有( )
A .11A D C P ⊥;
B .当1A P PD +取最小值时,23λ=;
C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈
⎪⎝

; D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为9
4
π. 【答案】ABD 【分析】
以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】
以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,
()()
10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,
则可解得()1,1,P λλλ--, 对A ,
()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,
()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则
11A D C P ⊥,故A 正确;
对B ,()
()()()
()2
22
2
2
21111111A P PD λλλλλλ+=
--+-+--+-+2
2
2223422333λλλ⎛
⎫=-+=-+ ⎪⎝

则当2
3
λ=时,1A P PD +取最小值,故B 正确; 对C ,
()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,
则222321cos 1321
321PA PC
APC PA PC λλλλλλ⋅-∠===--+-+⋅,
01λ<<,则2232123λλ≤-+<,则2
111
123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤
∠∈ ⎥⎝⎦
,故C 错误;
对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为
O ,四棱锥11
P AA D D -的外接球半径为R ,所以2
2
2
1222R R ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭
,解得34R =, 故四棱锥11P AA D D -的外接球表面积为9
4
π,所以D 正确. 故选:ABD. 【点睛】
关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.
8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )
A .0MN EF ⋅=
B .ME NE =
C .四边形MENF 的面积最小值与最大值之比为2:3
D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】
证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积1
2
S MN EF =
⋅,再分别
讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】
对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF
BB '⊥,
BD BB B '⋂=,
所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,
因此0MN EF ⋅=,故A 正确.
对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,
平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以
//MF EN ,
同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.
对于C 选项,由B 易得四边形MENF 的面积1
2
S MN EF =
⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,
此时MN EF ==,即面积S 的最小值为1;
当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最
大,
此时MN =,即面积S
所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积
11113346
M AEF N AEF AEF V V V DB S --=+=
⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,
则它们的体积也是相同的,因此多面体ABCD EMFN -的体积
21122
ABCD A B C D V V ''''-==正方体,
所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .
【点睛】
本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体
ABCD EMFN -的体积转化为正方体的体积的一半求解.。

相关文档
最新文档