【冲刺卷】数学中考一模试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【冲刺卷】数学中考一模试题含答案
一、选择题
1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )
A .120°
B .110°
C .100°
D .70° 2.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长
为( )
A .5cm
B .10cm
C .20cm
D .40cm 3.下列运算正确的是( )
A .224a a a +=
B .3412a a a ⋅=
C .3412()a a =
D .22()ab ab = 4.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )
A .15
B .14
C .15
D .417 5.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )
A .(,)a b --
B .(,1)a b ---
C .(,1)a b --+
D .(,2)a b --+
6.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.
A.1B.2C.3D.4
7.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()
A.12 B.15 C.12或15 D.18
8.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()
A.B.C.D.
9.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()
A.60°B.50°C.45°D.40°
10.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().
A.B.C.D.
11.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()
A .2x 2-25x+16=0
B .x 2-25x+32=0
C .x 2-17x+16=0
D .x 2-17x-16=0
12.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )
A .3
B .23
C .32
D .6
二、填空题
13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:
抽取的体检表
数n
50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频
数m
3 7 13 29 37 55 69 85 105 138 色盲患者的频
率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
15.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .
16.已知62x =,那么222x x -的值是_____.
17.计算:2cos45°﹣(π+1)0+111()42
-+=______. 18.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.
在第n 个图形中有______个三角形(用含n 的式子表示)
19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .
20.计算:21(1)211
x x x x ÷-+++=________. 三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).
(1)求y 1与y 2的函数解析式.
(2)求每天的销售利润W 与x 的函数解析式.
(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?
22.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .
(1)求证:四边形ADCE 是平行四边形;
(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13
S 的三角形.
23.
小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)
(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈
≈≈) 24.已知抛物线y =ax 2﹣13
x +c 经过A (﹣2,0),B (0,2)两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒
(1)求抛物线的解析式;
(2)当BQ =13
AP 时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使△MPQ 为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.
25.已知n 边形的内角和θ=(n-2)×180°.
(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;
(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.
【详解】如图,∵∠1=70°,
∴∠3=180°﹣∠1=180°﹣70°=110°,
∵a∥b,
∴∠2=∠3=110°,
故选B.
【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
2.D
解析:D
【解析】
【分析】
根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AO=OC,
∵AM=BM,
∴BC=2MO=2×5cm=10cm,
即AB=BC=CD=AD=10cm,
即菱形ABCD的周长为40cm,
故选D.
【点睛】
本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.
3.C
解析:C
【解析】
【分析】
分别计算出各项的结果,再进行判断即可.
【详解】
A.2222a a a +=,故原选项错误;
B. 322223x x y xy x y xy y ++---,故原选项错误;
C. 3412()a a =,计算正确;
D. 222()ab a b =,故原选项错误.
故选C
【点睛】
本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.
4.A
解析:A
【解析】
∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,
∴BC ,
则cos B =
BC AB , 故选A 5.D
解析:D
【解析】
试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则
0122
a x
b y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.
6.B
解析:B
【解析】
【分析】
由图像可知a >0,对称轴x=-
2b a
=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.
【详解】 解:∵抛物线开口向上,
∴a >0,
∵抛物线的对称轴为直线x =﹣2b a =1, ∴b =﹣2a <0, ∵抛物线与y 轴的交点在x 轴下方,
∴c <0,
∴abc >0,所以①正确;
∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,
∴抛物线与x 轴的另一个交点为(﹣1,0),
∵x =﹣1时,y =0,
∴a ﹣b +c =0,所以②错误;
∵b =﹣2a ,
∴2a +b =0,所以③错误;
∵抛物线与x 轴有2个交点,
∴△=b 2﹣4ac >0,所以④正确.
故选B .
【点睛】
此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.
7.B
解析:B
【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.
3+6>6,符合条件.成立.
∴C=3+6+6=15.
故选B .
考点:等腰三角形的性质.
8.C
解析:C
【解析】
【分析】
按照题中所述,进行实际操作,答案就会很直观地呈现.
【详解】
解:将图形按三次对折的方式展开,依次为:

故选:C .
【点睛】
本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
9.D
解析:D
【解析】
【分析】
【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
10.C
解析:C
【解析】
从上面看,看到两个圆形,
故选C.
11.C
解析:C
【解析】
解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.
点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.
12.B
解析:B
【解析】
【分析】
根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.
【详解】
由折叠性质得:△ANM≌△ADM,
∴∠MAN=∠DAM,
∵AN平分∠MAB,∠MAN=∠NAB,
∴∠DAM=∠MAN=∠NAB,
∵四边形ABCD是矩形,
∴∠DAB=90°,
∴∠DAM=30°,
==,
∴AM=23
33
故选:B.
【点睛】
本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,二、填空题
13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故
解析:07
【解析】
【分析】
随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.
【详解】
解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07
故答案为:0.07.
【点睛】
本题考查利用频率估计概率.
14.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051
解析:5
【解析】
【分析】
根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.
【详解】
以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,
由题意可得A(0,2.5),B(2,2.5),C(0.5,1)
设函数解析式为y=ax2+bx+c
把A. B. C三点分别代入得出c=2.5
同时可得4a+2b+c=2.5,0.25a+0.5b+c=1
解得a=2,b=−4,c=2.5.
∴y=2x2−4x+2.5=2(x−1)2+0.5.
∵2>0
∴当x=1时,y min=0.5米.
15.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106
解析:6×106.
【解析】
【分析】
【详解】
将9600000用科学记数法表示为9.6×106.
故答案为9.6×106.
16.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确
解析:4
【解析】
【分析】
将所给等式变形为x=
【详解】
∵x=,
∴x-=
∴(22
x=,
∴226
x-+=,
∴24
x-=,
故答案为:4
【点睛】
本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.
17.【解析】解:原式==故答案为:
3
2

【解析】
解:原式=
1
212
22
⨯-++
3
2
3
2

18.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分
解析:()43n -
【解析】
【分析】
分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就
是4与几的乘积减去3.如图③中三角形的个数为9=4×
3-3.按照这个规律即可求出第n 各图形中有多少三角形.
【详解】
分别数出图①、图②、图③中的三角形的个数,
图①中三角形的个数为1=4×
1-3; 图②中三角形的个数为5=4×
2-3; 图③中三角形的个数为9=4×
3-3; …
可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.
按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.
故答案为4n-3.
【点睛】
此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.
19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角
解析:110°或70°.
【解析】
试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.
考点:1.等腰三角形的性质;2.分类讨论.
20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算
然后约分即可得到化简后的结果【详解】原式=÷=·
=故答案为【点睛 解析:11
x + 【解析】
【分析】
先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到
()21x
x +÷111
x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.
【详解】
原式=()
21x x +÷111x x +-+ =
()21x x +·1x x
+ =11x +. 故答案为
11
x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.
三、解答题
21.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)
W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩
(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.
【解析】
【分析】
(1)待定系数法分别求解可得;
(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;
(3)当1≤x <50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x <90时,依据一次函数性质可得最值情况,比较后可得答案.
【详解】
(1)当1≤x<50时,设y 1=kx+b ,
将(1,41),(50,90)代入,
得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩
∴y 1=x+40,
当50≤x<90时,y 1=90,
故y 1与x 的函数解析式为y 1=x 40(1x 50),90(50x 90);+≤<⎧⎨≤<⎩
设y 2与x 的函数解析式为y 2=mx+n(1≤x<90),
将(50,100),(90,20)代入,
得50m n 100,90m n 20,+=⎧⎨+=⎩解得:m 2,n 200,
=-⎧⎨=⎩ 故y 2与x 的函数关系式为y 2=-2x+200(1≤x<90).
(2)由(1)知,当1≤x<50时,
W=(x+40-30)(-2x+200)=-2x 2+180x+2000;
当50≤x<90时,
W=(90-30)(-2x+200)=-120x+12000;
综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩
(3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050,
∴当x=45时,W 取得最大值,最大值为6050元;
当50≤x<90时,W=-120x+12000,
∵-120<0,W 随x 的增大而减小,
∴当x=50时,W 取得最大值,最大值为6000元;
综上,当x=45时,W 取得最大值6050元.
答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.
22.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆
【解析】
【分析】
(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD 是△ABC 的中线,
∴BD=CD ,
∵AE ∥BC ,
∴∠AEF=∠DBF ,
在△AFE 和△DFB 中,
AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩

∴△AFE ≌△DFB (AAS ),
∴AE=BD ,
∴AE=CD ,
∵AE ∥BC ,
∴四边形ADCE 是平行四边形;
(2)∵四边形ABCE 的面积为S ,
∵BD=DC ,
∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S , ∴面积是
12
S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
23.43米
【解析】
【分析】
【详解】
解:设CD = x .
在Rt △ACD 中, tan 37AD CD ︒=
, 则34AD x
=, ∴34AD x =
. 在Rt △BCD 中,
tan48° =
BD CD
, 则1110BD x
=, ∴1110BD x = ∵AD +BD = AB , ∴31180410
x x +=.
解得:x≈43.
答:小明家所在居民楼与大厦的距离CD大约是43米.
24.(1)y=-2
3
x2-
1
3
x+2;(2)当BQ=
1
3
AP时,t=1或t=4;(3)存在.当t

1-+M(1,1),或当t
=3+M(﹣3,﹣3),使得△MPQ为等边三角形.
【解析】
【分析】
(1)把A(﹣2,0),B(0,2)代入y=ax2-
1
3
x+c,求出解析式即可;
(2)BQ=
1
3
AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP 关于t的表示,代入BQ=
1
3
AP可求t值.
(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.
【详解】
(1)∵抛物线经过A(﹣2,0),B(0,2)两点,

2
40,
3
2.
a c
c

++=


⎪=

,解得
2
,
3
2.
a
c

=-


⎪=

∴抛物线的解析式为y=-
2
3
x2-
1
3
x+2.
(2)由题意可知,OQ=OP=t,AP=2+t.
①当t≤2时,点Q在点B下方,此时BQ=2-t.
∵BQ=
1
3
AP,∴2﹣t=
1
3
(2+t),∴t=1.
②当t>2时,点Q在点B上方,此时BQ=t﹣2.
∵BQ=
1
3
AP,∴t﹣2=
1
3
(2+t),∴t=4.
∴当BQ=
1
3
AP时,t=1或t=4.
(3)存在.
作MC⊥x轴于点C,连接OM.
设点M 的横坐标为m ,则点M 的纵坐标为-23m 2-13m +2. 当△MPQ 为等边三角形时,MQ =MP ,
又∵OP =OQ ,
∴点M 点必在PQ 的垂直平分线上,
∴∠POM =12
∠POQ =45°, ∴△MCO 为等腰直角三角形,CM =CO ,
∴m =-
23
m 2-13m +2, 解得m 1=1,m 2=﹣3. ∴M 点可能为(1,1)或(﹣3,﹣3).
①如图,
当M 的坐标为(1,1)时,
则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,
PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ ,
∴t 2﹣2t +2=2t 2,
解得t 1=3-t 2=13-(负值舍去).
②如图,
当M 的坐标为(﹣3,﹣3)时,
则有PC =3+t ,MC =3,
∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ ,
∴t 2+6t +18=2t 2,
解得t 1=333+,t 2=333-(负值舍去).
∴当t =1+3-时,抛物线上存在点M (1,1),或当t =333+时,抛物线上存在点M (﹣3,﹣3),使得△MPQ 为等边三角形.
【点睛】
本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.
25.(1)甲对,乙不对,理由见解析;(2)2.
【解析】
试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.
∵θ=360°,∴(n-2)×180°=360°,
解得n=4.
∵θ=630°,∴(n-2)×180°=630°,
解得n=.
∵n 为整数,∴θ不能取630°.
(2)由题意得,(n-2)×180+360=(n+x-2)×180,
解得x=2.
考点:多边形的内角和.。

相关文档
最新文档