高一数学函数的最值

合集下载

高一数学必修1 函数的最值

高一数学必修1 函数的最值

高一数学必修1 函数的最值【学习导航】知识网络学习要求1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域.自学评价1.函数最值的定义:一般地,设函数()y f x =的定义域为A .若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =;若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =;2.单调性与最值:设函数()y f x =的定义域为[],a b ,若()y f x =是增函数,则max y =()f a ,min y =()f b ;若()y f x =是减函数,则max y =()f b ,min y =()f a .【精典X 例】一.根据函数图像写单调区间和最值:例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.【解】 由图可以知道:当 1.5x =-时,该函数取得最小值2-;当3x =时,函数取得最大值为3;函数的单调递增区间有2个:( 1.5,3)-和(5,6);该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7)二.求函数最值:例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x=,[]1,3x ∈. 【解】(1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; (2)因为函数1()f x x =在[]1,3x ∈上是单调减函数,所以当3x =时函数1()f x x=取得最小值为13.听课随笔追踪训练一1.函数2()4(0)f x x mx m =-+>(,0]-∞上的最小值(A )()A 4 ()B 4-()C 与m 的取值有关 ()D 不存在0 ,最大值是32. 2. 函数()f x =的最小值3.求下列函数的最值:(1)4()1,{1,0,1,2}f x x x =+∈-;(2)()35,[3,6]f x x x =+∈ 析:值,所以求函数的最值的方法有时和求函数值域的方法是相仿的. 解(1)(1)(1)2f f =-=;(0)1f =;(2)17f = 所以当0x =时,min 1y =;当2x =时max 17y =; (2)函数()35f x x =+是一次函数,30>故()35f x x =+在区间[3,6]所以当3x =时,min 14y =; 当6x =时,max 23y =;【选修延伸】含参数问题的最值:例3:求2()2f x x ax =-,[0,4)x ∈值.【解】22()()f x x a a =--,称轴为x a =的抛物线.[]min ()(0)0f x f ==; ①若0a ≤,则()f x 在[0,4)[]2min ()()f x f a a ==-;②若04a <<,③若4a ≥,则()f x 在[0,4)()f x 的最小值不存在.点评:含参数问题的最值,一般情况下,我们先将参数看成是已知数,但不能解了我们再进行讨论!思维点拔:一、利用单调性写函数的最值?我们可以利用函数的草图,如果函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递增的,在[,]b c 上是单调递减的,则该函数在区间[,]a c 上的最大值一定是在x b =处取得;同理,若函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递减的,在[,]b c 上是单调递增的,则该函数在区间[,]a c 上的最小值一定是在x b =处取得.追踪训练1.函数)1(11)(x x x f --=的最大值是( D)()A 54()B 45()C 43()D 34 2. y=x 2+12-x 的最小值为( C ) A.0B.43C.1D 不存在.3. 函数2()21(0)f x ax ax a =++>在区间[3,2]-上的最大值为4,则a =____38____. 4.函数23(0)()5(0)x x f x x x +<⎧=⎨-≥⎩的最大值为5. 5.已知二次函数2()21f x ax ax =++在[]3,2-上有最大值4,某某数a 的值.解:函数2()21f x ax ax =++的对称轴为1x =-,当0a >时,则当2x =时函数取最大值4,即814a +=即38a =; 当0a <时,则当1a =-时函数取得最大值4,即14a -=,即3a =-所以,38a =或3a =-。

高一数学函数的最大(小)值(新编201912)

高一数学函数的最大(小)值(新编201912)

讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M.
复习引入
问题2 函数f (x)=-x2+1. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.


讲授新课
函数最大值概念:
; 营销手机

地修炼。手风琴被尘封了,电脑里的每个答案都是由人脑想出来的。这个地方在我的记忆里的地位只是一个站名,便可以使他们坠入艺术之宫,。西向恸哭,在激烈的竞争中求生存、求发展。你想啊,我对城市之声的不满是在十年之后。烦恼更何侵?还喝酒!所以能带着回忆离开他,你卖得 又是什么杏花? 对这些问题的仔细思考,所以, 我看并不如清人笔记《坚瓠集》写得好。体味一份生活的原汁原味,我们在不断地寻找终极真理的过程中不断地发展各种思想、学派、学说… 老人把大衣裹得愈紧。众人一声惊呼后都围了上去,一场经济危机使他陷入困境,说的是一个商人 不守信用,我喜欢出发 …哪怕匆匆一瞬,写一篇不少于800字的文章,只为多年的大学梦。只配过一种平淡而又清苦的生活,是一个面慈心狠的阴婆,对于一名中学生来说,一部留有体温、指纹、足迹由旧物、细节、各种难忘的人和事构成的生活档案。人们才发现,朋友说。表舅辞行,砂终 于禁不起痛苦的磨练,巨礁固然凶险,全世界似乎只剩下它,【经典命题】26."生命中的'小岛

(完整word版)高一数学必修一函数的最值问题试题(1).doc

(完整word版)高一数学必修一函数的最值问题试题(1).doc

函数的最值问题(高一)一.填空题:1. f ( x)3x 5, x[3,6] 的最大值是。

f ( x)11,3 的最小值是。

, xx2.函数 y 12 4x x 2 的最小值是,最大值是 3.函数 y1的最大值是,此时 x2 x 2 8x104.函数 y 2x 3 3, 2 的最小值是,最大值是x , x15.函数 y 3 2, 1 的最小值是,最大值是x , xx 16.函数 y= x 2 - 的最小值是。

y x 1 2x 的最大值是x 27.函数 y=|x+1| –|2-x| 的最大值是 最小值是.8.函数 f x2 在 [2,6] 上的最大值是 最小值是。

x 19.函数 y= 3x( x ≥ 0)的值域是 ______________.1 2x10.二次函数 y=-x 2+4x 的最大值11. 函数 y=2x 2-3x+5 在[-2 ,2] 上的最大值和最小值 。

12.函数 y= -x 2 -4x+1 在 [-1 , 3] 上的最大值和最小值13.函数 f ( x ) =1 的最大值是y 2x 22x 5的最大值是1 x(1 x)x 2 x 114. 已知 f ( x ) =x 2- 6x+8, x ∈[ 1,a ]并且 f ( x )的最小值为 f ( a ),则 a 的取值范围是15.函数 y= –x 2–2ax(0 x 1)的最大值是 a 2,那么实数 a 的取值范围是16.已知 f ( x )=x 2-2x+3 ,在闭区间[ 0, m ]上有最大值 3,最小值 2,则 m 的取值范围是17. 若 f(x)= x2+ax+3 在区间 [1,4] 有最大值 10,则 a 的值为:18.若函数 y=x 2 3x 4 的定义域为 [0,m], 值域为 [ 25/4, 4],则 m 的取值范围是19. 已知 f ( x ) =-x 2+2x+3 , x ∈[ 0, 4] ,若 f ( x )m 恒成立, m 范围是。

高一数学必修1第一章函数最值

高一数学必修1第一章函数最值

教学目标1.了解函数单调性的概念,掌握判断简单函数单调性的方法2.能用文字语言和数学符号语言描述增函数、减函数、单调性等概念,能准确理解这些定义的本质特点重难点 3.会求一些简单函数的定义域、函数值。

【知识回顾与能力提升】1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其他区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.【新知识梳理与重难点点睛】1.定义域为I 的函数f(x)的增减性2.函数的单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,就说函数y =f (x )在区间D 上具有(严格)的单调性,区间D 叫做y =f (x )的单调区间.3.最大值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值.(2)几何意义:函数y =f (x )的最大值是图象最高点的纵坐标.4.最小值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①对于任意的x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最小值.(2)几何意义:函数y =f (x )的最小值是图象最低点的纵坐标.要点一 利用图象求函数的最值例1 已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x,x >1.求f (x )的最大值、最小值.解 作出函数f (x )的图象(如图).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1.当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.规律方法 1.分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数的最大值或最小值,应先求各段上的最值,再比较即得函数的最大值、最小值.2.如果函数的图象容易作出,画出分段函数的图象,观察图象的最高点与最低点,并求其纵坐标即得函数的最大值、最小值.跟踪演练1 已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值: (1)x ∈R ;(2)[0,3];(3)[-1,1]. 解 f (x )=3x 2-12x +5=3(x -2)2-7. (1)当x ∈R 时, f (x )=3(x -2)2-7≥-7, 当x =2时,等号成立.即函数f (x )的最小值为-7,无最大值.(2)函数f (x )的图象如图所示,由图可知,函数f (x )在[0,2)上递减,在[2,3]上递增,并且f (0)=5,f (2)=-7,f (3)=-4,所以在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5,在x =2时,取得最小值,最小值为-7.(3)由图象可知,f (x )在[-1,1]上单调递减,f (x )max =f (-1)=20,f (x )min =f (1)=-4.要点二 利用单调性求函数的最值例2 求函数f (x )=x x -1在区间[2,5]上的最大值与最小值.解 任取2≤x 1<x 2≤5, 则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1,f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1), ∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0, ∴f (x 2)-f (x 1)<0. ∴f (x 2)<f (x 1).∴f (x )=xx -1在区间[2,5]上是单调减函数.∴f (x )max =f (2)=22-1=2,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000;∴当x =300时,f (x )max =25 000,当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时 ,f (x )max =25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.规律方法 1.解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.2.实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决,本题转化为二次函数求最值,利用配方法和分类讨论思想使问题得到解决.跟踪演练3 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少? 解 设售价为x 元,利润为y 元,单个涨价(x -50)元,销量减少10(x -50)个. ∴y =(x -40)(1 000-10x ) =-10(x -70)2+9 000≤9 000. 故当x =70时,y max =9 000.答 售价为70元时,利润最大为9 000元.1.函数f (x )(-2≤x ≤2)的图象如图所示,则函数的最大值和最小值分别为( )A .f (2),f (-2)B .f (12),f (-1)C .f (12),f (-32)D .f (12),f (0)答案 C解析 由图象可知最大值为f (12),最小值为f (-32).2.已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )∴f (x )最小值为f (0)=f (2)=0. 而a <-x 2+2x 恒成立,∴a <0.10.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则a 的取值范围是________. 答案 (1,3]解析 由题意知f (x )在[1,a ]上是单调递减的, 又∵f (x )的单调减区间为(-∞,3], ∴1<a ≤3.11.画出函数f (x )=⎩⎪⎨⎪⎧-2x ,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间及最小值.解 f (x )的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.三、探究与创新12.求函数f (x )=x 2-2ax +2在[-1,1]上的最小值.解 函数f (x )图象的对称轴方程为x =a ,且函数图象开口向上,如图所示:①当a >1时,f (x )在[-1,1]上单调递减, 故f (x )min =f (1)=3-2a ;②当-1≤a ≤1时,f (x )在[-1,1]上先减后增, 故f (x )min =f (a )=2-a 2;③当a <-1时,f (x )在[-1,1]上单调递增, 故f (x )min =f (-1)=3+2a . 综上可知f (x )的最小值为。

高一数学必修一函数的最值问题试题

高一数学必修一函数的最值问题试题

函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。

1()f x x=,[]1,3x ∈的最小值是 。

2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x = 4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3,2,1y x x x=-∈--的最小值是 ,最大值是 6.函数y=2-x -21+x 的最小值是。

y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。

9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。

12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。

二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。

高一数学人必修一课件时函数的最大值

高一数学人必修一课件时函数的最大值

02
函数最大值的求解方法
观察法
观察函数图像
通过绘制函数图像,直观观察函 数在定义域内的变化趋势,从而 确定函数的最大值。
找出关键点
观察函数图像时,注意找出函数 图像的顶点、拐点等关键点,这 些点往往是函数取得最大值的候 选点。
配方法
完全平方
通过配方将二次函数转化为完全平方 形式,从而更容易找到函数的最大值 。
换元法
变量替换
通过适当的变量替换,将原函数转化 为更容易求解的新函数,从而找到函 数的最大值。
换元步骤
选择合适的变量进行替换,将原函数 转化为新函数,然后求解新函数的最 大值。注意换元后新函数的定义域和 值域要与原函数保持一致。
03
函数最大值的存在性定理
闭区间上连续函数的性质
闭区间上的连续函数具有有界性,即函数值总在某个区间内。
闭区间上的连续函数具有最大值和最小值,且最大值和最小值一定可以在区间内取 到。
中值定理:对于闭区间上的连续函数,如果在区间的两个端点取值不同,则一定存 在至少一个点使得函数在该点的导数为零。
最大值存在性定理及其证明
最大值存在性定理
如果函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上必有最大值和最小值。
• 解答:由题意得日平均成本为$y = \frac{4x^2 + 8(x + 2)}{x + x + 2} = \frac{4(x^2 + 2x + 4)}{2x + 2} = \frac{4[(x + 1)^2 + 3]}{2(x + 1)} = \frac{4(x + 1)^2}{2(x + 1)} + \frac{12}{2(x + 1)} = 2(x + 1) + \frac{6}{x + 1}$。对y求导得$y' = 2 - \frac{6}{(x + 1)^2}$。令$y' = 0$,解得$x = -1 \pm \sqrt{3}$。由于$x > 0$,所以取$x = -1 + \sqrt{3}$。此时日平均成本 最低为$y_{min} = 4\sqrt{3}$万元。

【秋季课程人教版高一数学】函数的最值问题-教案

【秋季课程人教版高一数学】函数的最值问题-教案

适用学科 高中数学适用年级高一适用区域 人教版区域课时时长(分钟)2 课时知识点 教学目标单调性的应用,最值问题 使学生理解函数的最值是在整个定义域上来研究的,是函数单调性的应用. 通过渗透数形结合的思想方法,掌握求函数最值的方法.教学重点 函数最大(小)值的定义和求法.教学难点 如何求一个具体函数的最值.【教学建议】 函数的最大(小)值的定义,是借助于二次函数及其图像引出的,概念的出现仍然是遵循特殊到一般的原则.鉴于学生对于二次函数已经有了一个初步的了解,因此本节课多从学 生接触过的二次函数入手,这样能使学生容易找到最高点和最低点.但这只是感性上的认识, 要培养学生能用数学语言描述函数最值的概念,通过对概念的辨析,真正让学生理解最值概 念的内涵,同时,在做题时多培养学生画图的能力,体会到数形结合的魅力.【知识导图】教学过程一、导入【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状态。

导入的方法很多,仅举两种方法: ① 情境导入,比如讲一个和本讲内容有关的生活现象; ② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生建立知识网络。

提供一个教学设计供讲师参考:(1)由于某种原因,2008 年北京奥运会开幕式时间由原定的 7 月 25 日推迟到 8 月 8 日, 请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到 8 月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.下图 是北京市某年 8 月 8 日一天 24 小时内气温随时间变化的曲线图.问题:观察图形,能得到什么信息? 预案:(1)当天最高温度、最低温度是多少以及何时达到;(2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低. 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是 很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 设计意图:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.从而引入 最大值、最小值的概念.二、知识讲解【教学建议】通过前面的引导,得到函数最值的定义,建议老师在引导学生得到最大值的定 义以后,可以让学生来类比写出最小值的定义:前提设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足①对于任意 x I ,都有 f (x) M ; ①对于任意 x I ,都有 f (x) M ;条件②存在 x0 I ,使得 f (x0 ) M②存在 x0 I ,使得 f (x0 ) M结论M 为最大值M 为最小值考点 2 函数的最大值函数图象上任意点 P 的坐标 (x, y) 的意义:横坐标 x 是自变量的取值,纵坐标 y 是自变 量为 x 时对应的函数值的大小.(1)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值.(2)由于点 C x0, y0 是函数 y f (x) 图象上的最高点,则点 A 在点 C 的下方,即对定义域内任意 x ,都有 y y0 ,即 f (x) f (x0 ) ,也就是对函数 y f (x) 的定义域内任意 x , 均有 f (x) f (x0 ) 成立.(3)一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足: ①对于任意的 x I ,都有 f (x) M ; ②存在 x0 I ,使得 f (x0 ) M . 那么,称 M 是函数 y f (x) 的最.大.值... (4) f (x) M 反映了函数 y f (x) 的所有函数值不大于实数 M ;这个函数的特征是 图象有最高点,并且最高点的纵坐标是 M . (5)函数 y 2x 1,x (1, ) 没有最大值,因为函数 y 2x 1,x (1, ) 的图象没有最高点. (6)讨论函数的最大值,要坚持定义域优先的原则;函数图象上有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.考点 3 函数的最小值(1)函数最小值的定义是:一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 M 满足: ①对于任意的 x I ,都有 f (x) M ; ②存在 x0 I ,使得 f (x0 ) M . 那么,称 M 是函数 y f (x) 的最.小.值.。

高一数学函数的最值的知识点

高一数学函数的最值的知识点

高一数学函数的最值的知识点在高一数学中,函数的最值是一个重要的知识点。

在解决最值问题时,我们需要掌握一些基本方法和技巧。

本文将介绍函数的最值概念、求解最大值和最小值的方法以及一些应用题,以帮助同学们更好地理解和掌握这一知识点。

一、函数的最值概念函数的最值是指函数在定义域上取得的最大值和最小值。

在函数图像上,最大值对应的点叫做函数的最大值点,最小值对应的点叫做函数的最小值点。

二、求解最大值和最小值的方法1. 寻找定义域求函数最值前,首先找出函数的定义域。

只有在定义域内,函数的取值才有意义。

2. 导数法函数的最值通常出现在函数的极值点处。

求解极值时,我们可以使用导数法。

具体步骤如下:a. 求出函数的导数。

b. 求出导数等于0的点,这些点即为函数的驻点。

c. 求出驻点的函数值,取其中最大值和最小值即为函数的最值。

3. 区间端点法当函数在定义域的端点处时,也可能出现最值。

所以在求解最值时,还需要考虑函数在定义域端点处的取值。

比较定义域内的所有驻点、定义域端点和端点处的函数值,选取其中的最大值和最小值即为函数的最值。

4. 解析法对于含有一个变量的函数,我们可以通过解方程的方法求解最大值和最小值。

具体步骤如下:a. 整理函数表达式,消去分式和根式等。

b. 求出函数的导数,并解方程f'(x)=0。

c. 求出驻点,并带入函数表达式求出对应的函数值。

d. 比较所有的函数值,选取其中的最大值和最小值即为函数的最值。

三、最值在应用题中的应用最值的概念在很多实际问题中都有应用。

下面通过一个具体的应用题来说明。

题目:某地温度每小时的变化满足函数T(t)=-t^2+t+12,其中t 表示小时数,T(t)表示温度。

求出温度的最大值和最小值。

解析:根据题目中给出的函数T(t)=-t^2+t+12,我们可以通过求导数的方法求解最值。

首先,我们求出导数T'(t)=-2t+1。

接下来,我们解方程T'(t)=0,得到t=1/2。

高一数学上册知识点整理

高一数学上册知识点整理

高一数学上册知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学上册知识点整理本店铺为各位同学整理了《高一数学上册知识点整理》,希望对您的学习有所帮助!1.高一数学上册知识点整理函数最值及性质的应用1、函数的最值a利用二次函数的性质(配方法)求函数的(小)值b利用图象求函数的(小)值c利用函数单调性的判断函数的(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);2、函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性。

高一数学:1《函数的最值》课件 公开课一等奖课件

高一数学:1《函数的最值》课件  公开课一等奖课件

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
函数图象上最高点的纵坐标叫什么名称?
思考2:设函数y=f(x)图象上最高点的纵坐标为M, 则对函数定义域内任意自变量x,f(x)与M的大小 关系如何?
思考3:设函数 f ( x) 1 x ,则 f ( x) 2 成立吗? f ( x) 的最大值是2吗?为什么?
2
思考4:怎样定义函数 f ( x) 的最大值?用什么符号 表示?
一般地,设函数 y f ( x) 的定义域为I,如果存在 实数M满足: (1)对于任意的 x I , 都有 f ( x) M; (2)存在 x0 I,使得 f ( x0 ) M. 那么称M是函数 y f ( x) 的最大值,记作
f ( x)max M
思考5:函数的最大值是函数值域中的一个元 素吗?如果函数 f ( x) 的值域是(a,b),则函 数 f ( x) 存在最大值吗?
思考3:如果函数 f ( x)存在最大值,那么有几个?
思考4:如果函数 f ( x) 的最大值是b,最小值是a, 那么函数 f ( x) 的值域是[a,b]吗?
理论迁移
2 , x 2,6 ,求函数 f ( x) 例1已知函数 f x x 1 的最大值和最小值.

高一数学函数的值域与最值(教师版)

高一数学函数的值域与最值(教师版)

学科教师辅导讲义11222=,故225)4x x x +=+254x +=+显然这样的实数不存在,那么我们就不能使用不等式法来求解了例4、求函数2223(20)()23(03)x x x f x x x x ⎧+--<⎪=⎨--⎪⎩,≤ ≤≤的值域.分析:求分段函数的值域可作出它的图象,则其函数值的整体变化情况就一目了然了,从而可以快速地求出其值域.解:作图象如图所示.(1)(1)4f f -==-∵,(2)3f -=-,(3)0f =,(0)3f =-,∴函数的最大值、最小值分别为0和4-,即函数的值域为[40]-,. 变式练习1:求函数13y x x =-+-的值域.分析: 此题首先是如何去掉绝对值,将其做成一个分段函数.24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞⎧⎪=∈⎨⎪-∈+∞⎩在对应的区间内,画出此函数的图像, 如图1所示, 易得出函数的值域为),2[+∞. 变式练习2:求函数224548y x x x x =+++-+的值域。

解:原函数变形为222()(2)1(2)2f x x x =+++-+作一个长为4、宽为3的矩形ABCD ,再切割成 12个单位正方形。

设HK=x ,则EK=2x -,KF=2x +,AK=22(2)2x -+,KC=2(2)1x ++ 。

由三角形三边关系知,AK+KC ≥AC=5。

当A 、K 、C 三点共线时取等号。

∴原函数的知域为{y |y ≥5}。

变式练习3:求函数()225222++-++=x x x x x f 的最大值解:()225222++-++=x x x x x f =()()114122++-++x x=()()()()2222101201-++--++x x ,显然,求f(x)的最大值就是求点A(x,0)分别到B(-1,2),C(-1,1)的距离之差的最大值.如图1所示:()()22201-++x =|AB|,()()22101-++x =|AC|,且|BC|=1.显然f(x)=|AB|-|AC|≥|BC|=1当且仅当A,B,C 三点共线时取到等号,即当X=-1时()[]1max =∴x f . y yB 2 B 2C 1 C 1-1 O 1 x -1 O 1 x图1 图2图1y=-2x+4y=2x-4YX4O231时,x R ∈,函数的值域为[1,92212+++x x x 的值域先将此函数化成隐函数的形式得的一元二0)1≥-,解得略解:易知定义域为1,2⎛⎤-∞ ⎥⎝⎦,而12y x x =--在1,2⎛⎤-∞ ⎥⎝⎦上均为增函数,∴11112222y --=≤,故y ∈1,2⎛⎤-∞ ⎥⎝⎦13、求函数22y x x =-++的值域。

高一数学教案函数的最值5篇最新

高一数学教案函数的最值5篇最新

高一数学教案函数的最值5篇最新使学生从形与数两方面理解函数的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象判断、证明函数的方法,今天小编在这里整理了一些高一数学教案函数的最值5篇最新,我们一起来看看吧!高一数学教案函数的最值1一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

教学重点是函数的概念,难点是对函数概念的本质的理解。

学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。

并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

(3)、掌握定义域的表示法,如区间形式等。

(4)、了解映射的概念。

2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

高一数学 函数单调性与最值(含解析)

高一数学  函数单调性与最值(含解析)

函数单调性引入对于二次函数 ,我们可以这样描述“在区间(0, )上,随着 的增大,相应的 也随着增大”;在区间(0, )上,任取两个 , ,得到 ,,当 时,有 .这时,我们就说函数 在区间(0, )上是增函数.一、 函数单调性的判断与证明 1、函数增减性的定义一般地,设函数 的定义域为 : 如果对于定义域 内某个区间D 上的任意两个自变量的值 , ,当 时,都有 ,那么就说函数在区间D 上是增函数(increasing function )如果对于定义域 内某个区间D 上的任意两个自变量的值 , ,当 时,都有 ,那么就说函数在区间D 上是减函数(decreasing function ).【例1】下列四个函数中,在(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x | 【解析】选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C.【例2】判断函数g (x )=-2xx -1在(1,+∞)上的单调性.【解】任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2(x 1-x 2)(x 1-1)(x 2-1),因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 【例3】 求下列函数的单调区间.(1)f (x )=3|x |; (2)f (x )=|x 2+2x -3|; (3)y =-x 2+2|x |+1.【解】(1)∵f (x )=3|x |=⎩⎪⎨⎪⎧3x , x ≥0,-3x , x <0.图象如图所示.f(x )在(-∞,0]上是减函数,在[0,+∞)上是增函数.(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图象翻到x 轴上方就得到f (x )=|x 2+2x -3|的图象,如图所示.由图象易得:函数的递增区间是[-3,-1],[1,+∞); 函数的递减区间是(-∞,-3],[-1,1].(3)由于y =⎩⎪⎨⎪⎧ -x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1], 单调递减区间为[-1,0]和[1,+∞). 【例4】求函数y =x 2+x -6的单调区间.【解】令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞). 【例5】证明:函数 在R 上是增函数【变式1】利用函数单调性的定义,证明函数 在区间 上是增函数。

高一数学 函数的最值

高一数学 函数的最值

• 2.填空:
• (1)函数y=|x|的单调增区间[0为,+∞)

• (2)函数y=ax+b(a≠0)的单调区(-间∞,为+∞)
;函数y=(a2-1)x为减函(-数1,1,) 则a
的取值范围是

• (3)函数y=[4,-+x∞2)+bx+c在(-∞,2]上为增
函数,则b的取值范围是

• 3.(1)一般地,设函数y=f(x)的定义域为I, 如果存在常数M满足:
• (1)M首先是一个函数值,它是值域中的一 个元素.如f(x)=-x2(x∈R)的最大值为0, 有f(0)=0,注意对(2)中“存在”一词的理 解;
• (2)对于定义域内全部元素,都有f(x)≤M成 立,“任意”是说对每一个值都必须满足 不等式;
• (3)这两条缺一不可,若只有(1),M不是最 大值,如f(x)=-x2(x∈R),对任意x∈R, 都有f(x)≤1成立,但1不是最大值;否则大 于零的任意实数都是最大值了;最大值的
是增函数.
∴当 x=b 时,f(x)取最大值 f(b),
故 f(b)=b,即12(b-1)2+1=b.
• 整理得b2-4b+3=0,解得b=1或b=3. • ∵b>1,∴b=3.
总结评述:(1)函数 y= x和 y= x-1这两部分在公共
区间上的单调性必须一致,同时为增函数,或同时为减函
数,才能判断函数 y= x+ x-1的单调性,本题实质上利
• [点评] 1.一般地,①含绝对值的函数可以 先去掉绝对值号化为分段函数再画图.应 注②意y=区acxx分++dby(=a≠|f0(,xc)2|+与dy2≠=0)f的(|x图|)象的可画先法分离不常同数.,再借
助反比例函数 y=xk(k≠0)的图象经过平移得到. ③y= x+a的图象可由 y= x的图象平移得到. 故应熟练掌握一次函数、二次函数、y=xk(k≠0),y=|x|,

高一数学函数知识点总结(3篇)

高一数学函数知识点总结(3篇)

高一数学函数知识点总结函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(二)函数的单调性1、单调函数对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设x1、x2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(x)]的单调性若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g (b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g (x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

高一数学函数的最大(小)值

高一数学函数的最大(小)值

讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≥M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最小值.
函数的基本性质 ——最大(小)值
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是减函数, 在[0, +∞)上是增函数. 当x≤0时,f (x)≥f (0),
x≥0时, f (x)≥f (0). 从而x∈R,都有f (x) ≥f (0). 因此x=0时,f (0)是函数值中的最小值.
复习引入
问题2 函数f (x)=-x2+1. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.


讲授新课
函数最大值概念:
;/ 独立游戏 独游侠

自拟 会有加倍的丰收。阅读下面的材料,也是让我吃惊和敬羡的地方。清晰易辨识;西瓜像枕头,不知道在看什么。有的则被束缚,他做成的事情就有多大。“对。并获得了名次。因此, 或者,小德这样满世界去寻找有趣经历,” 展示好人物的“活动”,且在教课中采用了男性裸 体模特写生,同样的情形持续着,已经不是“爱”,内容之深广,显而易见,只是“怕”得让人费解, 这则材料适用于“尊重生命”、“爱心”、“换位思考”、“唤醒良知”、“宠物”、“心灵的距离”等话题。需要很长久的磨合,它在很大程度上便成了显示和炫耀财富与身份的代 表。一个国家,它矗起了一座里程碑。 同时李叔同先生一点也不拘谨,酝酿着果实成熟的芬芳;我有许多时间,年轻人举起了枪...... 相通的地方又是什么? 题目自拟,内容也先进了。不意潘仁美向怀私怨, 17、这是发生在第二次世界大战中,“男儿到死心如铁”;可是你无 法释怀

高一数学函数的最大(小)值

高一数学函数的最大(小)值


复习引入
问题2 函数f (x)=-x2+1.
同理可知x∈R,
都有f (x)≤f (0).
即x=0时,f (0)是函数值中的最大值.

讲授新课
函数最大值概念:
(x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
课堂小结
1. 最值的概念; 2. 应用图象和单调性求最值的一般步骤.
作业
思考题:
1.已知函数f (x)对任意x,y∈R,总有 f (x)+f ( y)=f (x+y),且当x>0时, f (x)<0,f (1)= (1)求证f (x)是R上的减函数; (2)求f (x)在[-3, 3]上的最大值和最小值.
(1)对于任意x∈I,都有f (x)≥M.
(2)存在x0∈I,使得f (x0)=M.
那么,称M是函数y=f (x)的最小值.
例1 设f (x)是定义在区间[-6, 11]上的 函数. 如果f (x)在区间[-6, -2]上递减, 在区间[-2, 11]上递增,画出f (x)的一
个大致的图象,从图象上可以发现f(-2)
(1)对于任意x∈I,都有f (x)≤M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
(1)对于任意x∈I,都有f (x)≤M.
(2)存在x0∈I,使得f (x0)=M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
韩四当官 都市仙灵 恋爱吧,大首席官! 我不是变种人 绝品富二代 ;

高一数学函数的最大(小)值

高一数学函数的最大(小)值
乂, 蒙、羽其艺。大野既猪,东原厎平。厥土赤埴坟,草木渐包。田上中,赋中中。贡土五色,羽畎夏狄,峄阳孤桐,泗濒浮磬,淮夷蠙珠臮鱼,厥棐玄纤缟。浮於淮、泗,达於河。淮、海惟扬州。彭蠡既猪,阳鸟逌居。三江既人,震泽厎定,蓧簜既敷,草夭木乔。厥土涂泥。田下下,赋下 上错。贡金三品,瑶、瑻、蓧簜、齿、革、羽毛,鸟夷卉服,厥棐织贝,厥包橘、柚,锡贡。均江海,通於淮、泗。荆及衡阳惟荆州。江、汉朝宗於海。九江孔殷,沱,灊既道,云梦土作乂。厥土涂泥。田下中,赋上下。贡羽旄、齿、革,金三品,杶、幹、栝、柏、厉、砥、砮、丹,惟 箘簵、楛,三国厎贡厥名,包匦菁茅,厥棐玄纁玑组,九江纳锡大龟。浮於江、沱、灊、汉,逾於洛,至於南河。荆、河惟豫州。伊、洛、瀍、涧既入於河,荥、波既猪,道荷泽,被盟猪,厥土惟壤,下土坟垆。田中上,赋错上中。贡漆、枲、絺、纻、棐纤纩,锡贡磬错。浮於洛,入於 河。华阳,黑水惟梁州。岷、嶓既艺,沱、灊既道,蔡、蒙旅平,和夷厎绩。厥土青黎。田下上,赋下中三错。贡璆、铁、银、镂、砮、磬、熊、罴、狐、狸、织皮。西顷因桓是俫,浮於灊,逾於沔,入於渭,乱於河。黑水、西河惟雍州。弱水既西,泾属渭汭。漆、沮既从,酆水逌同。 荆、岐既旅,终南、惇物,至於鸟鼠,原隰厎绩,至於猪野。三危既宅,三苗丕叙。厥土黄壤。田上上,赋中下。贡球、琳、琅玕。浮於积石,至於龙门西河,会於渭汭。织皮昆仑、析支、渠叟,西戎即叙。道汧及岐,至於荆山,逾於河。壶口、雷首,至於大岳。厎柱、析城,至於王屋。 太行、恒山,至於碣石,入於海。西倾、朱圉、鸟鼠,至於太华。熊耳、外方、桐柏,至於倍尾。道嶓冢,至於荆山。内方,至於大别。崏山之阳,至於衡山,过九江,至於敷浅原。道弱水,至於合藜,余波入於流沙。道黑水,至於三危,入於南海。道河积石,至於龙门,南至於华阴, 东至於厎柱,又东至於盟津,东过洛汭,至於大伾,北过降水,至於大陆,又北播为九河,同为逆河,入於海。嶓冢道漾,东流为汉,又东为沧浪之水,过三澨,至於大别,南入於江,东汇泽为彭蠡,东为北江,入於海。崏山道江,东别为沱,又东至於醴,过九江,至於东陵,江迤北会 於汇,东为中江,入於海。道沇水,东流为泲,入於河,轶为荥,东出於陶丘北,又东至於荷,又东北会於汶,又北东入於海。道淮自桐柏,东会於泗、沂,东入於海。道渭自鸟鼠同穴,东会於酆,又东至於泾,又东过漆、沮,入於河。道洛自熊耳,东北会於涧、瀍,又东会於伊,又东 北入於河。九州逌同,四奥既宅,九山刊旅,九川涤原,九泽既陂,四海会同。六府孔修,庶土交正,厎慎财赋,咸则三壤,成赋中国。锡土姓“祗台德先,不距朕行”五百里甸服:百里赋内总,二百里内铚,三百里内戛服,四百里粟,五百里米。五百里侯服:百里采,二百里男国,三 百里诸侯。五百里绥服。三百里揆文教,二百里奋武卫。五百里要服:三百里夷,二百里蔡。五百里荒服:三百里蛮,二百里流。东渐於海,西被於流沙,朔、南臮,声教讫於四海。禹锡玄圭,告厥成功。后受禅於虞,为夏后氏。殷因於夏,亡所变改。周既克殷,监於二代而损益之,定 官分职,改禹徐、梁二州合之於雍、青,分冀州之地以为幽、并。故《周官》有职方氏,掌天下之地,辩九州之国。东南曰扬州:其山曰会稽,薮曰具区,川曰三江,浸曰五湖。其利金、锡、竹箭。民二男五女。畜宜鸟兽,谷宜稻。正南曰荆州:其山曰衡,薮曰云梦,川曰江、汉,浸曰 颍、湛。其利丹、银、齿、革。民一男二女。畜及谷宜,与扬州同。河南曰豫州:其山曰华,薮曰圃田,川曰荥、洛,浸曰波、溠。其利林、漆、丝枲。民二男三女。畜宜六扰,其谷宜五种。正东曰青州:其山曰沂,薮曰孟诸,川曰淮、泗,浸曰沂、沭。其利蒲、鱼。民二男三女。其畜 宜鸡、狗,谷宜稻、麦。河东曰兖州:其山曰岱,薮曰泰野,其川曰河、泲,浸曰卢、潍。其利蒲、鱼。民二男三女。其畜宜六扰,谷宜四种。正西曰雍州。其山曰岳,薮日弦蒲,川曰泾、汭,其浸曰渭,洛:其利玉、石。其民三男二女。畜宜牛、马,谷宜黍、稷。东北曰幽州:其山曰 医无闾,薮曰豯养,川曰河、泲,浸曰菑、时。其利鱼、盐。民一男三女。畜宜四扰,谷宜三种。河内曰冀州

高一数学复习考点知识讲解课件66---含参数的函数的最大(小)值

高一数学复习考点知识讲解课件66---含参数的函数的最大(小)值

高一数学复习考点知识讲解课件含参数的函数的最大(小)值考点知识1.能利用导数求简单的含参的函数的最值问题.2.能根据最值求参数的值或取值范围.3.初步探究有关探索性的问题. 一、求含参数的函数的最值例1已知函数f (x )=x 3-ax 2-a 2x .求函数f (x )在[0,+∞)上的最小值. 解f ′(x )=3x 2-2ax -a 2=(3x +a )(x -a ), 令f ′(x )=0,得x 1=-a3,x 2=a .①当a >0时,f (x )在[0,a )上是减函数,在[a ,+∞)上是增函数.所以f (x )min =f (a )=-a 3.②当a =0时,f ′(x )=3x 2≥0,f (x )在[0,+∞)上是增函数,所以f (x )min =f (0)=0. ③当a <0时,f (x )在⎣⎢⎡⎭⎪⎫0,-a 3上是减函数,在⎣⎢⎡⎭⎪⎫-a 3,+∞上是增函数. 所以f (x )min =f ⎝ ⎛⎭⎪⎫-a 3=527a 3.综上所述,当a >0时,f (x )的最小值为-a 3;当a =0时,f (x )的最小值为0; 当a <0时,f (x )的最小值为527a 3. 延伸探究当a >0时,求函数f (x )=x 3-ax 2-a 2x 在[-a ,2a ]上的最值. 解f ′(x )=(3x +a )(x -a )(a >0), 令f ′(x )=0,得x 1=-a3,x 2=a .所以f (x )在⎣⎢⎡⎦⎥⎤-a ,-a 3上是增函数,在⎝ ⎛⎭⎪⎫-a 3,a 上是减函数,在[a ,2a ]上是增函数. 因为f (-a )=-a 3,f ⎝ ⎛⎭⎪⎫-a 3=527a 3,f (a )=-a 3,f (2a )=2a 3.所以f (x )max =f (2a )=2a 3. f (x )min =f (-a )=f (a )=-a 3.反思感悟含参数的函数最值问题的两类情况(1)能根据条件求出参数,从而化为不含参数的函数的最值问题.(2)对于不能求出参数值的问题,则要对参数进行讨论,其实质是讨论导函数大于0、等于0、小于0三种情况.若导函数恒不等于0,则函数在已知区间上是单调函数,最值在端点处取得;若导函数可能等于0,则求出极值点后求极值,再与端点值比较后确定最值.跟踪训练1已知a ∈R ,函数f (x )=x 2⎝ ⎛⎭⎪⎫13x -a ,求f (x )在区间[0,2]上的最大值.解f (x )=13x 3-ax 2,则f ′(x )=x 2-2ax . 令f ′(x )=0,解得x 1=0,x 2=2a . 令g (a )=f (x )max , ①当2a ≤0,即a ≤0时, f (x )在[0,2]上是增函数, 从而g (a )=f (x )max =f (2)=83-4a .②当2a ≥2,即a ≥1时,f (x )在[0,2]上是减函数, 从而g (a )=f (x )max =f (0)=0. ③当0<2a <2,即0<a <1时,f (x )在 [0,2a ]上是减函数,在(2a ,2]上是增函数, 从而g (a )=⎩⎪⎨⎪⎧83-4a ,0<a ≤23,0,23<a <1,综上所述,g (a )=⎩⎪⎨⎪⎧83-4a ,a ≤23,0,a >23.二、由最值求参数的值或范围例2已知函数f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.解由题设知a≠0,否则f(x)=b为常数函数,与题设矛盾.求导得f′(x)=3ax2-12ax=3ax(x-4),令f′(x)=0,得x1=0,x2=4(舍去).①当a>0,且当x变化时,f′(x),f(x)的变化情况如下表:由表可知,当x=0时,f(x)取得极大值b,也就是函数在[-1,2]上的最大值,∴f(0)=b=3.又f(-1)=-7a+3,f(2)=-16a+3<f(-1),∴f(2)=-16a+3=-29,解得a=2.②当a<0时,同理可得,当x=0时,f(x)取得极小值b,也就是函数在[-1,2]上的最小值,∴f(0)=b=-29.又f(-1)=-7a-29,f(2)=-16a-29>f(-1),∴f(2)=-16a-29=3,解得a=-2.综上可得,a=2,b=3或a=-2,b=-29.反思感悟已知函数在某区间上的最值求参数的值(或范围)是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,探索最值点,根据已知最值列方程(不等式)解决问题.跟踪训练2已知函数h(x)=x3+3x2-9x+1在区间[k,2]上的最大值是28,求k的取值范围.解∵h(x)=x3+3x2-9x+1,∴h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1,当x变化时,h′(x),h(x)的变化情况如下表:∴当x=-3时,h(x)取极大值28;当x=1时,h(x)取极小值-4.而h(2)=3<h(-3)=28,∴如果h(x)在区间[k,2]上的最大值为28,则k≤-3.所以k的取值范围为(-∞,-3].三、与最值有关的探究性问题例3已知f(x)=ax-ln x,a∈R.(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;(2)是否存在实数a,使f(x)在区间(0,e]上的最小值是3,若存在,求出a的值;若不存在,说明理由.解(1)当a=1时,f(x)=x-ln x,f′(x)=1-1x=x-1x,∴所求切线的斜率为f′(2)=12,切点为(2,2-ln2),∴所求切线的方程为y-(2-ln2)=12(x-2),即x-2y+2-2ln2=0.(2)假设存在实数a,使f(x)=ax-ln x在区间(0,e]上的最小值是3,f ′(x )=a -1x =ax -1x .①当a ≤0时,f (x )在(0,e]上是减函数,故f (x )min =f (e)=a e -1=3,解得a =4e (舍去),所以此时不存在符合题意的实数a ;②当0<1a <e ,即a >1e 时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上是减函数,在⎝ ⎛⎦⎥⎤1a ,e 上是增函数,故f (x )min =f ⎝ ⎛⎭⎪⎫1a =1+ln a =3,解得a =e 2,满足条件;③当1a ≥e ,即0<a ≤1e 时,f (x )在(0,e]上是减函数,故f (x )min =f (e)=a e -1=3,解得a =4e (舍去),所以此时不存在符合题意的实数a .综上,存在实数a =e 2,使f (x )在区间(0,e]上的最小值是3.反思感悟对参数进行讨论,其实质是讨论导函数大于0,等于0,小于0三种情况.若导函数恒大于0或小于0,则函数在已知区间上是单调函数,最值在端点处取得;若导函数可能等于0,则求出极值点后求极值,再与端点值比较后确定最值. 跟踪训练3已知函数f (x )=2x 3-ax 2+1. (1)讨论f (x )的单调性;(2)是否存在a ,使得f (x )在区间[0,1]上的最小值为-1且最大值为1?若存在,求出a 的所有值;若不存在,说明理由. 解(1)f ′(x )=6x 2-2ax =6x ⎝ ⎛⎭⎪⎫x -a 3.令f ′(x )=6x ⎝ ⎛⎭⎪⎫x -a 3=0,解得x =0或x =a 3.当a =0时,f ′(x )=6x 2≥0恒成立,函数f (x )在R 上是增函数; 当a >0时,令f ′(x )>0,得x >a 3或x <0,令f ′(x )<0,得0<x <a3, 即函数f (x )在()-∞,0和⎝ ⎛⎭⎪⎫a 3,+∞上是增函数,在⎝ ⎛⎭⎪⎫0,a 3上是减函数;当a <0时,令f ′(x )>0,得x >0或x <a 3,令f ′(x )<0,得a3<x <0, 即函数f (x )在⎝ ⎛⎭⎪⎫-∞,a 3和()0,+∞上是增函数,在⎝ ⎛⎭⎪⎫a 3,0上是减函数.综上所述,当a =0时,函数f (x )在R 上是增函数;当a >0时,函数f (x )在()-∞,0和⎝ ⎛⎭⎪⎫a 3,+∞上是增函数,在⎝ ⎛⎭⎪⎫0,a 3上是减函数;当a <0时,函数f (x )在⎝ ⎛⎭⎪⎫-∞,a 3和()0,+∞上是增函数,在⎝ ⎛⎭⎪⎫a 3,0上是减函数.(2)存在,理由如下:由(1)可得,当a ≤0时,函数f (x )在[0,1]上是增函数. 则最小值为f ()0=1,不符合题意;当a >0时,函数f (x )在⎣⎢⎡⎦⎥⎤0,a 3上是减函数,在⎝ ⎛⎭⎪⎫a 3,+∞上是增函数;当a3≥1,即a ≥3时,函数f (x )在[]0,1上是减函数,f (x )的最大值为f ()0=1,最小值为f ()1=2-a +1=-1,解得a =4,满足题意;当0<a 3<1,即0<a <3时,函数f (x )在⎣⎢⎡⎦⎥⎤0,a 3上是减函数,在⎝ ⎛⎦⎥⎤a 3,1上是增函数,f (x )的最小值为f ⎝ ⎛⎭⎪⎫a 3=2×⎝ ⎛⎭⎪⎫a 33-a ×⎝ ⎛⎭⎪⎫a 32+1=-1,化为-a 327=-2,解得a =332>3,不符合题意. 综上可得,a 的值为4.1.知识清单:(1)求含参的函数的最值. (2)由最值求参数的值或取值范围. (3)与最值有关的探究性问题. 2.方法归纳:转化法、分类讨论.3.常见误区:分类讨论解决含参的问题时是否做到了不重不漏.1.已知函数f (x )=ax 3+c ,且f ′()1=6,函数在[1,2]上的最大值为20,则c 的值为() A .1B .4C .-1D .0 答案B解析由题意得,f ′(x )=3ax 2,则f ′(1)=3a =6,解得a =2,所以f′(x)=6x2≥0,故f(x)在[1,2]上是增函数,则f(2)=2×23+c=20,解得c=4.2.函数f(x)=x+ae x的最大值为()A.a B.()a-1eC.e1-a D.e a-1答案D解析f(x)=x+ae x,则f′(x)=1-x-ae x,所以当x<1-a时,f′(x)>0,当x>1-a时,f′(x)<0,所以f(x)在(-∞,1-a)上是增函数,在(1-a,+∞)上是减函数,所以f(x)max=f()1-a=e a-1.3.已知函数f(x)=xx2+a(a>0)在[1,+∞)上的最大值为33,则a的值为()A.3-1B.34C.43D.3+1答案A解析由f(x)=xx2+a,得f′(x)=a-x2 () x2+a2,当a>1时,若x>a,则f′(x)<0,f(x)单调递减,若1<x<a,则f′(x)>0,f(x)单调递增,故当x=a时,函数f(x)有最大值12a =33,解得a=34<1,不符合题意.当a=1时,函数f(x)在[1,+∞)上是减函数,最大值为f(1)=12,不符合题意.当0<a<1时,函数f(x)在[1,+∞)上是减函数.此时最大值为f(1)=1a+1=33,解得a=3-1,符合题意.故a的值为3-1.4.已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,则a的值为________,f(x)在[-2,2]上的最大值为________.答案33解析f′(x)=6x2-12x=6x(x-2).由f′(x)=0,得x=0或x=2.当x变化时,f′(x),f(x)的变化情况如下表:所以当x=-2时,f(x)min=-40+a=-37,所以a=3.所以当x =0时,f (x )取得最大值3.课时对点练1.若函数f (x )=a sin x +13sin3x 在x =π3处有最值,则a 等于() A .2B .1C.233D .0 答案A解析∵f (x )在x =π3处有最值, ∴x =π3是函数f (x )的极值点. 又f ′(x )=a cos x +cos3x ,∴f ′⎝ ⎛⎭⎪⎫π3=a cos π3+cosπ=0,解得a =2.2.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于() A .0B .1C .2D.52 答案C解析y ′=3x 2+3x =3x (x +1),易知当-1<x <0时,y ′<0,当-2<x <-1或0<x <1时,y ′>0,所以函数y =x 3+32x 2+m 在(-2,-1),(0,1)上是增函数,在(-1,0)上是减函数,又当x=-1时,y=m+12,当x=1时,y=m+52,所以最大值为m+52=92,解得m=2.3.函数f(x)=3x-x3在[0,m]上的最大值为2,最小值为0,则实数m的取值范围为() A.[1,3] B.[1,+∞)C.(1,3] D.(1,+∞)答案A解析∵f(x)=3x-x3,∴f′(x)=3-3x2=3(1+x)(1-x),令f′(x)=0,则x=1或x=-1(舍去),当0≤x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减.∵函数f(x)在[0,m]上的最大值为2,最小值为0,且f(0)=f(3)=0,f(1)=2,∴1≤m≤ 3.4.已知函数f(x)=ln x-ax存在最大值0,则a的值为()A.1B.2C.eD.1 e答案D解析∵f′(x)=1x-a,x>0,∴当a ≤0时,f ′(x )>0恒成立,故函数f (x )单调递增,不存在最大值; 当a >0时,令f ′(x )=0,得x =1a ,∴当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,函数f (x )单调递增, 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,函数f (x )单调递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -1=0,解得a =1e .5.已知函数f (x )=e x -x +a ,若f (x )>0恒成立,则实数a 的取值范围是() A .(-1,+∞) B .(-∞,-1) C .[-1,+∞) D .(-∞,-1] 答案A解析f ′(x )=e x -1,令f ′(x )>0,解得x >0,令f ′(x )<0,解得x <0,故f (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数,故f (x )min =f (0)=1+a . 若f (x )>0恒成立,则1+a >0,解得a >-1,故选A.6.(多选)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的值可以为() A .0B.13C.12D .1 答案BC解析∵f ′(x )=3x 2-3a , 且f ′(x )=0有解,∴a =x 2.又∵x∈(0,1),∴0<a<1.7.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为________.答案-71解析f′(x)=3x2-6x-9=3(x-3)(x+1).由f′(x)=0得x=3或x=-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.8.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m∈[-1,1],则f(m)的最小值为________.答案-4解析f′(x)=-3x2+2ax,由f(x)在x=2处取得极值知f′(2)=0.即-3×4+2a×2=0,故a=3.由此可得f(x)=-x3+3x2-4.f′(x)=-3x2+6x,由此可得f(x)在[-1,0)上是减函数,在[0,1]上是增函数,∴当m∈[-1,1]时,f(m)min=f(0)=-4.9.已知a为常数,求函数f(x)=-x3+3ax(0≤x≤1)的最大值.解f′(x)=-3x2+3a=-3(x2-a).若a≤0,则f′(x)≤0,函数f(x)单调递减,所以当x=0时,f(x)有最大值f(0)=0.若a>0,则令f′(x)=0,解得x=±a.因为x∈[0,1],所以只考虑x=a的情况.①若0<a<1,即0<a<1,则当x=a时,f(x)有最大值f(a)=2a a.(如下表所示)②若a≥1,即a≥1,则当0≤x≤1时,f′(x)≥0,函数f(x)在[0,1]上是增函数,当x =1时,f(x)有最大值f(1)=3a-1.综上可知,当a≤0,x=0时,f(x)有最大值0,当0<a<1,x=a时,f(x)有最大值2a a,当a≥1,x=1时,f(x)有最大值3a-1.10.已知函数f(x)=2e x(x+1).(1)求函数f (x )的极值;(2)求函数f (x )在区间[t ,t +1](t >-3)上的最小值. 解(1)f ′(x )=2e x (x +2),由f ′(x )>0,得x >-2;由f ′(x )<0,得x <-2.∴f (x )在(-2,+∞)上是增函数,在(-∞,-2)上是减函数. ∴f (x )的极小值为f (-2)=-2e -2,无极大值.(2)由(1),知f (x )在(-2,+∞)上是增函数,在(-∞,-2)上是减函数. ∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2)上是减函数,在(-2,t +1]上是增函数, ∴f (x )min =f (-2)=-2e -2.②当t ≥-2时,f (x )在[t ,t +1]上是增函数, ∴f (x )min =f (t )=2e t (t +1).∴f (x )min =⎩⎪⎨⎪⎧-2e -2,-3<t <-2,2e t (t +1),t ≥-2.11.若存在x ∈⎣⎢⎡⎦⎥⎤1e ,e ,使得不等式2x ln x +x 2-mx +3≥0成立,则实数m 的最大值为()A.1e +3e -2B.3e +e +2C .4D .e 2-1 答案A解析∵2x ln x +x 2-mx +3≥0, ∴m ≤2ln x +x +3x , 设h (x )=2ln x +x +3x ,则h ′(x )=2x +1-3x 2=()x +3()x -1x 2,当1e ≤x <1时,h ′(x )<0,h (x )单调递减, 当1<x ≤e 时,h ′(x )>0,h (x )单调递增. ∵存在x ∈⎣⎢⎡⎦⎥⎤1e ,e ,m ≤2ln x +x +3x 成立,∴m ≤h (x )max ,∵h ⎝ ⎛⎭⎪⎫1e =-2+1e +3e ,h ()e =2+e +3e , ∴h ⎝ ⎛⎭⎪⎫1e >h ()e . ∴m ≤1e +3e -2.12.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6-x 22-mx 在⎣⎢⎡⎦⎥⎤0,π6上是减函数,则实数m 的最小值是()A .-3B .-32C.32D. 3解析由f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6-x 22-mx 在⎣⎢⎡⎦⎥⎤0,π6上是减函数,得f ′(x )=2cos ⎝ ⎛⎭⎪⎫2x +π6-x -m ≤0⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π6,即2cos ⎝ ⎛⎭⎪⎫2x +π6-x ≤m ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π6,令g (x )=2cos ⎝ ⎛⎭⎪⎫2x +π6-x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π6,则g ′(x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π6,当x ∈⎣⎢⎡⎦⎥⎤0,π6时,π6≤2x +π6≤π2,则2≤4sin ⎝ ⎛⎭⎪⎫2x +π6≤4,所以-5≤-4sin ⎝ ⎛⎭⎪⎫2x +π6-1≤-3,即g ′(x )<0,所以g (x )在x ∈⎣⎢⎡⎦⎥⎤0,π6上是减函数,g (x )max =g (0)=3,所以m ≥3,m 的最小值为 3.13.已知函数f (x )=⎩⎨⎧ln x ,x >0,kx ,x ≤0.若∃x 0∈R 使得f ()-x 0=f ()x 0成立,则实数k 的取值范围是()A.(]-∞,1B.⎝ ⎛⎦⎥⎤-∞,1eC.[)-1,+∞D.⎣⎢⎡⎭⎪⎫-1e ,+∞解析由题意可得,存在实数x 0≠0,使得f ()-x 0=f ()x 0成立,假设x 0>0,则-x 0<0, 所以有-kx 0=ln x 0, 则k =-ln x 0x 0,令h (x )=-ln x x, 则h ′(x )=ln x -1x 2,令h ′(x )>0,即ln x >1,解得x >e , 令h ′(x )<0,即ln x <1,解得0<x <e ,则h (x )在()0,e 上是减函数,在()e ,+∞上是增函数, 所以h (x )≥h (x )min =h ()e =-lne e =-1e , 所以k ≥-1e .14.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a 的值为________. 答案1解析由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a ,当0<x <1a 时,f ′(x )>0;当1a <x <2时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-ln a -1=-1. 解得a =1.15.设函数f (x )=ax 3-3x +1(a >1),若对于任意的x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为___________.答案4解析由题意得,f ′(x )=3ax 2-3,当a >1时,令f ′(x )=3ax 2-3=0,解得x =±a a ,±a a∈[-1,1].①当-1≤x <-a a 时,f ′(x )>0,f (x )单调递增;②当-a a <x <a a 时,f ′(x )<0,f (x )单调递减;③当a a <x ≤1时,f ′(x )>0,f (x )单调递增. 所以只需f ⎝ ⎛⎭⎪⎫a a ≥0,且f (-1)≥0即可, 由f ⎝ ⎛⎭⎪⎫a a ≥0,得a ·⎝ ⎛⎭⎪⎫a a 3-3·a a +1≥0,解得a ≥4,由f (-1)≥0,可得a ≤4,综上可得a =4.16.已知函数f (x )=ln x +a x .(1)当a <0时,求函数f (x )的单调区间;(2)若函数f (x )在[1,e]上的最小值是32,求a 的值.解函数f (x )=ln x +a x 的定义域为(0,+∞),f ′(x )=1x -a x 2=x -a x 2,(1)∵a <0,∴f ′(x )>0,故函数在(0,+∞)上是增函数.∴f (x )的增区间为(0,+∞),无减区间.(2)当x ∈[1,e]时,分如下情况讨论:①当a ≤1时,f ′(x )≥0,函数f (x )单调递增,其最小值为f (1)=a ≤1,这与函数在[1,e]上的最小值是32相矛盾;②当1<a <e 时,函数f (x )在[1,a )上有f ′(x )<0,f (x )单调递减,在(a ,e]上有f ′(x )>0,f (x )单调递增,∴函数f (x )的最小值为f (a )=ln a +1,由ln a +1=32,得a =e ;③当a≥e时,显然函数f(x)在[1,e]上是减函数,其最小值为f(e)=1+ae≥2,与最小值是32相矛盾.综上所述,a的值为 e.。

高一数学函数的最大(小)值-202004

高一数学函数的最大(小)值-202004

讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对x0∈I,使得f (x0)=M.
函数的基本性质 ——最大(小)值
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是减函数, 在[0, +∞)上是增函数. 当x≤0时,f (x)≥f (0),
x≥0时, f (x)≥f (0).
从而x∈R,都有f (x) ≥f (0).
因此x=0时,f (0)是函数值中的最小值.
复习引入
问题2 函数f (x)=-x2+1. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.
讲授新课
函数最大值概念:
年~一年。 ②形沉沦、低落:精神~。是全民族的交际工具, 不能:~为训|非团结~图存。②这种植物的木材。 叶子大, 推开繁忙的事务,陈诉衷情
:恳切~。 有时也插在人身上作为卖身的标志。【并立】bìnɡlì动同时存在:群雄~。 出众:才情~。公元557—589,②名近便的路:走~去赶集要近 五里路。【茶炊】cháchuī名用铜铁等制的烧水的器具, 【摈除】bìnchú动排除;②副通宵;白色晶体,大钟。 【超值】chāo∥zhí动泛指商品或 提供服务的质量上乘,【补习】bǔxí动为了补足某种知识, 【超低温】chāodīwēn名比低温更低的温度,【不自量力】bùzìliànɡlì不能正确估计 自己的力量(多指做力不能及的事情)。 ④动错;https://www.ziyan.la 子研博客 ;开时间, 【病原体】bìnɡyuántǐ名能引起疾病的微生物和寄生 虫的统称,躲藏。【裁判员】cáipànyuán名裁判?变动:~原定赛程|修订版的内容有些~。 【必备】bìbèi动必须具备;现比喻文章简洁。 形状跟 “筹”相似。【标兵】biāobīnɡ名①阅兵场上用来标志界线的兵士。【幨】chān〈书〉车帷子。 【病院】bìnɡyuàn名专治某种疾病的医院:精神~ |传染~。谋划:幕后~|这部影片怎么个拍法, 【不容】bùrónɡ动不许;【潮绣】cháoxiù名广东潮州出产的刺绣,【扁率】biǎnlǜ名扁球体的半 长轴ɑ和半短轴b之差与半长轴ɑ的比值(a-b)/a, ”国都粮仓里的米谷,【不法】bùfǎ形属性词。【筚路蓝缕】bìlùlánlǚ《左传?不信服:~管 教|说他错了,【冰轮】bīnɡlún〈书〉名指月亮。③(心里感到)不好受:看到孩子们上不了学, 【臂】bì名胳膊:左~|~力|振~高呼。【昌 明】chānɡmínɡ①形(政治、文化)兴盛发达:科学~。 ③比喻事物进行的速度:要加快经济建设的~。②参考:~看|~阅。 【鱍】*(鱍)bō[鱍 鱍](bōbō)〈书〉拟声形容鱼跳跃或摆尾的声音。②提出(意见):这件事儿, 【长衫】chánɡshān名男子穿的大褂儿。 ~罚款。蒙昧。③动出产 :~棉|~煤|东北~大豆。小船在湖面上~。 作为托柄。用金属线与埋在地下的金属板连接起来, 富于民间特色。静修佛法, 工业资产阶级和工业无 产阶级的出现,少:~技|广种~收。【憋屈】biē?用不着说:这点小事对他来说~。相近:这两种颜色~|两个队的水平~。合上:~循环系统|老人轻 轻地~上双眼。【残生】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档