人教版初中数学九年级第24章24.1.1---24.1.3复习讲义

合集下载

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案

人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。

人教版数学九年级上册教案-24.1.3弧、弦、圆心角

人教版数学九年级上册教案-24.1.3弧、弦、圆心角
在讲授新课的过程中,我注意到有的学生在听到圆周角定理时,眼神中透露出迷茫。于是我放慢了讲解的速度,通过画图和实际演示,让学生们更直观地理解这个定理。看到他们逐渐明白,我感到很欣慰。
课堂上的实践活动,我发现学生们积极参与,热烈讨论。但在小组讨论环节,有些小组的讨论似乎偏离了主题。我及时进行了引导,让他们回到弧、弦、圆心角的应用上来。这也提醒了我,在今后的教学中,要更加注意引导学生关注讨论的主题。
1.培养学生运用几何图形语言描述和表达弧、弦、圆心角等概念,提高空间想象能力和几何直观能力。
2.通过探索弧、弦、圆心角之间的关系,培养学生的逻辑推理能力和抽象思维能力。
3.结合实际操作,使学生能够运用圆周角定理解决实际问题,提高问题解决能力和创新意识。
4.培养学生合作交流、分享探究过程和结果的习惯,提高团队协作能力和口头表达能力。
5.引导学生从数学角度观察和分析现实问题,体会数学在生活中的应用,培养数学应用意识和数学素养。
三、教学难点与重点
1.教学重点
-弧、弦、圆心角的定义及其分类:这是本节课的基础,要求学生能够准确理解和区分这些基本概念。
-弧、弦、圆心角之间的关系:强调圆心角所对的弧和弦的性质,以及圆周角定理的应用。
-实际问题中的运用:通过解决实际问题,让学生掌握如何将弧、弦、圆心角的理论知识应用于实际情境。
举例解释:
-弧的定义:圆上任意两点间的部分,如点A到点B的弧AB。分类为优弧(大于半圆的弧)、劣弧(小于半圆的弧)和半圆。
-弦的定义:圆上任意两点的连线,如点A和点B之间的线段AB。分类为直径(通过圆心的弦)和普通弦。
-圆心角的定义:以圆心为顶点的角,如角AOB,其中O为圆心。
-圆周角一半。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如通过折叠和切割圆纸片来观察圆心角和弧和弦的关系。

人教版 数学九年级上册24.1.3弧、弦、圆心角教案

人教版 数学九年级上册24.1.3弧、弦、圆心角教案

五、教学方法自主学习,合作探究六、教学准备1、教师使用多媒体教学课件。

2、直尺,圆规。

七、教学过程教学内容教师活动学生活动1、复习引入2、探索新知活动1:圆具有旋转不变性活动2:探究圆心角的概念。

圆是中心对称图形吗?它的对称中心在哪里?活动1:圆具有旋转不变性问:圆还有其它旋转性质吗?观察多媒体,圆的旋转过程,你有什么收获?活动2:探究圆心角的概念。

如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.巩固练习:判别下列各图中的角是不是圆心角?观察思考作答;带着问题进入学习。

观察圆的旋转并思考作答。

(圆具有旋转不变性。

)教师引导,学生自学圆心角,学生完成巩固练习活动3:探究圆心角、弧、弦之间的关系1()2()3()4()活动3:探究圆心角、弧、弦之间的关系操作:将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置。

B'BAA'O问题1:在旋转过程中你能发现哪些等量关系?为什么?问题2:如图,⊙O与⊙O1是等圆,∠AOB =∠A1OB1=600,请问上述结论还成立吗?为什么?问题3:由上面的现象你能猜想出什么结论?综上所述,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.问题4:分析定理:去掉“在同圆或等圆中”这个条件,行吗?问题5:定理拓展:○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗?○2在同圆或等圆中,如果两条弦相等,那么它们所学生观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行几何证明.学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.教师引导学生类比定理独立用类似的方法进行探究,得到推论3、应用新知4、例题探究5、应用提高对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.应用新知1、判断下列说法是否正确:(1)相等的圆心角所对的弧相等。

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。

本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。

教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。

教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。

但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。

三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。

四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。

2.教学难点:圆心角、弧、弦之间的数量关系。

五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。

2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。

六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。

2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。

3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。

4.课堂练习:布置针对性的练习题,巩固所学知识。

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》是本册教材的重要内容之一。

它主要介绍了弧、弦、圆心角的定义及其相互关系。

这部分内容对于学生来说,有助于深化对圆的理解,为后续学习圆的性质和应用打下基础。

教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的规律,培养学生的观察能力、思考能力和动手能力。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。

他们对圆的概念和性质有一定的认识,但弧、弦、圆心角的概念和关系可能还比较模糊。

因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,帮助学生理解和掌握弧、弦、圆心角的定义和相互关系。

三. 教学目标1.理解弧、弦、圆心角的定义,掌握它们的相互关系。

2.能够运用弧、弦、圆心角的性质解决实际问题。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.弧、弦、圆心角的定义及其相互关系。

2.运用弧、弦、圆心角的性质解决实际问题。

五. 教学方法1.直观演示法:通过实物演示和动画展示,让学生直观地理解弧、弦、圆心角的定义和相互关系。

2.引导发现法:教师引导学生观察、思考和探索,发现弧、弦、圆心角之间的规律。

3.练习法:通过丰富的练习题,巩固学生对弧、弦、圆心角的理解和应用。

六. 教学准备1.准备相关的实物教具,如圆板、量角器等。

2.制作课件,包括弧、弦、圆心角的定义和相互关系的动画演示。

3.准备练习题,涵盖各种类型的题目,以便进行巩固和拓展。

七. 教学过程1.导入(5分钟)教师通过实物演示,如拿一个圆板,让学生观察和描述圆板上的弧、弦和圆心角。

引导学生回顾圆的基本概念,为新课的学习做好铺垫。

2.呈现(15分钟)教师利用课件,生动地展示弧、弦、圆心角的定义和相互关系。

通过动画演示,让学生直观地理解弧、弦、圆心角之间的关系。

人教版数学九年级上册《24.1.1圆》说课稿3

人教版数学九年级上册《24.1.1圆》说课稿3

人教版数学九年级上册《24.1.1圆》说课稿3一. 教材分析人教版数学九年级上册《24.1.1圆》这一节的内容,主要介绍了圆的定义、圆心、半径等基本概念,以及圆的性质。

这是学生学习圆相关知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。

但是,对于圆这一概念,学生可能在生活中有所接触,但对其精确的数学定义和性质可能还不够清晰。

因此,在教学过程中,需要引导学生从生活实例中抽象出圆的数学定义,进一步理解和掌握圆的性质。

三. 说教学目标1.知识与技能目标:使学生了解圆的定义、圆心、半径等基本概念,掌握圆的性质,能够运用圆的知识解决一些简单的问题。

2.过程与方法目标:通过观察、实验、推理等方法,培养学生空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.重点:圆的定义、圆心、半径等基本概念,圆的性质。

2.难点:圆的性质的证明和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探究,合作学习。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的空间想象能力和理解能力。

六. 说教学过程1.导入:通过展示生活中常见的圆的实例,引导学生思考圆的数学定义,激发学生的学习兴趣。

2.新课导入:介绍圆的定义、圆心、半径等基本概念,引导学生理解圆的性质。

3.实例分析:通过几何画板展示圆的性质,引导学生观察、实验、推理,加深对圆的理解。

4.小组讨论:让学生分组讨论圆的性质,培养学生的团队合作意识和解决问题的能力。

5.总结提升:对圆的性质进行总结,引导学生掌握圆的知识。

6.课堂练习:布置一些相关的练习题,让学生巩固所学知识。

7.课堂小结:对本节课的内容进行总结,引导学生反思学习过程。

人教版数学九年级上册《24.1.3弧、弦、圆心角》说课稿1

人教版数学九年级上册《24.1.3弧、弦、圆心角》说课稿1

人教版数学九年级上册《24.1.3弧、弦、圆心角》说课稿1一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》这一节主要介绍了圆的基本概念,包括弧、弦、圆心角的关系。

这部分内容是整个圆的知识体系的基础,对于学生理解和掌握圆的相关知识具有重要意义。

教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的关系,培养学生观察、思考、归纳的能力。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有一定的基础。

但是,对于圆的相关概念和性质,学生可能还比较陌生。

因此,在教学过程中,我将会注重引导学生从实际问题中抽象出圆的性质,并通过实例让学生感受和理解弧、弦、圆心角之间的关系。

三. 说教学目标1.知识与技能目标:使学生理解和掌握弧、弦、圆心角的概念,能够运用这些概念解决实际问题。

2.过程与方法目标:通过观察、思考、归纳等过程,培养学生发现和探索几何规律的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的意志。

四. 说教学重难点1.重点:弧、弦、圆心角的概念及其关系。

2.难点:如何引导学生从实际问题中抽象出圆的性质,并运用这些性质解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生从实际问题中出发,通过观察、思考、归纳等过程,发现和掌握弧、弦、圆心角之间的关系。

2.教学手段:利用多媒体课件,展示实例和几何图形的动态变化,帮助学生更好地理解和掌握弧、弦、圆心角的概念。

六. 说教学过程1.导入:通过展示一个实际问题,引导学生思考和探索圆的相关性质。

2.新课导入:介绍弧、弦、圆心角的概念,并通过实例让学生感受和理解它们之间的关系。

3.知识讲解:通过多媒体课件,展示弧、弦、圆心角的动态变化,引导学生观察和思考,从而发现和归纳出它们之间的关系。

4.练习与讨论:设计一些练习题,让学生运用所学的知识解决实际问题,同时引导学生进行分组讨论,分享解题方法和经验。

最新人教版初中数学九年级上册《24.1.1 圆》精品教学课件

最新人教版初中数学九年级上册《24.1.1 圆》精品教学课件
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知
(
(
( (
( ( (( ((
素养考点 1 圆的有关概念的识别 例1 如图. (1)请写出以点A为端点的优弧及劣弧;
劣弧:AF, AD, AC, AE.
D
B
优弧:AFE,AFC, ADE, ADC.
F
O
E
(2)请写出以点A为端点的弦及直径;
分析:作辅助线构造△OCE和△ODF,然后证明两 三角形全等,最后根据全等的性质得出结论. 解:连接OC,OD,∵OC=OD,∴∠C=∠D,
∵CE=DF. ∴△OCE≌△ODF(SAS), ∴OE=OF, ∴△OEF是等腰三角形.
探究新知
知识点 2 圆的有关概念
弦:
A
连接圆上任意两点的线段(如图中的AC)叫做弦.
探究新知
素养考点 2 圆的有关概念的应用
例2 如图,MN是半圆O的直径,正方形ABCD的顶点A、D
在半圆上,顶点B、C在直径MN上.(1)求证:OB=OC.
(2)设⊙O的半径为10,则正方形ABCD的边长为 4 5 .
A
D

2x 10 ?
M
xB O
C
N
图4
连OA,OD即可,
同圆的半径相等.
解:(1)连接OA,OD, 证明Rt∆ABO≌Rt∆DCO.
例 矩形ABCD的对角线AC,BD相交于点O. 求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C

人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿

人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿

人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿一. 教材分析人教版九年级数学上册第二十四章《圆的有关性质》是整个初中数学的重要内容,也是九年级数学的重点和难点。

这一章节主要介绍了圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。

这些内容不仅是进一步学习圆的计算和应用的基础,而且对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有了基本的掌握。

但是,对于圆的性质和概念的理解还需要进一步的引导和培养。

此外,由于圆的概念较为抽象,学生可能存在一定的理解难度,因此需要教师在教学中注重启发和引导,帮助学生建立清晰的概念。

三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解和掌握圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。

2.过程与方法目标:通过观察、思考和交流,学生能够培养空间想象能力和逻辑思维能力,能够运用圆的性质解决实际问题。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生浓厚的兴趣,培养自主学习和合作学习的能力。

四. 说教学重难点1.教学重点:圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等基本性质的理解和掌握。

2.教学难点:圆的性质的推导和证明,以及运用圆的性质解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。

通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。

2.教学手段:利用多媒体课件和教具进行教学,通过展示图形和动画,帮助学生直观地理解和掌握圆的性质。

六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生的兴趣和思考,从而引入圆的基本性质的学习。

2.知识讲解:引导学生通过观察和思考,发现圆的性质,并进行证明和推导。

通过示例和练习,帮助学生理解和掌握圆的性质。

人教版数学九年级上册24.1.3 弧、弦、圆心角 教案

人教版数学九年级上册24.1.3 弧、弦、圆心角  教案

24.1.3弧、弦、圆心角●情景导入(1)观察图片,我们会发现圆绕着圆心旋转任意一个角度,所得的图形与原图形重合.(2)如图①,∠AOB的顶点在圆心上,我们把顶点在圆心的角叫做圆心角.(3)如图②,连接AB,圆心角∠AOB所对的弦为弦AB,所对的弧为AB,那么圆心角与它所对的弧、弦这三个量之间有什么关系呢?【教学与建议】教学:通过实验操作,探索圆的旋转不变性与“如果两个圆心角相等,那么它们所对的弧、弦是不是相等”,激发学生的学习兴趣.建议:尽量让学生自己动手操作,引导学生得出等量关系.●归纳导入(1)圆是中心对称图形吗?它的对称中心在哪里?【归纳】圆是中心对称图形,对称中心是O点.(2)如图,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,我们发现∠AOB__=__∠A′OB′,弦AB__=__A′B′,AB__=__A′B′.【教学与建议】教学:通过归纳中心对称图形的定义,引入圆这个中心对称图形和圆的旋转性质,得出圆心角、弧、弦之间的关系.建议:让学生操作试验,得出圆心角、弧、弦的等量关系.命题角度1利用弧、弦、圆心角之间的关系进行计算在同圆或等圆中,两个相等圆心角,它们所对的弧、弦、弦心距对应相等.【例1】(1)如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(D)A.CE=DE B.BC=BDC.∠BAC=∠BAD D.AC>AD[第(1)题图][第(2)题图](2)如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P.连接OP.下列四个说法中:①AB=CD;②OM=ON;③PB=PD;④∠BPO=∠DPO,其中正确的是__①②③④__.(填序号)命题角度2利用弧、弦、圆心角之间的关系进行证明在同圆或等圆中,利用弧、弦、圆心角之间的关系定理证明圆心角、弧、弦相等.【例2】(1)如图,AB为⊙O的直径,C,D是⊙O上的两点,且BD∥OC.求证:AC=CD.证明:∵OB=OD,∴∠D=∠B.∵BD∥OC,∴∠D=∠COD,∠AOC=∠B,∴∠AOC=∠COD,∴AC=CD.(2)如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.证明:如图,连接OC.∵OD∥BC,∴∠1=∠B,∠2=∠3.又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.高效课堂教学设计1.能识别圆心角.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.▲重点探索圆心角、弧、弦之间的关系定理并利用其解决相关问题.▲难点圆心角、弧、弦之间关系定理中的“在同圆或等圆中”条件的理解及定理的证明.◆活动1新课导入1.你能举出生活中的圆形商标的实例吗?(至少三个)宝马车商标:星巴克标志:曼秀雷敦标志:2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?答:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.◆活动2探究新知1.材料P83探究.提出问题:(1)把圆绕圆心旋转180°,所得图形与原图形重合吗?由此你得到什么结论?(2)圆是中心对称图形吗?对称中心是什么?(3)把圆绕圆心旋转任意一个角度,所得图形与原图形重合吗?学生完成并交流展示.2.教材P84思考.提出问题:(1)我们把∠AOB连同AB绕圆心O旋转,使OA与OA′重合,旋转前后你能发现哪些等量关系?(2)若∠AOB和∠A′OB′分别在两个相等的圆中,上述等量关系还存在吗?(3)总结你所发现的规律;(4)反过来,在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角、所对的弦有什么关系?如果两条弦相等,那么它们所对的圆心角、所对的弧有什么关系?◆活动3知识归纳1.顶点在__圆心__的角叫做圆心角,能够重合的圆叫做__等圆__;能够__重合__的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的的图形重合,这就是圆的__旋转不变__性.2.在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.3.在同圆或等圆中,两个__圆心角__,两条__弦__,两条__弧__中有一组量相等,它们所对应的其余各组量也相等.◆活动4例题与练习例1教材P84例3.例2下列说法正确吗?为什么?(1)如图,因为∠AOB=∠A′OB′,所以AB=A′B′;(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么AB=A′B′.解:(1)(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.例3如图,AD=BC.求证:AB=CD.证明:∵AD=BC,∴AD=BC.∵AC=AC,∴AC+AD=AC+BC.∴DC=AB.∴AB=CD.练习1.教材P85练习第1,2题.2.如图,在⊙O中,已知弦AB=DE,OC⊥AB,OF⊥DE,垂足分别为C,F,则下列说法中正确的有(D)①∠DOE=∠AOB;②AB=DE;③OF=OC;④AC=EF.A.1个B.2个C.3个D.4个3.如图,AB是⊙O的直径,AC=CD,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.解:(1)△AOC是等边三角形.理由如下:∵AC=CD,∴∠AOC=∠COD=60°.又∵OA=OC,∴△AOC是等边三角形;(2)∵AC=CD,∴OC⊥AD.∵∠AOC=∠COD=60°,∴∠BOD=180°-(∠AOC+∠COD)=60°.∵OD=OB,∴△ODB为等边三角形.∴∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD.◆活动5课堂小结弧、弦、圆心角之间的关系是证明圆中等弧、等弦、等圆心角的常用方法.1.作业布置(1)教材P89习题24.1第2,3题;(2)对应课时练习.2.教学反思。

九年级数学人教版(上册)24.1.3 弧、弦、圆心角

九年级数学人教版(上册)24.1.3 弧、弦、圆心角

易错点 对弧、弦、圆心角的关系理解有误致错 9.如图,在⊙O 中,A︵C=2A︵B,试判断 AC 与 2AB 的大小关系, 并说明理由. 解:∵在同圆或等圆中,同弧或等弧所对的弦相等, ∴当A︵C=2A︵B时,AC=2AB.
以上解答是否正确?若不正确,请改正.
解:不正确,2AB>AC.
理由:连接 BC, ∵A︵C=2A︵B, ∴A︵B=B︵C. ∴AB=BC. ∵在△ABC 中,AB+BC>AC,
∴△OAD 是等边三角形. ∴OA=AD. 同理可证△OBD 是等边三角形. ∴OB=BD. ∴AD=BD=OA=OB. ∴四边形 OADB 是菱形.
13.如图,MN 是⊙O 的直径,点 A 是半圆上一个三等分点, 点 B 是A︵N的中点,点 B′是点 B 关于 MN 的对称点,⊙O 的半径为 1, 则 AB′的长为 2 .
第二十四章 圆
24.1 圆的有关性质 24.1.3 弧、弦、圆心角
知识点 1 圆心角的概念及其计算 1.下图中∠ACB 是圆心角的是( B )
2.如图,已知 AB 为⊙O 的直径,点 D 为半圆周上的一点,且 A︵D所对圆心角的度数是B︵D所对圆心角度数的 2 倍,则圆心角∠BOD = 60° .
33
E,OD⊥AC,垂足为 F,AC=BD,则弦 BD 的长为 2 .
12.如图,在⊙O 中,A︵B=A︵C,∠ACB=60°.
(1)求证:∠AOB=∠BOC=∠AOC. 证明:∵A︵B=A︵C, ∴AB=AC. 又∵∠ACB=60°, ∴△ABC 是等边三角形. ∴AB=BC=AC. ∴∠AOB=∠AOC=∠BOC.
(2)若 D 是A︵B的中点,求证:四边形 OADB 是菱形. 证明:∵∠AOB+∠AOC+∠BOC=360°, ∴∠AOB=∠AOC=∠BOC=120°. 连接 OD,交 AB 于点 M. ∵D 是A︵B的中点, ∴A︵D=B︵D.

人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计

人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计

人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册第24章《圆》的第三节“弧、弦、圆心角”是本章的重要内容。

本节主要介绍了弧、弦、圆心角的定义及它们之间的关系。

通过本节课的学习,学生能够理解弧、弦、圆心角的含义,掌握它们之间的联系,并为后续学习圆的性质和圆的证明打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和公理有一定的了解。

但是,对于弧、弦、圆心角这些概念,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等方式,逐步理解和掌握这些概念及它们之间的关系。

三. 教学目标1.知识与技能:理解弧、弦、圆心角的定义,掌握它们之间的关系。

2.过程与方法:通过观察、操作、思考、讨论等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:弧、弦、圆心角的定义及其关系。

2.难点:理解弧、弦、圆心角之间的联系,以及如何在具体问题中应用。

五. 教学方法1.情境教学法:通过生活实例引入弧、弦、圆心角的概念,激发学生的学习兴趣。

2.小组讨论法:引导学生分组讨论,发现弧、弦、圆心角之间的关系。

3.案例教学法:分析具体案例,让学生在实践中掌握弧、弦、圆心角的应用。

4.引导发现法:教师引导学生发现问题,分析问题,解决问题。

六. 教学准备1.教学课件:制作课件,展示弧、弦、圆心角的相关图片和动画。

2.教学道具:准备一些实际的弧、弦、圆心角的模型,以便学生直观地感受。

3.练习题:挑选一些有关弧、弦、圆心角的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如月亮的形状、吊扇的旋转等,引导学生思考:这些现象与数学中的哪些概念有关?进而引入弧、弦、圆心角的概念。

2.呈现(10分钟)展示课件,呈现弧、弦、圆心角的定义及它们之间的关系。

最新人教版初中数学九年级上册《24.1.3 弧、弦、圆心角》精品教学课件

最新人教版初中数学九年级上册《24.1.3 弧、弦、圆心角》精品教学课件

弦相等
弧相等
探究新知
素养考点 1 利用弧、弦、圆心角的关系求角度
例1 如图,AB是⊙O 的直径,B⌒C=C⌒D=D⌒E.
∠COD=35°,求∠AOE 的度数.
E D C 解:∵B⌒C=C⌒D=D⌒E
BOC COD DOE=35 ,
A
· O
B
75 .
巩固练习
判断正误.
× (1)等弦所对的弧相等. ( ) × (2)等弧所对的弦相等. ( ) × (3)圆心角相等,所对的弦相等. ( )
探究新知
【想一想】定理“在同圆或等圆中,相等的圆心 角所对的弧相等,所对的弦也相等.”中,可否把条 件“在同圆或等圆中”去掉?为什么?
不可以,如图.
B D OC A
探究新知
题设
结论
在 同
如果圆心角相等 那么 圆心角所对的弧相等 圆心角所对的弦相等

或 等
如果弧相等

那么
弧所对的圆心角相等 弧所对的弦相等
人教版 数学 九年级 上册
24.1 圆的有关性质
24.1.3 弧、弦、圆心角
导入新知
熊宝宝要过生日了!要把蛋糕平均分成四块, 你会分吗?分成八块呢?
素养目标
3. 理解圆心角、弧、弦之间关系定理中的 “在同圆或等圆”条件的意义.
2. 探索圆心角、弧、弦之间关系定理并利用其 解决相关问题.
1. 理解圆心角的概念,掌握圆的中心对称性和 旋转不变性.
由题意可得:EO=
1 2
BO,AB∥DC,
可得∠EBO=30°,
故∠BOD=30°,则∠BOC=150°.
课堂检测
基础巩固题
1.如果两个圆心角相等,那么 ( D ) A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等 C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对

2022秋九年级数学上册 第24章 圆24.1 圆的有关性质 3弧、弦、圆心角说课稿新人教版

2022秋九年级数学上册 第24章 圆24.1 圆的有关性质 3弧、弦、圆心角说课稿新人教版

24.1.3 《弧、弦、圆心角》说课稿教材分析:本课是人教版九年级上册第二十四章第一节圆的有关性质,它是在学习了垂径定理后进而要学习的圆的又一个重要性质。

主要研究弧,弦,圆心角的关系。

教材中充分利用圆的对称性,通过观察,实验探究出性质,再进行证明,体现图形的认识,图形的变换,图形的证明的有机结合。

在证明圆的许多重要性质时都运用了圆的旋转不变性。

同时弧,弦,圆心角的关系定理在后继证明线段相等,角相等,弧相等提供了又一种方法。

教学目标分析:1、让学生在实际操作中发现圆的旋转不变性.2、结合图形让学生了解圆心角的概念,学会辨别圆心角.3、引导学生发现圆心角、弦、弧之间的相等关系,并初步学会运用这些关系解决有关问题.4、培养学生观察、分析、归纳的能力,渗透旋转变换的思想及由特殊到一般的认识规律.教法分析:1.学情:由于圆的知识是轴对称及旋转知识的后续学习,学生有一定圆的相关概念,计算的知识储备,因此学习本节难度不是太大。

由于学生对圆的旋转不变性不甚了解,所以在探讨圆心角、弧、弦之间的相等关系时可能感到困难,另外对等对等的理解可能不透彻,我会做直观的示范;初始阶段在证明角相等,线段相等等有关问题时受思维定势的影响,学生往往会走利用“三角形全等”的老路,这时我会有意识引导,针对性训练,构建学生头脑中新的知识网络。

2.教学活动是教与学双边互动过程,必须充分发挥学生的主体和教师的主导作用,因此教学目标的达成,需优选教学法,根据学生的学情,本节课在探究圆心角,弦,弧之间的相等关系我采用发现模式,基本程序是:观察实践——概括归纳——重点研讨——推理反思。

这种教学模式注重知识的形成过程,有利于体现学生的主体地位和分析问题的方法,例题教学时采用讲授模式,一方面通过新知识的讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意的。

在最后小结时运用自学模式。

3.教学手段:学生动手,现场板演,多媒体辅助教学.教学过程分析:一、创设情景,引入新课1.看一看、思考(1)多媒体动态演示:平行四边形绕对角线交点旋转180度后,你发现了什么?(2)多媒体动态演示:圆绕圆心O旋转180度后,你发现了什么?这两个问题设置是让学生感性认识,发现平行四边形和圆旋转180度后都能与自生重合,是中心对称图形。

最新人教版初中九年级上册数学【24 章末复习】教学课件

最新人教版初中九年级上册数学【24 章末复习】教学课件

同弧或等弧所对的圆周角相等;同圆或等圆中, 相等的圆周角所对的弧也相等.
半圆(或直径) 所对的圆周角是直角;
C
C2 C1
C3
90°的圆周角所对的
·
O
弦是直径.
A
A
·O
B
B
3. (1)点和圆有怎样的位置关系?如何判定?
P
点P在圆外 d > r ; 点P在圆上 d = r;
·P
P
O
点P在圆内 d < r .
解:过O作OD⊥AB,交AB于点C,交⊙O于点D. 则AC= AB=300mm. 连接OA.设CD=xmm,则OC=(325-x)mm.
1 在Rt△AOC中,OC2+AC2=OA2, 2 即(325-x)2+3002=3252.解得x=200.
即CD=200mm. 答:油的最大深度为200mm.
r
A
(2)直线和圆的位置有几种,如何进行判定?
直线和⊙O相交 d<r; 直线和⊙O相切 d = r; 直线和⊙O相离 d>r.
·r
O
l
l l
(3)圆和圆的位置关系有几种? 如何判定?
两圆外离 d > r1+r2; 两圆外切 d = r1+r2; 两圆相交 r1-r2<d<r1+r2;
两圆内切 d = r1- r2; 两圆内含 d< r1- r2.
2. (1)在同圆或等圆中的弧、弦、圆心角有什么关系?
在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等,所对的弦的弦心距也相等.
在同圆或等圆中,如果两个圆 心角、两条弧、两条弦或两条弦的 B′
弦心距中有一组量相等,那么它们
所对应的其余各组量都分别相等.

人教版初中数学九年级第24章24.1.1---24.1.3复习讲义

人教版初中数学九年级第24章24.1.1---24.1.3复习讲义

人教版初中数学九年级第24章24.1.1---24.1.3复习讲义【知识点1】 圆的定义(1)旋转方式定义:(2)集合方式定义:(3)圆的二要素: 【例1】如图,在△ABC 中,∠ACB=90°,AC=2㎝,BC=4cm ,CM 是中线,以点C 为圆心, cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .【例2】已知线段AB=3㎝,平面内到点A 和点B 的距离都等于2㎝的点有几个?试通过作图确定满足条件的点.【练习1】下列条件能确定圆的为( )A.以已知点O 为圆心;B.以点O 为圆心,2㎝为半径;C.以2㎝为半径;D.经过已知点A ,且半径为2㎝.【练习2】如图,王大爷家有一边长20m 的正方形鱼塘,王大爷为看护鱼塘,在鱼塘的一角C 用长30m 的铁链拴着一条狗E ,请你通过作图,画出狗E 的活动范围.【知识点2】圆的有关概念(1)弦直径(2)弧半圆优弧(表示方法)劣弧(3)等圆(4)等弧【例3】判断下列说法的正误(1)半圆是弧,但弧不一定是半圆;(2)在圆中一条弧所对的弦只有一条,一条弦说对的弧也只有一条;(3)弦是直径;(4)圆中最长的弦是经过圆心的弦;(5)长度相同的两段弧是等弧.【练习1】如图,在⊙O 中,直径为 ,弦有 ,劣弧有 ,优弧有 ,【练习2】如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.【练习3】已知半径为5的⊙O 中,弦AB= ,弦AC=5 ,求∠BAC 的度数.5【知识点3】垂径定理(1)垂径定理及其推论(2)如图,在⊙O 中,CD 是直径,AB 是弦,CD ⊥AB 于点E ,则 ;;.(3)如图,若AE=EB ,CD 是直径,则 ;;.(4)如图,若⌒⌒BD AD ,CD 是直径,则 ;;.(5)如图,CD ⊥AB ,AE=EB ,则 ;;.【例4】如图,要测量一块钢板上小孔的直径,通常采用间接的测量方法,若将一个小孔直径为10cm 的标准钢珠放在小孔上,测得钢珠顶端于小孔平面的距离h=8cm ,求小孔的直径d.【例5】如图,半径为6的⊙E 在直角坐标系中,与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,已知C (0,3)、D (0,-7),求圆心E 的坐标.【练习1】如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,已知AB=8cm ,OC=3cm ,则⊙O 的半径为 .【练习2】如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD=1, 则弦AB 的长度为_________ .【练习3】如图是一个圆弧形门,圆弧所在圆的圆心的高度与该圆的半径相同,AB=CD=20cm ,BD=200cm ,且AB 、CD 于水平面都是垂直的,根据以上数据请计算这个圆弧形门的最高点离地面的高度.【知识点4】圆心角、弧、弦、弦心距之间的关系(1)圆心角的定义(2)圆心角、弧、弦、弦心距之间的关系如图,AB 、CD 是⊙O 的两条弦,OE ⊥AB ,OF ⊥CD.①若AB=CD ,则__________, ②若∠AOB=∠COD 则__________,__________, __________,__________, __________,③若 ,则__________, ④若OE=OF ,则__________,__________, __________,__________, __________,(3)一条弧的度数等于它所对圆心角的度数.【例6】如图,在△ABC 中,∠ACB=90°,∠B=25°,以C 为圆心,CA 的长为半径的圆交AB 于点D ,求⌒AD 的度数.【例7】如图,在⊙O 中,AB 为直径,弦DE 与AB 相交于点C ,且CD=CO.若⌒AD 的度数为30°,求⌒BE 的度数.【例8】如图,AB 、CD 是⊙O 的两条直径CE ∥AB.求证:⌒⌒AE BC =【例9】如图,P 为⊙O 外一点,PB 、PD 分别交O 于A 、B 、C 、D 四点,PO 平分∠BPD 。

人教版九年级数学复习课件:第二十四章 章末知识复习(共18张PPT)

人教版九年级数学复习课件:第二十四章 章末知识复习(共18张PPT)

(B)6 3 (D)8
2.(海南中考)如图,将☉O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧 则∠APB的度数为( D ) (A)45° (B)30° (C)75° (D)60°
上一点,
3.如图,在☉O 中, = ,∠ACB=60°.
(1)求证:∠AOB=∠BOC=∠AOC;
证明:(1)因为 = ,
知识点三:与圆有关的计算
1.(凉山州中考)将圆心角为90°,面积为4π cm2的扇形围成一个圆锥的侧面,则所
围成的圆锥的底面半径为( A )
(A)1 cm
(B)2 cm
(C)3 cm
(D)4 cm
2.(义乌中考)一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个
正方形,边长都为1,则扇形和圆形纸板的面积比是(
这条弦;③相等圆心角所对的弧相等;④弦相等,所对的弧相等;⑤同一条弦所对的圆
周角都相等.其中真命题是 ①②
.
常见错因:忽视圆的有关性质成立的前提条件,圆心角,弦,弧的等量转换必须在同圆或 等圆中才能成立.
自主纠错:
.
OD OF, 因为在△ODC 和△OFC 中, DOC FOC, 所以△ODC≌△OFC(SAS),所OC以∠OOCF,C=∠ODC=90°,所以OF⊥CF,所以CF与☉O相切.
(2)若AD=2,F为AE的中点,求AB的长.
(2)解:如图所示,连接 DE, 因为 AO=DO,AF=EF,AD=2,所以 DE=2OF=2, 因为 E 是 BC 的中点,所以 EC=1, 在 Rt△DCE 中,由勾股定理得 DC= DE2 EC2 = 22 12 = 3 , 所以 AB=CD= 3 .
1.一个点到圆上的最大距离为13 cm,最小距离是7 cm,则圆的半径为( D )

九上数学-第24章-24.1~24.3-知识点

九上数学-第24章-24.1~24.3-知识点

1九上数学-第24章-24.1~24.3-知识点1、比例的基本性质:①外项之积等于 内项之积 ,(或者说交叉 相乘 的结果会相等), ②第一 比例项和第四 比例项可以互换,第二 比例项和第三 比例项也可以互换; ③左右两边式子的倒数 相等; ④分子比分子 ,等于分母 比分母 。

2、等积式化为比例式,将相乘的因式放在 交叉 位即可。

如果 a:b=b:c ,则称b 是a 和c 的比例中项.3、合比性质:如果d c b a =,那么 d d c b b a ±=± ,等比性质:如果k d c b a ==,那么k d b c a =++ 。

已知一个比例式的值,求其他变形式的值,通常可用 特殊值(赋值) 法, 设K (参数) 法,也可利用 合比 性质和 等比 性质,通过变形得出。

4、黄金分割:线段AB 上有一点P (AP >BP ),如果满足AP BP AB AP = ,则称点P 是线段AB 的黄金分割点,其中AB AP= 215- ,约等于 0.618 ,AB BP= 253- ,约等于_0.382_.一条线段有 2_个黄金分割点。

5、三角形的重心是三角形三条 中线 的交点,重心到顶点的距离是其到对边中点距离的 2 倍,重心与三个顶点的连线段,将三角形的面积 三 等分。

6、三角形一边的平行线性质定理简记:已知A 字形,或者X 形,如果平行,则对应线段成比例.所得两个三角形的三边对应边成比例 ,其逆定理(即判定定理)可简记为如果 对应线段成比例 ,则 平行 .特别要注意的是,A 字形中,底之比 等于腰之比,不能推平行。

7、平行线分线段成比例(井形)定理:两条直线被三条 平行线 所截,截得的 对应线段成比例 。

特殊地,如果一条直线上截得的线段相等,则另一条直线上截得的线段 相等 。

8、已知线段a 、m 、n ,且ax=mn ,求作x ,下面作法正确的是 C )关键点为:①相乘的两因式要放在 交叉位,②求做的线段x 必须放在 远 端(远/近)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学九年级第24章24.1.1---24.1.3复习讲义
【知识点1】 圆的定义
(1)旋转方式定义: (2)集合方式定义: (3)圆的二要素:
【例1】如图,在△ABC
中,∠
ACB=90
°,
AC=2㎝,BC=4cm , CM 是中线,以点
C 为圆心,
cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .
【例2】已知线段AB=3㎝,平面内到点A 和点B 的距离都等于2㎝的点有几个?试通过作图确定满足条件的点.
【练习1】下列条件能确定圆的为( ) A.以已知点O 为圆心;
B.以点O 为圆心,2㎝为半径;
C.以2㎝为半径;
D.经过已知点A ,且半径为2㎝.
【练习2】如图,王大爷家有一边长20m 的正方形鱼塘, 王大爷为看护鱼塘,在鱼塘的一角C 用长30m 的铁链拴 着一条狗E ,请你通过作图,画出狗E 的活动范围.
【知识点2】圆的有关概念
(1)弦
直径 (2)弧 半圆
优弧(表示方法) 劣弧 (3)等圆 (4)等弧
【例3】判断下列说法的正误
(1)半圆是弧,但弧不一定是半圆;
(2)在圆中一条弧所对的弦只有一条,一条弦说对的弧也只有一条; (3)弦是直径;
(4)圆中最长的弦是经过圆心的弦; (5)长度相同的两段弧是等弧.
【练习1】如图,在⊙O 中,直径为 , 弦有 , 劣弧有 , 优弧有 ,
【练习2】如图,CD 是⊙O 的直径,∠EOD=84°, AE 交⊙O 于点B ,且AB=OC , 求∠A 的度数.
【练习3】已知半径为5的⊙O 中,弦AB= , 弦AC=5 ,求∠BAC 的度数.
【知识点3】垂径定理
(1)垂径定理及其推论
(2)如图,在⊙O 中,CD 是直径,AB 是弦,
CD ⊥AB 于点E , 则 ; ; .
(3)如图,若AE=EB ,CD 是直径, 则 ;
; . (4)如图,若⌒

BD AD ,CD 是直径,
则 ;
; .
(5)如图,CD ⊥AB ,AE=EB , 则 ;
; .
【例4】如图,要测量一块钢板上小孔的直径,通常采用间接的测量方法,若将一个小孔直径为10cm 的标准钢珠放在小孔上,测得钢珠顶端于小孔平面的距离h=8cm ,求小孔的直径d. 【例5】如图,半径为6的⊙E 在直角坐标系中, 与x 轴交于A 、B 两点,与y 轴交于C 、D 两点, 已知C (0,3)、D (0,-7),求圆心E 的坐标.
【练习1】如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,已知AB=8cm ,OC=3cm , 则⊙O 的半径为 . 【练习2】如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD=1,
525
则弦AB的长度为_________ .
【练习3】如图是一个圆弧形门,圆弧所在圆的圆心的高度与该圆的半径相同,AB=CD=20cm,
BD=200cm,且AB、CD于水平面都是垂直的,根据以上数据请计算这个圆弧形门
的最高点离地面的高度.
【知识点4】圆心角、弧、弦、弦心距之间的关系
(1)圆心角的定义
(2)圆心角、弧、弦、弦心距之间的关系
如图,AB、CD是⊙O的两条弦,OE⊥AB,OF⊥CD.
①若AB=CD,则__________,②若∠AOB=∠COD则__________,
__________, __________,
__________, __________,
③若,则__________, ④若OE=OF,则__________,
__________, __________,
__________, __________,
(3)一条弧的度数等于它所对圆心角的度数.
【例6】如图,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,
CA的长为半径的圆交AB于点D,求

AD的度数.
【例7】如图,在⊙O中,AB为直径,弦DE与AB相交于点C,
且CD=CO.若

AD的度数为30°,求

BE的度数.
【例8】如图,AB、CD是⊙O的两条直径CE∥AB.
求证:


AE
BC=
【例9】如图,P为⊙O外一点,PB、PD分别交O于
A、B、C、D四点,PO平分∠BPD。

试说明∠AOB=∠COD
【例10】如图,已知OA、OB是⊙O的半径,C为弧AB的
中点,M、N分别为OA、OB的中点.
求证:MC=NC
【练习1】如图,AB是⊙O的直径,AC∥OD,若= 70°
求的度数.
【练习2】如图,在△ABC中,AB=AC,以AB为直径的半圆交BC于点D,交AC于
点E,若弧DE的度数为40°,求A的度数.
【练习3】如图,已知在⊙O中,∠AOD=∠COB ,求证:AB=CD
【练习4】如图,BC是⊙O的直径,OA是⊙O的半径,弦BE∥OA,求证:


AE
AC=

【知识点5】圆周角
(1)圆周角的定义
(2)圆周角定理
(3)圆周角定理的证明
(4)同弧(或等弧)所对的圆周角相等;在同圆或等圆所对的圆周角相等.
(5)直径(或半圆)所对的圆周角为90°;90°的圆周角所对的弦是直径,所对的弧是半
圆.
(6)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
(7)圆内接多边形和多边形的外接圆
(8)圆内接四边形的对角互补.


CD
AB=

CD

AC
【例11】如图,在⊙O中,已知∠ACB=2∠BAC,求证∠AOB=2∠BOC.
【例12】如图,BC是⊙O的直径,D是⊙O上一点,使AD=AC,⊙O的半径为4,∠B=30°,求△ACD的面积.
2,点C在弦AB所对的优弧上(不与【练习1】如图,已知⊙O的半径为2,弦AB的长为3
A、B重合),求∠ACB的度数
【练习2】如图,在⊙O中AD为直径,OB⊥AD交弦AC与于B,∠A=30°,OB=5,
求BC的长.。

相关文档
最新文档