函数导数中双变量问题的四种转化化归思想-厦门一中

合集下载

指点迷津(四) 破解“双变量问题的转化”

指点迷津(四) 破解“双变量问题的转化”

所以 a 的取值范围为(-∞,-2].
=
(2 2 +1)2
1
,+
2
=
4(2-1)(+1)
(2 2 +1)2
,
∞ 时,φ'(x)>0,φ(x)是递增的.
g(x)在(0,+∞)上是递减的,
-4-1
恒成立,
2 2 +1
故设
-4-1
φ(x)=2 2 +1,则
当 x∈
1
0,
2
-4(2 2 +1)-(-4-1)·4 8 2 +4-4
φ'(x)=
(2 2 +1)2
时,φ'(x)<0,φ(x)是递减的,x∈
所以 φ(x)min=
1
2
=-2,
1
m<2,所以2<m<ln
当 ln 2≤m<1 时,f(x)min-1=f(2)-1=ln 2-2m,由-2m+ln 2>-2,得
所以 ln 2≤m<1.综上所述,m 的取值范围是
1
,1
2
+
1
ln 2
2
.
1
m<1+2ln
2;
2,
突破技巧“双变量”的恒(能)成立问题一定要正确理解其实质,深刻挖掘内
含条件,进行等价变换,常见的等价转换有
所以 h(x)在
1
- , +
∞ ,
(-2+1)( +1)
,

1
0, 2
1
-
1
,
2
+ ∞ 上是递减的,

导数中双变量问题的四种策略

导数中双变量问题的四种策略

双变量问题的几种处理策略策略一:合的思想问题1:已知函数x x f ln )(=的图象上任意不同的两点,,线段的中点为,记直线的斜率为,试证明:.解析:因为∴, ∴,又 不妨设 , 要比较与的大小,即比较与的大小, 又∵,∴ 即比较与的大小.令,则, ∴在上位增函数.又,∴, ∴,即二:分的思想问题2:若1ln )(++=x a x x g ,且对任意的(]2,1,21∈x x ,,都有,求a 的取值范围.解析∵ ,∴由题意得在区间(]2,1上是减函数. ∴ ()11,y x A ()22,y x B AB),(00y x C AB k )(0x f k '>x x f ln )(=xx f 1)(='210021)(x x x x f +=='121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=12x x >k )(0x f '1212lnx x x x -212x x +12x x >12lnx x 1)1(2)(212122112+-=+-x x x x x x x x )1(1)1(2ln )(≥+--=x x x x x h 0)1()1()1(41)(222≥+-=+-='x x x x x x h )(x h [)+∞,1112>x x 0)1()(12=>h x x h 1)1(2ln 121212+->x x x x x x )(0x f k '>21x x ≠1)()(1212-<--x x x g x g 1)()(1212-<--x x x g x g []0)()(121122<-+-+x x x x g x x g x x g x F +=)()(1)1(1)(2++-='x ax x F由在恒成立. 设,,则 ∴在上为增函数,∴.策略3:变得思想设函数x x x f ln )(=,若,求证 解析:, ,所以在上是增函数,上是减函数.因为,所以即,同理. 所以 又因为当且仅当“”时,取等号. 又,, 所以,所以, 所以:.问题4:已知函数()21ln ,2f x x x mx x m R =--∈,若函数()f x 有两个极值点12,x x ,求证: 212x x e >解析:欲证212x x e >,需证: 12ln ln 2x x +>,若()f x 有两个极值点12,x x ,即函数()'f x 有两个零点,又()'ln f x x mx =-, 所以12,x x 是方程()'0f x =的两个不同实根313)1()1(0)(222+++=+++≥⇒≤'xx x x x x a x F []2,1∈x =)(x m 3132+++x x x []2,1∈x 0312)(2>+-='xx x m )(x m []2,1227)2(=≥m a 1),1,1(,2121<+∈x x e x x 42121)(x x x x +<x x xx f x g ln )()(==e x x x g 1,0ln 1)(==+=),1(+∞e )(x g )1,0(e11211<+<<x x x e111212121ln )()ln()()(x x x g x x x x x x g =>++=+)ln(ln 211211x x x x x x ++<)ln(ln 212212x x x x x x ++<)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+,421221≥++x x x x 21x x =1),1,1(,2121<+∈x x ex x 0)ln(21<+x x )ln(4)ln()2(21211221x x x x x x x x +≤+++)ln(4ln ln 2121x x x x +<+42121)(x x x x +<于是,有1122ln 0{ln 0x mx x mx -=-=,解得1212ln ln x x m x x +=+,另一方面,由1122ln 0{ln 0x mx x mx -=-=,得()2121ln ln x x m x x -=-,从而可得21122112ln ln ln ln x x x x x x x x -+=-+,于是()()222121111222111lnln ln ln ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭+==--.又120x x <<, 设21x t x =,则1t >.因此, ()121ln ln ln ,1t t x x t ++=-1t >. 要证12ln ln 2x x +>,即证:()1ln 2,11t t t t +>>-.即当1t >时,有()21ln 1t t t ->+. 设函数()()21ln ,11t h t t t t -=-≥+,则()()()()()()222212111011t t t h t t t t t +---'=-=≥++, 所以, ()h t 为()1,+∞上的增函数.注意到, ()10h =,因此, ()()10h t h ≥=.于是,当1t >时,有()21ln 1t t t ->+. 所以,有12ln ln 2x x +>成立, 212x x e >.问题5:x m x x x f x --=221ln )(已知函数,若()x f 有两个极值点x 1,x 2,(x 1<x 2),且x x x x x a 12112ln 2ln ->-恒成立,求整数a 的最大值。

再谈导数中的双变量问题

再谈导数中的双变量问题

2020年第5期(上)中学数学研究33再谈导数中的双变量问题湖南省怀化市铁路第一中学(418000)高用在近几年各地高考及模拟试题中,导函数压轴题频繁出现双变量的问题,此类题型因含有两个变量,思维量大,解题方法灵活,对学生的数学抽象、数学运算等核心素养提出了很高要求.为此,本文通过具体例题的求解谈谈求解导数中双变量问题的解题思想和几种有效方法,希望能对广大教师同行的教学有益.1.等量消元,去二为一二元变量问题难的主要原因就在于所含两个变量同时变化难以控制,所以将双变量转化为单变量势在必行.消元,通常是利用变量所满足的等量关系进行代换,消去其中一个变量,留下唯一变量,即去二为一,使之成为一元变量问题求解.例1(2018年高考全国Ⅰ卷理科第21题)已知函数f(x)=1x−x+a ln x.(1)讨论函数f(x)的单调性;(2)若函数f(x)存在两个极值点x1,x2,证明:f(x1)−f(x2) x1−x2<a−2.分析x1,x2为函数f(x)的极值点,即x1,x2是方程f′(x)=0的根,则方程的根与系数满足等量关系,于是可以试着通过这一条件寻找x1与x2的等量关系,进而利用此等量消元,即而转化为一元变量问题求解.解析(1)f(x)的定义域为(0,+∞),f′(x)=−1x2−1+a x =−x2−ax+1x2.记∆=a2−4.(i)若a 2,则f′(x) 0,所以f(x)在(0,+∞)单调递减.(ii)若a>2,令f′(x)<0得,0<x<a−√∆2或x>a+√∆2.所以f(x)在(0,a−√∆2),(a+√∆2,+∞)单调递减,在(a−√∆2,a+√∆2)单调递增.(2)由(1)知,当且仅当a>2时,f(x)存在两个极值点.由于f(x)的两个极值点x1,x2满足x2−ax+1=0,所以x1+x2=a,x1x2=1,不妨设x1<x2,则x2>1.f(x1)−f(x2)x1−x2<a−2即(1x1−x1+a ln x1)−(1x2−x2+a ln x2)x1−x2<a−2,整理得−1x1x2−1+a(ln x1−ln x2)x1−x2<a−2,于是ln x1−ln x2x1−x2<1,消去x1,得1x2−x2+2ln x2<0.所以f(x1)−f(x2)x1−x2<a−2等价于1x2−x2+2ln x2<0.设函数g(x)=1x−x+2ln x,x>1,由(1)知,g(x)在(1,+∞)单调递减,又g(1)=0,从而当x∈(1,+∞)时,g(x)<0.所以1x2−x2+2ln x2<0,故原不等式得证.评注一般题目明确给出或者隐含关于两个变量的等量关系,则可以通过这个等量关系,实现两变量的相互代换,是能够消元处理这种问题的明显信号,而像例1一样给出根与系数的关系的题目是利用消元求解的常见题型.在解决问题的过程中我们不难发现,方程思想是求解此题的核心思想,无论是第一小问基本量的求解,还是第二小问中相切时的方程联立,到最后转换面积条件时弦长的求解,都体现了方程思想对问题求解的指导性作用.解析几何的区分度主要源自于计算的要求,以思想方法为指导,明确计算的方向往往起到优化计算,化繁为简的效果.三、结束语新的课程改革明确了高中的数学教学不能再去搞题海战术,和进行无止尽的解题技巧总结,而应该着力培养学生的核心素养.函数和方程思想方法历来是高中数学的重难点,教师在日常的教学过程中应当从基本概念和思想方法出发,以多种形式的问题为载体,与其它思想方法一起循序渐进的,螺旋式的渗透给学生.重视基本知识和基本思想方法才是真的关键所在,故教师不妨留一些空间让学生自己去思考和总结,效果可能会更好.参考文献[1]普通高中数学课程标准(2017年版)[S].北京:人民教育出版社,2017.[2]蔡玉凤.高中数学中函数与方程思想应用的研究[D].苏州:苏州大学,2014.[3]黄德华.函数与方程思想的培养[J].数学学习与研究,2019,(9),134-13534中学数学研究2020年第5期(上) 2.整体换元,合二为一如果两个变量间不存在等量关系,但可以通过适当地代数变形将两个变量化为某种结构的整体,常见的如x1 x2,x1−x2,就可以利用换元实现双变量合二为一的目的,这也是把双变量转化为单变量的一种有效手段.例2已知函数f(x)=ln x,g(x)=ax−a,a∈R.(1)若直线y=g(x)是曲线y=f(x)的一条切线,求a 的值;(2)若P(x1,y1),Q(x2,y2)是曲线y=h(x)=f(x)−g(x)上的两个不同的点,证明:h′(x1+x22)<y1−y2x1−x2.分析此题条件没有给出x1,x2的等量关系,则无法直接消元,可以先尝试将要证的不等式进行等价变形,不难发现两个变量x1,x2能够化为x1x2的整体形式,从而实现整体换元,转化为一元问题求解.解(1)a=1.(2)的证法1h(x)=f(x)−g(x)=ln x−ax+a,则h′(x)=1x−a.y1−y2x1−x2=ln x1−ln x2+a(x2−x1)x1−x2=ln x1−ln x2 x1−x2−a,h′(x1+x22)=2x1+x2−a,所以h′(x1+x22)−y1−y2x1−x2=2x1+x2−ln x1−ln x2x1−x2=1x1−x2[2(x1−x2)x1+x2−ln x1x2]=1x1−x22(x1x2−1)x1x2+1−ln x1x2.不妨设0<x2<x1,则1x1−x2>0,令t=x1x2,则t>1,2(x1x2−1)x1x2+1−ln x1x2=2(t−1)t+1−ln t.令m(t)=2(t−1)t+1−ln t,t>1,则m′(t)=−(t−1)2t(1+t)2<0,所以m(t)在(1,+∞)上单调递减,故m(t)<m(1)=0,所以1x1−x2[2(x1x2−1)x1x2+1−ln x1x2]<0,即h′(x1+x22)<y1−y2x1−x2.评注判断是否能够把两个变量化为x1x2的形式进行整体换元,代数式中出现ln x是一个标志.另外,除ln x之外的部分要能够整理成关于x1,x2的齐次分式,如例2中,2x1+x2−ln x1−ln x2x1−x2通过提公因式得1x1−x2[2(x1−x2)x1+x2−ln x1x2],从而变形得到关于x1,x2的二次齐次分式2(x1−x2) x1+x2.如果将两个变量化为x1x2的形式比较困难,也可以采用待定系数法,设x1=tx2,然后逐步将消去x1,x2即可,这种方法往往行之有效.(2)的证法2不妨设0<x2<x1,令x1x2=t,则x1=tx2,t>1,所以h′(x1+x22)−y1−y2x1−x2=2x1+x2−ln x1−ln x2x1−x2 =2(t+1)x2−ln t(t−1)x2=1x2(2t+1−ln tt−1),原不等式等价于2t+1−ln tt−1<0,等价于2(t−1)t+1−ln t< 0,其中t>1.之后的证明同证明1.例3已知函数f(x)=e x,x∈R.设a<b,比较f(a)+f(b)2与f(b)−f(a)b−a的大小,并说明理由.分析作差比较两式的大小,由于题目没给两变量a,b 的等量关系的条件,于是尝试整体换元.因为式子中出现了e x,作差之后不能像例2一样出现两变量的商ab,但可以通过提公因式,使得指数出现两变量的差b−a,所以试图将两个变量整理成b−a的形式实现整体换元.解法1设f(a)+f(b)2−f(b)−f(a)b−a=(b−a+2)·f(a)+(b−a−2)·f(b)2·(b−a)=(b−a+2)·e a+(b−a−2)·e b2·(b−a)=(b−a+2)+(b−a−2)·e b−a2·(b−a)·e a.设x=b−a,并令g(x)=x+2+(x−2)·e x,x>0,则g′(x)=1+(x−1)·e x.因为g′′(x)=(1+x−1)·e x=x·e x>0,所以g′(x)在(0,+∞)上单调递增,又g′(0)=0,因此g′(x)>0,所以g(x)在(0,+∞)上单调递增,而g(0)=0,所以在(0,+∞)上g(x)>0,即g(x)=x+2+(x−2)·e x>0.所以(b−a+2)+(b−a−2)·e b−a2·(b−a)·e a>0,故当a<b时, f(a)+f(b)2>f(b)−f(a)b−a.事实上,此题也可以将不等式等价代数变形,化为对数形式,于是就可以把两变量整理成商的形式实现整体换元了.解法2要证明f(a)+f(b)2>f(b)−f(a)b−a,亦即证明e a+e b2>e b−e ab−a.令x=e b,y=e a(x>y>0),不等式等价于x+y2> x−yln x−ln y(x>y>0),变形得:ln x−ln y>2(x−y)x+y,即lnxy>(2(xy−1))/(xy+1).令t=xy(t>1),则只需证明ln t>2(t−1)t+1(t>1)成立即可.2020年第5期(上)中学数学研究35令h (t )=ln t −2(t −1)t +1(t >1),由h ′(t )=1t−4(t +1)2=(t −1)2t (t +1)2>0,则函数h (t )在(1,+∞)为增函数,从而h (t )>h (1)=0,所以ln t >2(t −1)t +1,故f (a )+f (b )2>f (b )−f (a )b −a.评注整体换元求解双变量问题时,一般地,若代数式中出现ln x ,则将两个变量化为商的形式整体换元,如果出现的是e x ,就将两个变量化为差的形式整体换元.当然,通过适当的代数变形可以实现指数与对数的互换.3.对称分离,化二为一例4已知f (x )=12x 2−ax +(a −1)ln x ,a >1.证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1=x 2,有f (x 1)−f (x 2)x 1−x 2>−1.分析不难发现要证的不等式中两个变量x 1,x 2在结构上是对称的,而且容易分离,于是将两个变量分离之后便可以得到g (x 1)>g (x 2)的形式,结合题意,对任意x 1,x 2∈(0,+∞),g (x 1)>g (x 2)成立,从而转化为g (x )的单调性来求解.解析不妨设x 1>x 2>0,原不等式等价变形为f (x 1)−f (x 2)>−(x 1−x 2),即f (x 1)+x 1>f (x 2)+x 2.设g (x )=f (x )+x ,则g (x )=12x 2−(a −1)x +(a −1)ln x .由题意,要证对任意x 1,x 2∈(0,+∞),且x 1>x 2,恒成立,即要证明g (x )在(0,+∞)上单调递增.g ′(x )=x −(a −1)+a −1x =x 2−(a −1)x +a −1x,当1<a <5时,方程x 2−(a −1)x +a −1=0的判别式∆ 0,则x 2−(a −1)x +a −1 0在(0,+∞)上恒成立,所以g ′(x ) 0在(0,+∞)上恒成立,所以g (x )在(0,+∞)上单调递增,于是原命题得证.评注例3是一种特定题型,同时也很常见.当不等式中的两个变量对称并且能够分离,不等式又是对两个变量在某区间恒成立,则可以利用函数单调性的定义将问题转化为单调性进行处理,从而将双变量x 1,x 2转化为单变量x ,然后利用导数工具求解即可.从最终效果来说,对称分离,转化为函数单调性,实现了将两个变量化二为一.4.指定主元,分二为一例5已知函数f (x )=ae x +b 在(0,f (0))处的切线为x −y +1=0.(1)求f (x )的解析式;(2)设A (m,f (m )),B (n,f (n )),m <n ,k 表示直线AB的斜率.求证:f ′(m )<k <f ′(n ).分析虽然要证的不等式中两个变量是对称的,但是不能分离,也不能化为商或差的形式整体换元,此题可以尝试指定其中一个变量为主变量,另一个为参数,把问题当成一个变量来处理.解析(1)因为(0,f (0))在切线x −y +1=0上,则f (0)=1,即切点为(0,1),而切点又在函数f (x )=ae x +b 的曲线上,则b =1.于是f (x )=ae x +1,f ′(x )=ae x ,由题意f ′(0)=1,即a =1,所以f (x )=e x +1.(2)f ′(m )<k <f ′(n )即e m<e n −e m n −m<e n ,变形得(n −m )e m <e n −e m <(n −m )e n.令g (n )=(n −m )e m −e n +e m =ne m −e n −me m +e m ,n >m ,则g ′(n )=e m −e n <0,所以g (n )在(m,+∞)上单调递减,故g (n )<g (m )=0,所以(n −m )e m <e n −e m .令h (n )=e n −e m −(n −m )e n =(1−n +m )e n −e m ,n >m ,则h ′(n )=(m −n )e n <0,所以h (n )在(m,+∞)上单调递减,故h (n )<h (m )=0,所以e n −e m <(n −m )e n .综上,(n −m )e m <e n −e m <(n −m )e n ,于是e m<e n −e m n −m<e n 得证.评注指定主元,利用这个变量构造函数处理完后,若还剩下另一个变量,则只需把剩下的这个变量作为函数变量进一步处理即可,如例5中得g (n )<g (m ),若g (m )不是0而是关于m 的式子,则把m 作为变量继续证明这个关于m 的式子小于0.可以看出,指定主元这种处理方法的根本出发点就是将两个变量分成主次,依次逐个击破,分而化解,在分开逐个处理的每一个过程中就都成了单变量问题,即谓之分二为一.结束语综上所述,求解二元变量问题的核心是转化成一元变量,这是数学中多元化一元的基本思想.上述的利用等量关系消元、整体换元(比值、差值)、对称分离变量,转化为单调性、指定主元,分开处理等求解方法,就是在这一思想的指导下,利用题目的特有条件将二元变量问题转化为一元变量问题的不同手段.不管题目如何变化,万变不离其宗,本质就是如何将二元转化为一元的问题!参考文献[1]高用.例谈几种二元变量问题的求解策略[J].中学数学研究(华南师范大学版),2014(7,上半月):38-39.。

导数压轴-双变量问题的探讨

导数压轴-双变量问题的探讨

引言导数中有一类问题涉及到两个变量,例如m 和n 、a 和b 、1x 和2x 。

显然涉及两个变量的问题我们是不会处理的,如何把两个变量转化为一个变量就成了我们问题解决的关键。

方法点睛方法一:也是最核心、最常见的方法。

就是进行式子齐次化,进行了齐次化后可以将12x x 或者12x x -作为单元,这样就达到了减元的目的。

方法二:一般可以通过联立12,x x 的等式,通过对两式进行相加(相减)等操作,对所求式等进行化简。

方法三:对于等价双变量不等式问题,我们先令如12x x >,再通过适当的变形,使得等式两边均只含有一个变量,且形式相同,这样我们可以令这个相同的形式为()g x ,问题也许就转化成了()g x 的单调性问题。

还有其他的一些方法技巧性较强,我们在后面的题目中进行详细剖析。

例题讲解【例题1】已知函数(1)()ln 1a x f x x x -=-+. (Ⅰ)若函数()f x 在(0,)+∞上为单调增函数,求a 的取值范围 (Ⅱ)设m ,n +∈R ,且m n ≠,求证:ln ln 2m n m nm n -+<- 对话与解答:(Ⅰ)2a ≤(Ⅱ)不妨设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,也就是证明第六课:关于导数中双变量问题的探讨21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立。

令,1m t t n =>,即证()()21ln 01t g t t t -=->+。

运用(Ⅰ)的结论,()g t 在()0+∞,上单调递增,故()()10g t g >=,不等式得证。

本题我们用到方法一。

看到解答,你可能会觉得将()2m n m n -+处理成211m n m n⎛⎫- ⎪⎝⎭+真是神来之笔,也是解决整个问题的关键。

那么这个处理究竟有没有思路可循呢?当然是有的,不难发现()2ln m n mm n n-<+的右边已经出现了m n 的形式,同时右边分子分母都死其次式,如果一开始就有“转化成一个变量”的思想,就会迅速锁定mn整体换元。

导数中双变量处理策略教学提纲

导数中双变量处理策略教学提纲

导数中双变量处理策略导数-双变量问题处理策略1.构造函数利用单调性证明2.任意性与存在性问题3.整体换元—双变单4.极值点偏移【构造函数利用单调性证明】形式如:1212|()()|||f x f x m x x -≥-例1、设函数221()(2)ln (0)ax f x a x a x+=-+<. (1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.【任意与存在性问题】例2、 已知函数()2a f x x x=+,()ln g x x x =+,其中0a >. (1)若函数()x f y =在[]e ,1上的图像恒在()x g y =的上方,求实数a 的取值范围. (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立, 求实数a 的取值范围.【整体换元——双变单】例3、已知函数x x x f ln )(=的图象为曲线C , 函数b ax x g +=21)(的图象为直线l . (Ⅰ) 当3,2-==b a 时, 求)()()(x g x f x F -=的最大值;(Ⅱ) 设直线l 与曲线C 的交点的横坐标分别为21,x x , 且21x x ≠, 求证:2)()(2121>++x x g x x .【对称轴问题12x x +的证明】例4、已知函数11()(x x f x x e --=∈R).⑴求函数()f x 的单调区间和极值;⑵已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当2x >时,()();f x g x >⑶如果12x x ≠,且12()()f x f x =,证明:12 4.x x +>【实战演练】1.已知函数f (x )=21x 2-ax +(a -1)ln x ,1a >. (1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.2.设3x =是函数()()()23,x f x x ax b e x R -=++∈的一个极值点. (1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4x a g x a e ⎛⎫>=+ ⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.3.已知函数21()ln (1)(0)2f x x ax a x a R a =-+-∈≠,. ⑴求函数()f x 的单调增区间;⑵记函数()F x 的图象为曲线C ,设点1122(,)(,)A x y B x y 、是曲线C 上两个不同点,如果曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在中值相依切线,请说明理由.4.(2018届高三咸阳市二模理科).已知函数2()2ln (,0)x f x x a R a a=-∈≠. (1)讨论函数()f x 的单调性;(2) 若函数()f x 有两个零点1x ,2x 12()x x <,且2a e =,证明:122x x e +>.。

选修2-2 专题五导数背景下双变量问题的处理

选修2-2 专题五导数背景下双变量问题的处理

即 ln
x

2( x x2
1) 1
令x

b
, 则 ln
b

2( b a
1) ,即
a
a (b)2 1
a
f
(b)

f
(a)

2a(b a) a2 b2
一、转化为值域(最值)问题
形如|f(x1)﹣f(x2)|<m(m>0)恒成立
二、转化为函数单调性问题
形如 f (x1) f (x2 ) m恒成立 x1 x2
等价于g(x) a 1 2ax 4 0在(0,)上恒成立 x
从而a

4x 1 2x2 1

(2x 1)2 2x2 1

2

2
三、构造新函数化二元为一元
例3.已知函数f(x)=lnx (1)求函数g(x)=(x2+1)f(x)-2x+2(x≥1)的最小值; (2)当0<a<b时,求证:
f
(b)

f
(a)

2a(b a) a2 b2
解析:(1)由已知g(x) 2x ln x x2 2x 1 x
x 1
2x ln x 0, x2 2x 1 0 x
g(x) 0, g(x)在1, 上是增函数
g(x)min g(1) 0
解得 a 1 c 3
f (x) 3x2 3 3(x 1)(x 1)
f (x)在(1,1)单调递减
| f (x1) f (x2 ) | f (1) f (1) 4
二、转化为函数单调性问题
例2.已知函数f(x)=(a+1)lnx+ax2+1 (1)讨论函数f(x)的单调性; (2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|, 求a的取值范围.

函数与导数的 “双变量”问题探究

函数与导数的 “双变量”问题探究

函数与导数的“双变量”问题探究一、问题提出近年来函数综合问题中,常常出现两个在一定范围内可以变化的量,即函数的双变量问题。

此问题经常结合不等式进行命题,主要考查学生转化与化归思想,考查学生对问题的转化及处理能力,此类问题难度较大,对学生的综合能力要求较高。

解决此类问题主要通过变元来解决,如何将两个变量转化为一个变量是此类问题解体的关键。

然后,再结合函数性质即可解决此类问题。

二、例题解说−x+alnx例1:已知函数f(x)=1x(1)讨论f(x)的单调性.<a−2.(2)若函数存在两个极值点x1,x2,证明f(x1)−f(x2)x1−x2小结1:消元,变量归一①若两个变量存在确定的关系,可以利用其中一个变量替换另一个变量,直接消元,将两个变量转化为一个变量.,x1x2,x1−②若两个变量不存在确定的关系,有时可以将两个变量之间的关系看成一个整体(比如x1x2x2,x1+x2),进行整体换元,将两个变量化为一个变量..例2:已知函数f(x)=e2x−2t(e x+x)+x2+2t2+1,求证f(x)≥32小结2:变换主元当两个变量之间没有关系,也不能看成一个整体时,主元的选择就显得尤为重要了,主元若选择得当,可以降低思维难度,可以将复杂的函数变为简单函数。

主元变换是将其中一个变量作为主元,其中一个变量作为参数。

例3:已知函数f(x)=1+2lnx.x2(1)求f(x)的单调区间(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)−f(x2)|≥k|lnx1−lnx2|成立,求k的取值范围.小结3:构造函数根据题中条件构造适当的函数,利用函数性质解决.,1],|f(x1)−f(x2)|≤b,求b的取值范围.例4:已知函数f(x)=xlnx+x,对∀x1,x2∈[1e3小结4:转化为最值根据题中条件将双变量问题转化为函数最值来处理,此类题型可以参考“恒成立”与“存在性”问题解题思路与方法.三、练习提升1.设函数f(x)=e mx+x2−mx.(1)证明:f(x)在(−∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[−1,1],都有|f(x1)−f(x2)|≤e−1,求m的取值范围.2.已知常数a>0,函数f(x)=ln(1+ax)−2xx+2.(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.3.已知函数f(x)=lnx−ax+1−ax−1,(a∈R).(Ⅰ)当a≤12时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2−2bx+4,当a=14时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.4.已知函数f(x)=ln x+mx−2(m∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)存在两个零点分别为x1,x2(x1<x2),试求m的取值范围,并证明1x1+1x2>1e.5.已知函数f(x)=x ln x−2ax2+x,a∈R.(Ⅰ)若()f x在(0,+∞)内单调递减,求实数a的取值范围;(Ⅱ)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>12a.6.已知函数f(x)=(x+2)ln x+ax2(a为常数)在x=1处的切线方程为y=4x−72. (1)求a的值,并讨论f(x)的单调性;(2)若f(x1)+f(x2)=1,求证x1x2≤1.函数与导数的“双变量”问题探究一、问题提出近年来函数综合问题中,常常出现两个在一定范围内可以变化的量,即函数的双变量问题。

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,|1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-.思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则()2110Q x xx '===<, …所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -.由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,¥则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+, 由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭, 令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0,即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. "【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '=(ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,!所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间; 当1a >时,()f x单调递减区间为(()0,,a a +∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. ~由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤⎥⎝⎦,∵122x x a +=, ∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围. 【分析】(1)函数求导得()11'axf x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)~(3)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可.【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x-+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值,~当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以3lna >ln ,解得a 3.【变式训练】【广东省2020届高三期末】设函数2()()e ()xf x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2xx f x x a ex ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; >②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数【例】已知函数f (f )={e −f +1,f ≤0,2√f , f >0.函数f =f (f (f )+1)−f (f ∈f )恰有两个零点f 1和f 2. (1)求函数f (f )的值域和实数f 的最小值;(2)若f1<f2,且ff1+f2≥1恒成立,求实数f的取值范围.【解析】(1)当f≤0时,f(f)=e−f+1≥2.`当f>0时,f(f)=2√f>0.∴f(f)的值域为(0,+∞).令f(f(f)+1)=f,∵f(f)+1>1,∴f(f(f)+1)>2,∴f>2.又f(f)的单调减区间为(−∞,0],增区间为(0,+∞).设f(f)+1=f1,f(f)+1=f2,且f1<0,f2>1.∴f(f)=f1−1无解.从而f(f)=f2−1要有两个不同的根,应满足f2−1≥2,∴f2≥3.∴f(f2)=f(f(f)+1)≥2√3.即f≥2√3.∴f的最小值为2√3.(2) f=f(f(f)+1)−f有两个零点f1、f2且f1<f2,设f(f)=f,f∈[2,+∞),∴e−f1+1=f,∴f1=−ln(f−1).2√f2=f,∴f2=f24.#∴−f ln(f−1)+f24≥1对f∈[2,+∞)恒成立设f(f)=−f ln(f−1)+f24−1,f′(f)=−ff−1+f2=f2−f−2f2(f−1).∵f∈[2,+∞),∴f2−f∈[2,+∞)恒成立.∴当2f≤2,即f≤1时,f′(f)≥0,∴f(f)在[2,+∞)上单调递增.∴f(f)≥f(2)=−f ln1+1−1=0成立.当f>1时,设f(f)=f2−f−2f.由f(2)=4−2−2f=2−2f<0.∴∃f0∈(2,+∞),使得f(f0)=0.且当f∈(2,f0)时,f(f)<0,f∈(f0,+∞)时,f(f)>0.∴当f∈(2,f0)时,f(f)单调递减,此时f(f)<f(2)=0不符合题意.综上,f≤1.【变式训练】f(f)=f2+ff−f ln f.(1)若函数f(f)在[2,5]上单调递增,求实数f的取值范围;(2)当f=2时,若方程f(f)=f2+2f有两个不等实数根f1,f2,求实数f的取值范围,并证明f1f2<1.【解析】(1)f′(f)=2f+f−ff,∵函数f(f)在[2,5]上单调递增,∴f′(f)≥0在f∈[2,5]恒成立,即2f+f−ff≥0对f∈[2,5]恒成立,∴f≥−2f2f−1对f∈[2,5]恒成立,即f≥(−2f2f−1)max,f∈[2,5],令f(f)=−2f2f−1(f∈[2,5]),则f′(f)=−2f2+4f(f−1)2≤0(f∈[2,5]),∴f(f)在[2,5]上单调递减,∴f(f)在[2,5]上的最大值为f(2)=−8.\∴f的取值范围是[−8,+∞).(2)∵当f=2时,方程f(f)=f2+2f⇔f−ln f−f=0,令f(f)=f−ln f−f(f>0),则f′(f)=1−1f,当f∈(0,1)时,f′(f)<0,故f(f)单调递减,当f∈(1,+∞)时,f′(f)>0,故f(f)单调递增,∴f(f)min=f(1)=1−f.若方程f(f)=f2+2f有两个不等实根,则有f(f)min<0,即f>1,当f>1时,0<f−f<1<f f,f(f−f)=f−f>0,f(f f)=f f−2f,令f(f)=f f−2f(f>1),则f′(f)=f f−2>0,f(f)单调递增,f(f)>f(1)=f−2>0,∴f(f f)>0,∴原方程有两个不等实根,∴实数f的取值范围是(1,+∞).不妨设f 1<f 2,则0<f 1<1<f 2,0<1f 2<1,∴f 1f 2<1⇔f 1<1f 2⇔f (f 1)>f (1f 2),∵f (f 1)=f (f 2)=0,∴f (f 1)−f (1f 2)=f (f 2)−f (1f 2)=(f 2−ln f 2−f )−(1f 2−ln 1f 2−f ),=f 2−1f 2−2ln f 2.令f (f )=f −1f−2ln f (f >1),则f′(f )=1+1f 2−2f=(1f −1)2>0,∴f (f )在(1,+∞)上单调递增,∴当f >1时,f (f )>f (1)=0,即f 2−1f 2−2ln f 2>0,∴f (f 1)>f (1f 2),∴f 1f 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数. (1)求()f x 的极值; ,(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.`由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. (1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, 则在上恒成立,得恒成立, —∴(对仅在时成立),故的取值范围是【变式训练】已知函数f (f )=f +f ln f .(Ⅰ)求函数f (f )的图象在点(1,1)处的切线方程;(Ⅱ)若f ∈f ,且f (f −1)<f (f )对任意f >1恒成立,求f 的最大值; (Ⅲ)当f >f ≥4时,证明:(ff f )f >(ff f )f .()ln ,k R kf x x x=+∈()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭【解析】(Ⅰ)∵f ′(f )=ln f +2,∴f ′(1)=2,函数f (f )的图象在点(1,1)处的切线方程f =2f −1;(Ⅱ)由(Ⅰ)知,f (f )=f +f ln f ,∴f (f −1)<f (f ),对任意f >1恒成立,)即f <f +f ln ff −1对任意f >1恒成立. 令f (f )=f +f ln ff −1,则f′(f )=f −ln f −2(f −1)2,令f (f )=f −ln f −2(f >1),则f ′(f )=1−1f =f −1f>0,所以函数f (f )在(1,+∞)上单调递增.∵f (3)=1−ln 3〈0,f (4)=2−2ln 2〉0,∴方程f (f )=0在(1,+∞)上存在唯一实根f 0,且满足f 0∈(3,4).当1<f <f 0时,f (f )<0,即f′(f )<0,当f >f 0时,f (f )>0,即f′(f )>0, 所以函数f (f )=f +f ln ff −1在(1,f 0)上单调递减,在(f 0,+∞)上单调递增. ∴[f (f )]min =f (f 0)=f 0(1+ln f 0)f 0−1=f 0(1+f 0−2)f 0−1=f 0∈(3,4),∴f <[f (f )]min =f 0∈(3,4),故整数f 的最大值是3.)(Ⅲ)由(Ⅱ)知,f (f )=f +f ln ff −1是[4,+∞)上的增函数,∴当f >f ≥4时,f +f ln f f −1>f +f ln ff −1. 即f (f −1)(1+ln f )>f (f −1)(1+ln f ).整理,得ff ln f +f ln f >ff ln f +f ln f +(f −f ). ∵f >f ,∴ff ln f +f ln f >ff ln f +f ln f .即ln f ff +ln f f >ln f ff +ln f f .即ln (f ff f f )>ln (f ff f f ).∴(ff f )f >(ff f )f . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立]【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+,可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+ 当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦*()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+(121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f (f )=f f −f ,f (f )=(f +f )ln (f +f )−f .(1)若f =1,f ′(f )=f ′(f ),求实数f 的值.(2)若f ,f ∈f +,f (f )+f (f )≥f (0)+f (0)+ff ,求正实数f 的取值范围. 【解析】(1)由题意,得f ′(f )=f f −1,f ′(f )=ln (f +f ),由f =1,f ′(f )=f ′(f )…①,得f f −ln (f +1)−1=0, 令f (f )=f f −ln (f +1)−1,则f ′(f )=f f −1f +1,…因为f″(f)=f f+1(f+1)2>0,所以f′(f)在(−1,+∞)单调递增,又f′(0)=0,所以当−1<f<0时,f′(f)>0,f(f)单调递增;当f>0时,f′(f)<0,f(f)单调递减;所以f(f)≤f(0)=0,当且仅当f=0时等号成立.故方程①有且仅有唯一解f=0,实数f的值为0.(2)解法一:令f(f)=f(f)−ff+f(f)−f(0)−f(0)(f>0),则f′(f)=f f−(f+1),所以当f>ln(f+1)时,f′(f)>0,f(f)单调递增;当0<f<ln(f+1)时,f′(f)<0,f(f)单调递减;;故f(f)≥f(ln(f+1))=f(ln(f+1))+f(f)−f(0)−f(0)−f ln(f+1)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f.令f(f)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f(f>0),则f′(f)=ln(f+f)−ln(f+1).(i)若f>1时,f′(f)>0,f(f)在(0,+∞)单调递增,所以f(f)>f(0)=0,满足题意.(ii)若f=1时,f(f)=0,满足题意.(iii)若0<f<1时,f′(f)<0,f(f)在(0,+∞)单调递减,所以f(f)<f(0)=0.不满足题意.综上述:f≥1.(六)利用根与系数的关系,把两变量用另一变量表示>【例】(2020山西高三期末)设函数1()ln() f x x a x a Rx=--∈(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x-+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ·②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >,故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12x x ==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--. 所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k a x x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=>|再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增,而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;|若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<,所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减;当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增,综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;/(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(),当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>, 函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点;(ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得1x =,2x =,当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f , `∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+ 11ln 1242a a a =++-1ln 1ln 24a a=+--,【设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a-'=-=<(),∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练 1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x =-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, @当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增;当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得0x <<或x >,'()0f x <x <<,所以函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x在区间⎛⎫⎪ ⎪⎝⎭上单调递减, !在区间0,2a ⎛⎫-- ⎪ ⎪⎝⎭和区间2a ⎛⎫-++∞⎪ ⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+. 当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增,与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <.由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<, |令()ln 1)h t t t =->,2'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭.2.【2020河北省衡水市高三期末】已知函数f (f )=f ln f −f 2.(1)令f (f )=f (f )+ff ,若f =f (f )在区间(0,3)上不单调,求f 的取值范围;(2)当f =2时,函数f (f )=f (f )−ff 的图象与f 轴交于两点f (f 1,0),f (f 2,0),且0<f 1<f 2,又f ′(f )是f (f )的导函数.若正常数f ,f 满足条件f +f =1,f ≥f .试比较f ′(ff 1+ff 2)与0的关系,并给出理由【解析】(1)因为f (f )=f ln f −f 2+ff ,所以f ′(f )=ff −2f +f , 因为f (f )在区间(0,3)上不单调,所以f ′(f )=0在(0,3)上有实数解,且无重根, 由f ′(f )=0,有f =2f 2f +1=2(f +1+1f +1)−4,f ∈(0,3),令t=x+1>4则y=2(t+1f )−4在t>4单调递增,故f ∈(0,92)、(2)∵f ′(f )=2f −2f −f ,又f (f )−ff =0有两个实根f 1,f 2,∴{2fff 1−f 12−ff 1=02fff 2−f 22−ff 2=0,两式相减,得2(ln f 1−ln f 2)−(f 12−f 22)=f (f 1−f 2), ∴f =2(ln f 1−ln f 2)f 1−f 2−(f 1+f 2),于是f ′(ff 1+ff 2)=2ff 1+ff 2−2(ff 1+ff 2)−2(ln f 1−ln f 2)f 1−f 2+(f 1+f 2)=2ff 1+ff 2−2(ln f 1−ln f 2)f 1−f 2+(2f −1)(f 2−f 1).∵f ≥f ,∴2f ≤1,∴(2f −1)(f 2−f 1)≤0. 要证:f ′(ff 1+ff 2)<0,只需证:2ff1+ff 2−2(ln f 1−ln f 2)f 1−f 2<0,只需证:f 1−f 2ff 1+ff 2−ln f1f 2>0.(*)令f 1f 2=f ∈(0,1),∴(*)化为1−fff +f +ln f <0,只需证f (f )=ln f +1−fff +f <0;f ′(f )=1f −1(ff +f )2>0∵f (f )在(0,1)上单调递增,f (f )<f (1)=0,∴ln f +1−f ff +f<0,即f 1−f 2ff +f+ln f 1f 2<0.∴f ′(ff 1+ff 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b∈R,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围;②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1f ,0)②详见解析—【解析】试题分析:(1)先确定参数:由f ′(1)=f (−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22f +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当f =0时,f (f )=ln f +ff ,原题转化为函数f (f )=−ln ff与直线f =f 有两个交点,先研究函数f (f )=−ln ff图像,再确定b 的取值范围是(−1f ,0). ②f 1f 2f 2>1⇔f 1f 2>f 2⇔ln f 1f 2>2,由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2ln f 2−ln f 1=f 1+f 2f 2−f 1,因此须证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,构造函数f (f )=ln f −2(f −1)f +1,即可证明 试题解析:(1)因为f ′(f )=ff +1f ,所以f ′(1)=f +1,由f ′(1)=f (−1)−2可得a=b-3.又因为f (f )在f =√22处取得极值,所以f ′(√22)=√22f +√2=0,所以a=" -2,b=1" .所以f (f )=−f 2+ln f +f ,其定义域为(0,+)f′(f )=−2f +1f +1=−2f 2+f +1f =−(2f +1)(f −1)f{令f′(f )=0得f 1=−12,f 2=1,当f ∈(0,1)时,f′(f )>0,当f ∈(1,+)f′(f )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当f =0时,f (f )=ln f +ff ,其定义域为(0,+).①由f (f )=0得f =-ln ff,记f (f )=−ln ff,则f′(f )=ln f −1f 2,所以f (f )=−ln ff在(0,f )单调减,在(f ,+∞)单调增,所以当f =f 时f (f )=−ln ff取得最小值−1f .又f (1)=0,所以f ∈(0,1)时f (f )>0,而f ∈(1,+∞)时f (f )<0,所以b 的取值范围是(−1f ,0). ②由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2+f (f 1+f 2)=0,ln f 2−ln f 1+f (f 2−f 1)=0,{所以ln f 1f 2ln f2−ln f 1=f 1+f 2f 2−f 1,不妨设x1<x2,要证f 1f 2>f 2, 只需要证ln f 1f 2=f 1+f2f 2−f 1(ln f 2−ln f 1)>2.即证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,设f =f2f 1(f >1),则f (f )=ln f −2(f −1)f +1=ln f +4f +1−2,所以f′(f )=1f −4(f +1)2=(f −1)2f (f +1)2>0,所以函数f (f )在(1,+)上单调增,而f (1)=0,所以f (f )>0即ln f >2(f −1)f +1,所以f 1f 2>f 2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f (f )=f f (f f −ff +f )有两个极值点f 1,f 2.(1)求f 的取值范围;,(2)求证:2f 1f 2<f 1+f 2.【解析】(1)因为f (f )=f f (f f −ff +f ),所以f ′(f )=f f (f f −ff +f )+f f (f f −f )=f f (2f f −ff ),令f ′(f )=0,则2f f =ff ,当f =0时,不成立;当f ≠0时,2f =ff f ,令f (f )=f ef,所以f ′(f )=1−ff f ,当f <1时,f ′(f )>0,当f >1时,f ′(f )<0,所以f (f )在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为f (1)=1f ,当f →−∞时,f (f )→−∞,当f →+∞时,f (f )→0,'因此,当0<2f <1f 时,f (f )有2个极值点,即f 的取值范围为(2f ,+∞).(2)由(1)不妨设0<f 1<1<f 2,且{2f f 1=ff 12f f 2=ff 2,所以{ff2+f 1=fff +fff 1ff2+f 2=fff +fff 2,所以f 2−f 1=ln f 2−ln f 1,要证明2f 1f 2<f 1+f 2,只要证明2f 1f 2(ln f 2−ln f 1)<f 22−f 12,即证明2ln (f 2f 1)<f 2f 1−f 1f 2,设f 2f 1=f (f >1),即要证明2ln f −f +1f <0在f ∈(1,+∞)上恒成立,记f (f )=2ln f −f +1f (f >1),f ′(f )=2f −1−1f 2=−f 2+2f −1f 2=−(f −1)2f 2<0,所以f (f )在区间(1,+∞)上单调递减,所以f (f )<f (1)=0,即2ln f −f +1f <0,即2f 1f 2<f 1+f2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f(f)=−12f2+2f−2f ln f.$(1)讨论函数f(f)的单调性;(2)设f(f)=f′(f),方程f(f)=f(其中f为常数)的两根分别为f,f(f<f),证明:f′(f+f2)<0.注:f′(f),f′(f)分别为f(f),f(f)的导函数.【解析】(1)函数f(f)的定义域为(0,+∞),f′(f)=−f+2−2ff =−f2+2f−2ff,令f(f)=−f22f−2f,f=4−8f,①当f≤0时,即f≥12时,恒有f(f)≤0,即f′(f)≤0,∴函数f(f)在(0,+∞)上单调减区间.②当f>0时,即f<12时,由f(f)=0,解得f1=1−√1−2f,f2=1+√1−2f,(i)当0<f<12时,当f∈(0,f1),(f2,+∞)时,f(f)<0,即f′(f)<0,|当f∈(f1,f2)时,f(f)>0,即f′(f)>0,∴函数f(f)在(0,f1),(f2,+∞)单调递减,在(f1,f2)上单调递增.(ii)当f≤0时,f(0)=−2f≥0,当f∈(f2,+∞)时,f(f)<0,即f′(f)<0,当f∈(0,f2)时,f(f)>0,即f′(f)>0,∴函数f(f)在(f2,+∞)单调递减,在(0,f2)上单调递增.证明(2)由条件可得f (f )=−f +2-2ff,f >0,∴f ′(f )=−1+2ff 2,!∵方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),∴{f (f )=f f (f )=f可得ff =2f ,∴f ′(f +f2)=−1+8f (f +f )2=−1+4ff (f +f )2=−1+4ff +f f+2,∵0<f <f , ∴0<ff <1, ∴ff +f f >2,∴f ′(f +f2)=−1+4f f +f f+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R .{(1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析 【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间;(2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得22x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可.、【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得2x >;令()0f x '<,得02x <<. 则函数()f x在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得22x =,且2112x <<. ¥由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数, 所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析,【解析】 【分析】(1)求导得()()222111lnx a F x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭,当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.<故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)不妨设x 1>x 2,依题意()1111lnx ab x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-, ∴()()1212121x lnx b x x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121x t x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, .∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t>1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数)【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】&(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。

函数导数中双变量问题的四种转化化归思想

函数导数中双变量问题的四种转化化归思想

处理函数双变量问题的六种解题思想吴享平(福建省厦门第一中学)361000在解决函数综合题时,我们经常会遇到在某个范围内都可以任意变动的双变量问题,由于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路,造成无从下手的之感,正因为如此,这样的问题往往穿插在试卷压轴题的某些步骤之中,是学生感到困惑的难点问题之一,本文笔者给出处理这类问题的六种解题思想,希望能给同学们以帮助和启发。

一、改变“主变量”思想例1.已知时在|2|,1)(2≤≥-+=m m mx x x f 恒成立,求实数x 的取值范围.分析:从题面上看,本题的函数式)(x f 是以x 为主变量,但由于该题中的“恒”字是相对于变量m 而言的,所以该题应把m 当成主变量,而把变量x 看成系数,我们称这种思想方法为改变“主变量”思想。

解: 01)1(122≥-+-⇔≥-+x x m m mx x 时在|2|≤m 恒成立,即关于m 为自变量的一次函数=)(m h 1)1(2-+-x m x 在]2,2[-∈m 时的函数值恒为非负值{0)2(0)2(≥-≥⇔h h 得{1301203222≥-≤⇔≥+-≥-+x x x x x x 或。

对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变量,而使问题快速获解。

二、指定“主变量”思想例2.已知,0n m <≤试比较)1ln(++-m e m n 与)1ln(1++n 的大小,并给出证明.分析:本题涉及到两个变量m,n ,这里不妨把m 当成常数,指定n 为主变量x ,解答如下解:构造函数),[),1ln(1)1ln()(+∞∈+--++=-m x x m e x f m x ,0≥m , 由0)1()1(1111)(>+-+=+-=+-='-m mx m x m x ex e e x x e e x e x f 在),[+∞∈m x 上恒成立,∴)(x f 在),[+∞m 上递增,∴0)()(min ==m f x f ,于是,当n m <≤0时,0)1ln(1)1ln()(>+--++=-n m e n f m n 即)1ln(++-m e m n >)1ln(1++n 。

例谈导数压轴题中双变量问题的常用解法

例谈导数压轴题中双变量问题的常用解法

例谈导数压轴题中双变量问题的常用解法典例:已知函数f(x)=xe x,f(x1)=f(x2),x 1≠x2,求证:x1+x2>2.解析:f′(x)=1−xe x,易得 f(x)在(−∞,1)递增,(1,+∞)递减,其图像如图,为了更好的看图,横纵轴单位长度取得不同,不妨设0<x1<1<x2,以下是几种不同的证明思路:思路一:(极值点偏移问题+构造对称函数)令g(x)=f(2−x)−f(x),(0<x<1)则g′(x)=(1−x)e x−e2−xe x e2−x<0,则g(x)在(0,1)递减∴g(x)>g(1)=0,即f(2−x)>f(x),∴f(2−x1)> f(x1)=f(x2),又2−x1>1,x2>1,f(x)在(1,+∞)递减,∴2−x1<x2,即x1+x2>2。

思路二:(极值点偏移+对数平均不等式)f(x1)=f(x2)⇒x1e x1=x2e x2⇒lnx1−x1=lnx2−x2⇒lnx1−lnx2=x1−x2⇒x1−x2lnx1−lnx2=1,由对数平均不等式x1−x2lnx1−lnx2<x1+x22(证明略),得x1+x22>1,即x1+x2>2。

思路三:(差值消元)令x2−x1=t>0,x1e x1=x2e x2⇒x2x1=e x2e x1=e x2−x1=e t⇒x1=te t−1,x2=te t−1+t,∴x1+x2=2te t−1+t,欲证x1+x2>2即证2te t−1+t<2即e t(2−t)2+t<1,令g(t)=e t(2−t)2+t,则g′(t)=e t(−t2)(2+t)2<0,故g(t)在(0,+∞)递减,∴g(t)<g(0)=0,∴x1+x2>2。

点评:构造对称函数为极值点偏移问题的通法。

点评:含指数或者对数的不等式问题中,指对互化是常用技巧,而对数平均不等的功能更是巨大。

导数中的双变量问题解题策略(史上最全题型)

导数中的双变量问题解题策略(史上最全题型)

h(m)
(x
1)m
x2
1在m [2, 2]时的函数值恒为非负值
h(2) 0 h(2) 0
x
3或x
1
★对任意n N , 恒有(1 1 )2na e2 ,求实数a 的最大值. n
(1 1 )2na e2 ln(1 1 )2na ln e2 (2n a) ln(1 1 ) 2 (n a ) ln(1 1) 1
n
n
n
2
n
a 2
1 ln(1
1
)
n, 设G (
x)
1 ln(1
x)
1 x
,
x
0,1
n
G '(x)
(1
1 x) ln2 (1
x)
1 x2
(1 x) ln2 (1 x) x2 x2 (1 x) ln2 (1 x)
, 设h( x)
(1
x) ln2 (1
x) x2
h '(x) ln2 (1 x) 2ln(1 x) 2x, h ''(x) 2ln(1 x) x ,易得G(x)在0,1上单调递减
构造函数f (x) exm ln(m 1) 1 ln(x 1), x (m, ), m 0 f (x) exm 1 ex 1 (x 1)ex em 0在x (m, )上恒成立,
x 1 em x 1 (x 1)em f (x)在(m, )上递增 f (x) f (m) 0 当0 m n时,即f (n) enm ln(m 1) 1 ln(n 1) 0 enm ln(m 1) 1 ln(n 1)
要题设中的不等式恒成立,只需a ln a e 1成立便可,于是构造(a) a ln a e 1,

导数中双变量的处理策略精讲

导数中双变量的处理策略精讲
导数中双变量的处理策略精讲
一、方法储备 第一招:消元法 1、消元的目的:若表达式所含变量个数较多,则表达式的范围不易确定(会受多个变量的取值共同影 响),所以如果题目条件能够提供减少变量的方式,则通常利用条件减少变量的个数,从而有利于求 表达式的范围(或最值),消元最理想的状态是将多元表达式转为一元表达式,进而可构造函数求得 值域。 2、常见消元的方法: (1)利用等量关系消元:若题目中出现了变量间的关系(等式),则可利用等式进行消元,在消元的 过程中要注意以下几点: ① 要确定主元:主元的选取有这样几个要点:一是主元应该有比较明确的范围(即称为函数的定义 域);二是构造出的函数能够解得值域(函数结构不复杂)。
n
n
代入 n 1 可得: f m f n ln 2m
2m 2
m2
1 4m2
设t m2
m
1 2
,1
t
1 4
,1
第 3页(共 88 页)
设 g t ln 2t t 1
4t
g' t
1 1 t
1 4t 2
2t 12
多变量表达式转化为一元表达式,便于求得最值。 1、放缩法求最值的理论基础:
不等式的传递性:若 f x, y g x , g x m ,则 f x, y m
2、常见的放缩消元手段: (1)抓住题目中的不等关系,若含有两个变量间的不等关系,则可利用这个关系进行放缩消元。 (2)配方法:通过利用“完全平方式非负”的特性,在式子中构造出完全平方式,然后令其等于 0,达 到消元的效果。 (3)均值不等式:构造能使用均值不等式的条件,利用均值不等式达到消元的效果。
角函数表达式来求得范围。因为三角函数公式的变形与多项式变形的公式不同,所以在有些题目中可

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-. 思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t-'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则()2110Q x xx '===<, 所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -. 由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+,由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭,令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0,即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. 【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '=(ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间;当1a >时,()f x 单调递减区间为(()0,,a a +∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. 由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤ ⎥⎝⎦,∵122x x a +=,∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围.【分析】(1)函数求导得()11'axf x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可. 【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x-+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值,当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以lna >,解得a 【变式训练】【广东省2020届高三期末】设函数2()()e ()xf x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2xx f x x a ex ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数【例】已知函数f (f )={e −f +1,f ≤0,2√f , f >0.函数f =f (f (f )+1)−f (f ∈f )恰有两个零点f 1和f 2. (1)求函数f (f )的值域和实数f 的最小值;(2)若f 1<f 2,且ff 1+f 2≥1恒成立,求实数f 的取值范围. 【解析】(1)当f ≤0时,f (f )=e −f +1≥2.当f >0时,f (f )=2√f >0.∴ f (f )的值域为(0,+∞).令f (f (f )+1)=f ,∵ f (f )+1>1,∴ f (f (f )+1)>2,∴ f >2. 又f (f )的单调减区间为(−∞,0],增区间为(0,+∞).设f (f )+1=f 1,f (f )+1=f 2,且f 1<0,f 2>1.∴ f (f )=f 1−1无解.从而f(f)=f2−1要有两个不同的根,应满足f2−1≥2,∴f2≥3.∴f(f2)=f(f(f)+1)≥2√3.即f≥2√3.∴f的最小值为2√3.(2) f=f(f(f)+1)−f有两个零点f1、f2且f1<f2,设f(f)=f,f∈[2,+∞),∴e−f1+1=f,∴f1=−ln(f−1).2√f2=f,∴f2=f24.∴−f ln(f−1)+f24≥1对f∈[2,+∞)恒成立设f(f)=−f ln(f−1)+f24−1,f′(f)=−ff−1+f2=f2−f−2f2(f−1).∵f∈[2,+∞),∴f2−f∈[2,+∞)恒成立.∴当2f≤2,即f≤1时,f′(f)≥0,∴f(f)在[2,+∞)上单调递增.∴f(f)≥f(2)=−f ln1+1−1=0成立.当f>1时,设f(f)=f2−f−2f.由f(2)=4−2−2f=2−2f<0.∴∃f0∈(2,+∞),使得f(f0)=0.且当f∈(2,f0)时,f(f)<0,f∈(f0,+∞)时,f(f)>0.∴当f∈(2,f0)时,f(f)单调递减,此时f(f)<f(2)=0不符合题意.综上,f≤1.【变式训练】f(f)=f2+ff−f ln f.(1)若函数f(f)在[2,5]上单调递增,求实数f的取值范围;(2)当f=2时,若方程f(f)=f2+2f有两个不等实数根f1,f2,求实数f的取值范围,并证明f1f2<1.【解析】(1)f′(f)=2f+f−ff,∵函数f(f)在[2,5]上单调递增,∴f′(f)≥0在f∈[2,5]恒成立,即2f+f−ff≥0对f∈[2,5]恒成立,∴f≥−2f2f−1对f∈[2,5]恒成立,即f≥(−2f2f−1)max,f∈[2,5],令f(f)=−2f2f−1(f∈[2,5]),则f′(f)=−2f2+4f(f−1)2≤0(f∈[2,5]),∴f (f )在[2,5]上单调递减,∴f (f )在[2,5]上的最大值为f (2)=−8. ∴f 的取值范围是[−8,+∞).(2)∵当f =2时,方程f (f )=f 2+2f ⇔f −ln f −f =0,令f (f )=f −ln f −f (f >0),则f′(f )=1−1f ,当f ∈(0,1)时,f′(f )<0,故f (f )单调递减,当f ∈(1,+∞)时,f′(f )>0,故f (f )单调递增,∴f (f )min =f (1)=1−f .若方程f (f )=f 2+2f 有两个不等实根,则有f (f )min <0,即f >1, 当f >1时,0<f −f <1<f f ,f (f −f )=f −f >0,f (f f )=f f −2f ,令f (f )=f f −2f (f >1),则f′(f )=f f −2>0,f (f )单调递增,f (f )>f (1)=f −2>0, ∴f (f f )>0,∴原方程有两个不等实根,∴实数f 的取值范围是(1,+∞).不妨设f 1<f 2,则0<f 1<1<f 2,0<1f 2<1,∴f 1f 2<1⇔f 1<1f 2⇔f (f 1)>f (1f 2),∵f (f 1)=f (f 2)=0,∴f (f 1)−f (1f 2)=f (f 2)−f (1f 2)=(f 2−ln f 2−f )−(1f 2−ln1f 2−f ),=f 2−1f 2−2ln f 2.令f (f )=f −1f−2ln f (f >1),则f′(f )=1+1f 2−2f =(1f −1)2>0,∴f (f )在(1,+∞)上单调递增,∴当f >1时,f (f )>f (1)=0,即f 2−1f 2−2ln f 2>0,∴f (f 1)>f (1f 2),∴f 1f 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数.(1)求()f x 的极值;(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. (1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, ()ln ,k R kf x x x=+∈()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞则在上恒成立,得恒成立,∴(对仅在时成立),故的取值范围是 【变式训练】已知函数f (f )=f +f ln f .(Ⅰ)求函数f (f )的图象在点(1,1)处的切线方程;(Ⅱ)若f ∈f ,且f (f −1)<f (f )对任意f >1恒成立,求f 的最大值; (Ⅲ)当f >f ≥4时,证明:(ff f )f >(ff f )f . 【解析】(Ⅰ)∵f ′(f )=ln f +2,∴f ′(1)=2,函数f (f )的图象在点(1,1)处的切线方程f =2f −1;(Ⅱ)由(Ⅰ)知,f (f )=f +f ln f ,∴f (f −1)<f (f ),对任意f >1恒成立,即f <f +f ln ff −1对任意f >1恒成立. 令f (f )=f +f ln ff −1,则f′(f )=f −ln f −2(f −1)2, 令f (f )=f −ln f −2(f >1),则f ′(f )=1−1f =f −1f>0,所以函数f (f )在(1,+∞)上单调递增.∵f (3)=1−ln 3〈0,f (4)=2−2ln 2〉0,∴方程f (f )=0在(1,+∞)上存在唯一实根f 0,且满足f 0∈(3,4).当1<f <f 0时,f (f )<0,即f′(f )<0,当f >f 0时,f (f )>0,即f′(f )>0, 所以函数f (f )=f +f ln ff −1在(1,f 0)上单调递减,在(f 0,+∞)上单调递增. ∴[f (f )]min =f (f 0)=f 0(1+ln f 0)f 0−1=f 0(1+f 0−2)f 0−1=f 0∈(3,4),∴f <[f (f )]min =f 0∈(3,4),故整数f 的最大值是3.()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭(Ⅲ)由(Ⅱ)知,f (f )=f +f ln ff −1是[4,+∞)上的增函数, ∴当f >f ≥4时,f +f ln ff −1>f +f ln ff −1. 即f (f −1)(1+ln f )>f (f −1)(1+ln f ).整理,得ff ln f +f ln f >ff ln f +f ln f +(f −f ). ∵f >f ,∴ff ln f +f ln f >ff ln f +f ln f .即ln f ff +ln f f >ln f ff +ln f f .即ln (f ff f f )>ln (f ff f f ).∴(ff f )f >(ff f )f . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+, 可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f (f )=f f −f ,f (f )=(f +f )ln (f +f )−f .(1)若f =1,f ′(f )=f ′(f ),求实数f 的值.(2)若f ,f ∈f +,f (f )+f (f )≥f (0)+f (0)+ff ,求正实数f 的取值范围.【解析】(1)由题意,得f′(f)=f f−1,f′(f)=ln(f+f),由f=1,f′(f)=f′(f)…①,得f f−ln(f+1)−1=0,,令f(f)=f f−ln(f+1)−1,则f′(f)=f f−1f+1>0,所以f′(f)在(−1,+∞)单调递增,因为f″(f)=f f+1(f+1)2又f′(0)=0,所以当−1<f<0时,f′(f)>0,f(f)单调递增;当f>0时,f′(f)<0,f(f)单调递减;所以f(f)≤f(0)=0,当且仅当f=0时等号成立.故方程①有且仅有唯一解f=0,实数f的值为0.(2)解法一:令f(f)=f(f)−ff+f(f)−f(0)−f(0)(f>0),则f′(f)=f f−(f+1),所以当f>ln(f+1)时,f′(f)>0,f(f)单调递增;当0<f<ln(f+1)时,f′(f)<0,f(f)单调递减;故f(f)≥f(ln(f+1))=f(ln(f+1))+f(f)−f(0)−f(0)−f ln(f+1)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f.令f(f)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f(f>0),则f′(f)=ln(f+f)−ln(f+1).(i)若f>1时,f′(f)>0,f(f)在(0,+∞)单调递增,所以f(f)>f(0)=0,满足题意.(ii)若f=1时,f(f)=0,满足题意.(iii)若0<f<1时,f′(f)<0,f(f)在(0,+∞)单调递减,所以f(f)<f(0)=0.不满足题意.综上述:f≥1.(六)利用根与系数的关系,把两变量用另一变量表示【例】(2020山西高三期末)设函数1()ln ()f x x a x a R x=--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x-+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >, 故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12x x ==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--. 所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k a x x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=> 再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增,而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<,所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减;当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增,综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++ ()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(), 当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>,函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点;(ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得114x a =,214x a+=,当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f , ∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+11ln 1242a a a =++-1ln 1ln 24a a =+--,设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a -'=-=<(),∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x =-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, 当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增;当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得02a x -<<或2a x ->,'()0f x <,解得22a a x ---<<,所以函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间0,2a ⎛⎫-- ⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+.当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增,与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <.由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<,令()ln 1)h t t t =->,'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭. 2.【2020河北省衡水市高三期末】已知函数f (f )=f ln f −f 2.(1)令f (f )=f (f )+ff ,若f =f (f )在区间(0,3)上不单调,求f 的取值范围;(2)当f =2时,函数f (f )=f (f )−ff 的图象与f 轴交于两点f (f 1,0),f (f 2,0),且0<f 1<f 2,又f ′(f )是f (f )的导函数.若正常数f ,f 满足条件f +f =1,f ≥f .试比较f ′(ff 1+ff 2)与0的关系,并给出理由【解析】(1)因为f (f )=f ln f −f 2+ff ,所以f ′(f )=ff −2f +f , 因为f (f )在区间(0,3)上不单调,所以f ′(f )=0在(0,3)上有实数解,且无重根, 由f ′(f )=0,有f =2f 2f +1=2(f +1+1f +1)−4,f ∈(0,3),令t=x+1>4则y=2(t+1f )−4在t>4单调递增,故f ∈(0,92)(2)∵f ′(f )=2f −2f −f ,又f (f )−ff =0有两个实根f 1,f 2,∴{2fff 1−f 12−ff 1=02fff 2−f 22−ff 2=0,两式相减,得2(ln f 1−ln f 2)−(f 12−f 22)=f (f 1−f 2), ∴f =2(ln f 1−ln f 2)f 1−f 2−(f 1+f 2),于是f ′(ff 1+ff 2)=2ff 1+ff 2−2(ff 1+ff 2)−2(ln f 1−ln f 2)f 1−f 2+(f 1+f 2)=2ff 1+ff 2−2(ln f 1−ln f 2)f 1−f 2+(2f −1)(f 2−f 1).∵f ≥f ,∴2f ≤1,∴(2f −1)(f 2−f 1)≤0. 要证:f ′(ff 1+ff 2)<0,只需证:2ff1+ff 2−2(ln f 1−ln f 2)f 1−f 2<0,只需证:f 1−f 2ff 1+ff 2−ln f1f 2>0.(*)令f 1f 2=f ∈(0,1),∴(*)化为1−fff +f +ln f <0,只需证f (f )=ln f +1−fff +f <0f ′(f )=1f −1(ff +f )2>0∵f (f )在(0,1)上单调递增,f (f )<f (1)=0,∴ln f +1−fff +f<0,即f 1−f 2ff +f +ln f 1f 2<0.∴f ′(ff 1+ff 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b∈R,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围;②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1f ,0)②详见解析【解析】试题分析:(1)先确定参数:由f ′(1)=f (−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22f +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当f =0时,f (f )=ln f +ff ,原题转化为函数f (f )=−ln ff与直线f =f 有两个交点,先研究函数f (f )=−ln ff图像,再确定b 的取值范围是(−1f ,0). ②f 1f 2f 2>1⇔f 1f 2>f 2⇔ln f 1f 2>2,由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2ln f 2−ln f 1=f 1+f2f 2−f 1,因此须证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,构造函数f (f )=ln f −2(f −1)f +1,即可证明 试题解析:(1)因为f ′(f )=ff +1f ,所以f ′(1)=f +1,由f ′(1)=f (−1)−2可得a=b-3.又因为f (f )在f =√22处取得极值,所以f ′(√22)=√22f +√2=0,所以a=" -2,b=1" .所以f (f )=−f 2+ln f +f ,其定义域为(0,+)f′(f )=−2f +1f +1=−2f 2+f +1f =−(2f +1)(f −1)f令f′(f )=0得f 1=−12,f 2=1,当f ∈(0,1)时,f′(f )>0,当f ∈(1,+)f′(f )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当f =0时,f (f )=ln f +ff ,其定义域为(0,+).①由f (f )=0得f =-ln ff,记f (f )=−ln ff,则f′(f )=ln f −1f 2,所以f (f )=−ln ff在(0,f )单调减,在(f ,+∞)单调增,所以当f =f 时f (f )=−ln ff取得最小值−1f .又f (1)=0,所以f ∈(0,1)时f (f )>0,而f ∈(1,+∞)时f (f )<0,所以b 的取值范围是(−1f ,0). ②由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2+f (f 1+f 2)=0,ln f 2−ln f 1+f (f 2−f 1)=0, 所以ln f 1f 2ln f2−ln f 1=f 1+f 2f 2−f 1,不妨设x1<x2,要证f 1f 2>f 2, 只需要证ln f 1f 2=f 1+f2f 2−f 1(ln f 2−ln f 1)>2.即证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,设f =f2f 1(f >1),则f (f )=ln f −2(f −1)f +1=ln f +4f +1−2, 所以f′(f )=1f −4(f +1)2=(f −1)2f (f +1)2>0,所以函数f (f )在(1,+)上单调增,而f (1)=0,所以f (f )>0即ln f >2(f −1)f +1,所以f 1f 2>f 2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f (f )=f f (f f −ff +f )有两个极值点f 1,f 2. (1)求f 的取值范围;(2)求证:2f 1f 2<f 1+f 2.【解析】(1)因为f (f )=f f (f f −ff +f ),所以f ′(f )=f f (f f −ff +f )+f f (f f −f )=f f (2f f −ff ),令f ′(f )=0,则2f f =ff ,当f =0时,不成立;当f ≠0时,2f =ff f ,令f (f )=f ef,所以f ′(f )=1−ff f ,当f <1时,f ′(f )>0,当f >1时,f ′(f )<0,所以f (f )在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为f (1)=1f ,当f →−∞时,f (f )→−∞,当f →+∞时,f (f )→0, 因此,当0<2f <1f 时,f (f )有2个极值点,即f 的取值范围为(2f ,+∞).(2)由(1)不妨设0<f 1<1<f 2,且{2f f 1=ff 12f f 2=ff 2,所以{ff2+f 1=fff +fff 1ff2+f 2=fff +fff 2,所以f 2−f 1=ln f 2−ln f 1,要证明2f 1f 2<f 1+f 2,只要证明2f 1f 2(ln f 2−ln f 1)<f 22−f 12,即证明2ln (f 2f 1)<f 2f 1−f 1f 2,设f 2f 1=f (f >1),即要证明2ln f −f +1f <0在f ∈(1,+∞)上恒成立,记f (f )=2ln f −f +1f (f >1),f ′(f )=2f −1−1f 2=−f 2+2f −1f 2=−(f −1)2f 2<0,所以f (f )在区间(1,+∞)上单调递减,所以f (f )<f (1)=0,即2ln f −f +1f <0,即2f 1f 2<f 1+f 2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f (f )=−12f 2+2f −2f ln f . (1)讨论函数f (f )的单调性;(2)设f (f )=f ′(f ),方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),证明:f ′(f +f2)<0.注:f ′(f ),f ′(f )分别为f (f ),f (f )的导函数.【解析】(1)函数f (f )的定义域为(0,+∞),f ′(f )=−f +2−2f f=−f2+2f −2ff,令f (f )=−f 22f −2f ,f =4−8f ,①当f ≤0时,即f ≥12时,恒有f (f )≤0,即f ′(f )≤0, ∴函数f (f )在(0,+∞)上单调减区间.②当f >0时,即f <12时,由f (f )=0,解得f 1=1−√1−2f ,f 2=1+√1−2f , (i )当0<f <12时,当f ∈(0,f 1),(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(f 1,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(0,f 1),(f 2,+∞)单调递减,在(f 1,f 2)上单调递增.(ii )当f ≤0时,f (0)=−2f ≥0,当f ∈(f 2,+∞)时,f (f )<0,即f ′(f )<0, 当f ∈(0,f 2)时,f (f )>0,即f ′(f )>0,∴函数f (f )在(f 2,+∞)单调递减,在(0,f 2)上单调递增. 证明(2)由条件可得f (f )=−f +2-2ff,f >0,∴f ′(f )=−1+2ff 2,∵方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),∴{f (f )=f f (f )=f可得ff =2f ,∴f ′(f +f2)=−1+8f (f +f )2=−1+4ff (f +f )2=−1+4ff +f f+2,∵0<f <f , ∴0<ff <1, ∴ff +f f >2,∴f ′(f +f2)=−1+4ff +ff+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R .(1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间;(2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得2x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可. 【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得x >()0f x '<,得0x << 则函数()f x在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得2x =2112x <<.由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数, 所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析 【解析】 【分析】(1)求导得()()222111lnx aF x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭,当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)不妨设x 1>x 2,依题意()1111lnx ab x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-, ∴()()1212121x lnx bx x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121x t x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, ∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t >1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数)【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。

导数中双变量的处理策略

导数中双变量的处理策略

导数中双变量的处理策略当处理双变量导数时,有几种主要的方法和策略可以使用,包括偏导数、隐函数求导、参数方程求导和向量求导。

1.偏导数:偏导数是计算多元函数在其中一点上对一个自变量的变化率而不考虑其他自变量的影响。

在求偏导数时,我们将其他自变量视为常数,然后分别对每一个自变量求导。

例如,对于函数f(x,y),我们可以计算出关于x的偏导数∂f/∂x和关于y的偏导数∂f/∂y,这可以表示为以下形式:∂f/∂x=lim(h->0)((f(x+h,y)-f(x,y))/h)∂f/∂y=lim(h->0)((f(x,y+h)-f(x,y))/h)通过计算偏导数,我们可以得到自变量的变化对函数值的影响,并且还可以计算出导函数,即由偏导数组成的向量。

2.隐函数求导:隐函数求导是一种用于求解含有隐式方程的导数的方法。

在一些情况下,我们无法将函数表示为关于自变量的显式表达式,而是将自变量表示为函数的隐含形式。

例如,对于方程x^2 + y^2 = 1,我们无法用y = f(x)的形式解出y。

然而,通过求偏导数,我们可以计算出dy/dx的值。

3.参数方程求导:参数方程是一种将变量表示为参数的函数形式。

在参数方程中,每个自变量可以表示为参数的函数。

对于参数方程x = f(t)和y = g(t),我们可以通过求导来计算出x 和y的导数dx/dt和dy/dt。

然后,通过链式法则,我们可以计算出dy/dx。

这种方法常用于描述曲线和路径,特别是在物理学和工程学中的运动分析中。

4.向量求导:向量求导是一种将多个自变量和函数表达为向量的形式,然后对向量进行求导的方法。

对于向量函数F(x,y)=[f(x,y),g(x,y)],我们可以将自变量向量表示为X=[x,y],并计算出向量F关于向量X的导数∇F/∇X。

这种方法常用于多元向量函数的微分和梯度运算,以及在向量分析和微积分中的应用。

总结起来,处理双变量导数的策略包括利用偏导数、隐函数求导、参数方程求导和向量求导这几种方法。

函数导数中双变量问题的四种转化化归思想

函数导数中双变量问题的四种转化化归思想

2012 年 第 8 期 数学通讯(上半月) 8-12处理函数双变量问题的六种解题思想吴享平(福建省厦门第一中学) 361000在解决函数综合题时, 我们经常会遇到在某个范围内都可以任意变动的双变量问题, 由 于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路, 造成无从下手的之感, 正因为如此, 这样的问题往往穿插在试卷压轴题的某些步骤之中, 是 学生感到困惑的难点问题之一, 本文笔者给出处理这类问题的六种解题思想, 希望能给同学 们以帮助和启发。

一、改变“主变量”思想例1.已知 f (x) x 2 mx 1 m,在|m| 2时 恒成立,求实数 x 的取值范围 .分析: 从题面上看,本题的函数式 f (x)是以 x 为主变量 ,但由于该题中的“恒”字是 相对于变量m 而言的,所以该题应把 m 当成主变量,而把变量 x 看成系数,我们称这种思 想方法为改变“主变量”思想。

解: x 2 mx 1 m m(x 1) x 2 1 0 在| m| 2时 恒成立,即关于 m 为自 变量的一次函数 h(m) (x 1)m x 21在 m [ 2,2] 时的函数值恒为非负值得 x x 2 22x x 33 00x3或 x 1。

对于题目所涉及的两个变元, 已知其中一个变元在题设给定范围内任意变动, 求另一个 变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往 往会利用我们习以常的 x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们 抓住“任意变动的量”为主变量, “所要求范围的量”为常数,便可找到问题所隐含的自变 量,而使问题快速获解。

二、指定“主变量”思想例2 .已知 0 m n,试比较 e n m ln(m 1) 与1 ln(n 1)的大小,并给出证明m,n ,这里不妨把 m 当成常数,指定 n 为主变量 x ,解答如下xm解:构造函数 f (x) e x m ln(m 1) 1 ln(x 1),x [m, ) ,m 0,f (x)min f(m) 0,于是,当 0 m n 时,f (n) e n m ln(m 1) 1 ln(n 1) 0即 e n m ln(m 1) >1 ln(n 1)。

导数中的双变量任意

导数中的双变量任意

导数中的双变量任意、存在恒成立问题解决方法:转化为最值问题处理●类型 一:若2211D x D x ∈∀∈∀,,)()(21x g x f >恒成立 ⇔ max 2min 1)()(x g x f >.基本思想是:函数)(x f 的任一函数值均大于)(x g 的任一函数值,故只需max 2min 1)()(x g x f >即可. 几何解释如图一.例1、已知x x x f ln )(=,3)(2++-=ax x x g ,若对)0(1∞+∈∀,x ,]1[2e x ,∈∀使得)(21x f ≥)(2x g 成立,求实数a 的取值范围.【变式训练1】已知函数14341ln )(-+-=xx x x f ,42)(2-+-=bx x x g ,若)20(1,∈∀x , ]21[2,∈∀x ,不等式)(1x f ≥)(2x g 恒成立,求实数b 的取值范围.●类型 二:若2211D x D x ∈∃∈∃,,)()(21x g x f >恒成立 ⇔ min 2max 1)()(x g x f >.基本思想是:函数)(x f 的某些函数值大于)(x g 的某些函数值,只要求有这样的函数值,不要求所有的函数值.故只需min 2max 1)()(x g x f >即可. 几何解释如图二.例2、已知a ≤2,设函数x a x x x f ln 1)(--=,ex x x g 1ln )(--=, 若在]1[e ,上存在21x x ,,使)(1x f ≥)(2x g 成立,求实数a 取值范围.【变式训练2】已知函数xx x g ln )(=,ax x g x f -=)()(. (1)求函数)(x g 的单调区间;(2)若函数)(x f 在(1,∞+)上是减函数,求实数a 的最小值;(3)若存在][221e e x x ,,∈,使得)(1x f ≤a x f +')(2成立,求实数a 取值范围.●类型 三:若2211D x D x ∈∃∈∀,,)()(21x g x f >恒成立 ⇔ min 2min 1)()(x g x f >.基本思想是:函数)(x f 的任一函数值大于)(x g 的某些函数值,但并不要求大于)(x g 所有的函数值.故只需min 2min 1)()(x g x f >即可. 几何解释如图三.例3、已知函数x x x f 2)(2+=,m x g x -=)21()(. 若对]11[]21[21,,,-∈∃∈∀x x ,使得 )(1x f ≥)(2x g 成立,求实数m 取值范围.【变式训练3】已知函数)()(2R n m nx mx x f ∈+=,在1=x 取得极值2. (1)求)(x f 的解析式; (2)设函数x a x x g +=ln )(,若对]1[]11[21e x x ,,,∈∃-∈∀,使得)(2x g ≤27)(1+x f 成立,求实数a 的取值范围.●类型 四:若2211D x D x ∈∀∈∃,,)()(21x g x f >恒成立 ⇔ max 2max 1)()(x g x f >.基本思想是:函数)(x f 的某些函数值大于)(x g 的任一函数值,只要求)(x f 有函数值大于)(x g 的函数值即可.故只需max 2max 1)()(x g x f >即可. 几何解释如图三.例4、已知函数,x ax x f ln )(+=,22)(2+-=x x x g . 若a 1->且]1[1e x ,∈∃,对 ]10[2,∈∀x ,使得)()(21x g x f >成立,求实数a 的取值范围.【变式训练4】已知函数xx x f 2ln )(-=,x x x f x g ln 62)()(-+=,设4)(2+-=mx x x h . 若)10(1,∈∃x ,对]21[2,∈∀x ,总有)(1x g ≥)(2x h 成立,求实数m 的取值范围.例4、【解析】:因为22)(2+-=x x x g ,]1,0[∈x ,易得2)0()(max ==g x g . 又x ax x f ln )(+=,x a x f 1)(+=',易知)(x f '在[1,e]上单调递减,∴]11[)(++∈'a e a x f ,,若a ≥e1-,则)(x f '>0,)(x f 在[1,e]上单调递增,1)()(max +==ae e f x f >2,解得a >e 1.若e a 11-<<-,)(x f 在(1,a 1-)上单调递增,在(a1-,e )上单调递减,)ln(1)1()(max a af x f ---=-=>2,得31e a ->,此时与e a 11-<<-矛盾. 综上所述,所求a 的取值范围是(+∞,1e).欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

函数导数中双变量问题的四种转化化归思想-厦门一中

函数导数中双变量问题的四种转化化归思想-厦门一中

处理函数双变量问题的六种解题思想吴享平(福建省厦门第一中学)361000在解决函数综合题时,我们经常会遇到在某个范围内都可以任意变动的双变量问题,由于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路,造成无从下手的之感,正因为如此,这样的问题往往穿插在试卷压轴题的某些步骤之中,是学生感到困惑的难点问题之一,本文笔者给出处理这类问题的六种解题思想,希望能给同学们以帮助和启发。

一、改变“主变量”思想例1.已知时在|2|,1)(2≤≥-+=m m mx x x f 恒成立,求实数x 的取值范围.分析:从题面上看,本题的函数式)(x f 是以x 为主变量,但由于该题中的“恒”字是相对于变量m 而言的,所以该题应把m 当成主变量,而把变量x 看成系数,我们称这种思想方法为改变“主变量”思想。

解: 01)1(122≥-+-⇔≥-+x x m m mx x 时在|2|≤m 恒成立,即关于m 为自变量的一次函数=)(m h 1)1(2-+-x m x 在]2,2[-∈m 时的函数值恒为非负值{0)2(0)2(≥-≥⇔h h 得{1301203222≥-≤⇔≥+-≥-+x x x x x x 或。

对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变量,而使问题快速获解。

二、指定“主变量”思想例2.已知,0n m <≤试比较)1ln(++-m e m n 与)1ln(1++n 的大小,并给出证明.分析:本题涉及到两个变量m,n ,这里不妨把m 当成常数,指定n 为主变量x ,解答如下解:构造函数),[),1ln(1)1ln()(+∞∈+--++=-m x x m e x f m x ,0≥m , 由0)1()1(1111)(>+-+=+-=+-='-m mx m x m x ex e e x x e e x e x f 在),[+∞∈m x 上恒成立,∴)(x f 在),[+∞m 上递增,∴0)()(min ==m f x f ,于是,当n m <≤0时,0)1ln(1)1ln()(>+--++=-n m e n f m n 即)1ln(++-m e m n >)1ln(1++n 。

高考数学函数转化思想总结

高考数学函数转化思想总结

高考数学函数转化思想总结数学中的函数转化是指将一个函数从一个形式转化为另一个形式,通过转化使得原函数更易于研究、计算或理解。

函数转化是数学中常用的方法之一,它在高考数学中占据着重要的地位。

本文将从函数的基本形式出发,总结高考数学中常见的函数转化思想,并探讨其应用和意义。

函数转化的基本形式有三种:标准型、一般式和参数方程。

标准型是指函数将x的一个具体值代入后能得到一个y的具体值,常见的标准型函数有直线函数、二次函数、指数函数、对数函数等。

一般式是指函数通过某种表达式能够刻画其一般性质,例如圆的一般方程、二次曲线的一般方程等。

参数方程是指函数的自变量和因变量都用参数表示,常见的参数方程有平面曲线的参数方程等。

在函数转化中,我们可以将一个函数从一种基本形式转化为另一种,通过不同的转化,可以使函数的性质更易于研究和理解。

在高考数学中,常见的函数转化思想有函数的平移、缩放、翻转和复合等。

其中,平移是指将函数在坐标系中沿x轴或y轴方向移动一定的距离,通过平移可以改变函数的位置和图像,常见的平移有函数的平行移动和垂直移动。

平行移动是指将函数图像沿x轴或y轴方向保持不变,只改变位置,常见的平行移动是函数的横向平移和纵向平移。

横向平移是指通过改变函数的自变量x的值,使得函数图像整体左右移动。

纵向平移是指通过改变函数的因变量y的值,使得函数图像整体上下移动。

通过平移,我们可以将一个函数的图像对应到另一个函数的图像,从而对函数的性质进行研究和比较。

缩放是指通过改变函数的自变量和因变量的取值范围,来改变函数的形态和图像。

常见的缩放有函数的水平缩放和垂直缩放。

水平缩放是通过改变函数的自变量x的取值范围,使得函数的图像横向拉长或压缩。

垂直缩放是通过改变函数的因变量y的取值范围,使得函数的图像纵向拉长或压缩。

通过缩放,我们可以将一个函数的图像与另一个函数的图像进行比较,从而对函数的性质进行研究和分析。

翻转是指通过改变函数的自变量和因变量的符号,来改变函数的图像和性质。

导数应用中的化归与转化思想

导数应用中的化归与转化思想

教材研究新课程NEW CURRICULUM在数学的知识和技能中,蕴含着具有普遍性的数学思想,它是数学的精髓和灵魂,是知识转化为能力的桥梁,是数学知识和方法产生的根本源泉,对数学思想的应用,是数学学习走向更深层次的一个标志,它能指导我们有效地应用数学知识,探寻解题方向.数学对象的内部或者不同的数学对象之间,往往会以某种形式相互联系,在一定的条件下能够相互转化,针对面临的数学问题,实施或转化问题的条件,或转化问题的结论或转化问题的内在结构,或转化问题的外部表现形式等行动策略去解决有关的数学问题,能促进问题的解决,可以说,数学解题的过程就是不断化归与转化的过程.在应用导数解决问题的过程中,对于一时难以解决的问题,可运用转化与化归思想经过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将原问题化归为一类已经能解决或者比较容易解决的问题.而导数综合问题的主要类型有:(1)不等式的恒成立问题;(2)证明不等式问题;(3)方程的求解问题.通常,应用化归与转化思想解决导数的综合问题时有一个基本的解题思路,即:将不等式的恒成立问题转化为函数的最值问题;将证明不等式问题转化为函数的单调性与最值问题;将方程的求解问题转化为函数的零点问题、两个函数图象的交点问题等.为了完成上述转化,要把握两个关键:(1)针对问题的需要,合理地构造函数,找到问题转化的突破口;(2)通过“再构造、再求导”,实现问题的深度转化.下面通过具体例题,对上述两个关键进行一些探究.问题一:怎样合理构造函数1.先分离参数后再构造函数例1.已知函数f(x)=ln x,对任意的a∈[-1,0),若不等式f(x)< 12ax2+2x+b在x∈(0,1]上恒成立,求实数b的取值范围.【分析】这是不等式的恒成立问题.∵f(x)<12ax2+2x+b∴分离参数后可得b>ln x-12ax2-2x而此不等式对任意的a∈[-1,0)恒成立,则b>(ln x-12ax2-2x)max,根据主次元互换的思想,先构造函数φ(a)=-12x2a-2x-ln x,显然φ(a)在[-1,0)上是单调递减函数,∴φ(a)max=φ(-1)=12x2-2x-ln x∴问题转化为不等式b>12x2-2x-ln x在x∈(0,1]上恒成立.令G(x)=12x2-2x-ln x则G′(x)=x-2+1x=(x-1)2x≥0∴G(x)在(0,1]上单调递增,即G(x)max=G(1)=-32∴b的取值范围为b>-322.将不等式两边作差后再构造函数需要补充说明的是:如果先分离参数后对应的函数不便于求解其最值,或者求解其函数最值繁琐时,可采用直接构造函数的方法,也就是将不等式两边作差后再构造函数.例2.设函数f(x)=ln(x+1),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数,若f(x)≥ag(x)恒成立,则实数a的取值范围是()A.(-1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,-1)【分析】不等式f(x)≥ag(x)恒成立,可先构造函数φ(x)= ln(1+x)-ax1+x,再研究函数φ(x)≥0时参数a的取值范围.【解析】选D∵f′(x)=x1+x∴g(x)=x f′(x)=ax1+x 若f(x)≥ag(x)恒成立,即ln(1+x)≥ax1+x恒成立,设φ(x)=ln(1+x)-ax1+x(x≥0),则φ′(x)=x1+x-a(1+x)2= x+1-a(1+x)2①当a≤1时,φ′(x)≥0(当且仅当x=0,a=1时等号成立),则φ(x)在[0,+∞)上单调递增,又φ(0)=0,即φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥ax1+x恒成立(当且仅当x=0时等号成立).②当a>1时,对x∈(0,a-1),有φ′(x)<0,则φ(x)在(0,a-1)上单调递减,∴φ(a-1)<φ(0)=0即a>1时,存在x>0,使φ(x)<0,可知ln(x+ 1)≥ax1+x不恒成立.3.抓住常规基本函数,变形后构造新函数例3.(2014高考新课标全国卷Ⅰ)设函数f(x)=ae x ln x+be x-1x,曲线y=f(x)在点(1,f(1))处的切线为y=e(x-1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1.【分析】(Ⅰ)利用导数的几何意义及切点是公共点得f′(1)=ef(1)=2{,从而易得a=1b=2{(Ⅱ)这是不等式的证明问题:∵由(Ⅰ)知,f(x)=e x ln x+2e x-1x,∴f(x)>1等价于e x ln x+2e x-1x>1即xe x ln x+2e x-1>x现两边同时除以e x得:x ln x+2e>xe-x由于这时不等式两边的函数都是由常规基本函数组成,因此,可分别构造如下两个函数:g(x)=x ln x+2e;h(x)=xe-x∵g′(x)=x+ln x∴当x∈(0,1e)时,g′(x)<0,当x∈(1e,+∞)时,g′(x)>0,故g(x)在(0,1e)单调递减,在(1e,+∞)单调递增,∴g(x)在(0,+∞)的最小值为g(1e)= -1e+2e=1e同理,可求得h(x)在(0,+∞)的最大值为h(x)=1e.综上,当x>0时,g(x)>h(x),即f(x)>1导数应用中的化归与转化思想李文生(福建省连城一中)42--. All Rights Reserved.教材研究新课程NEW CURRICULUM点评:一次函数、二次函数、指对数函数、幂函数、简单的分式根式函数、绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化、明确化.问题二:如何再次构造新函数,实现“二次求导”在求导的过程中,常常会发现导函数大于0或小于0时对应的自变量取值无法确定,这时可考虑再次构造新函数,从而实现“二次求导”.例4.(2013年河南开封市四模)已知函数f (x )=ax 2-x (a ≠0),g (x )=ln x .若函数y =f (x )与y =g (x )的图象有两个不同的交点,求实数a 的取值范围.【解析】由题f (x )=g (x )得ax 2-x =ln x 即a =x +ln x x 2有两根,令r (x )=x +ln x x 2,则r ′(x )=1-x -2ln x x2.令h (x )=1-x -2ln x ,则h ′(x )=-x +2x<0即h (x )在(0,+∞)上是减函数,又h (1)=0所以,r (x )><x <1,r ′(x )<>1即r (x )在(0,1)上是增函数,在(1,+∞)是减函数,因此,r max (x )=r (1)=1.又当x →0时,r (x )→-∞;当x →+∞时,r (x )→0;故要使函数y =f (x )与y =g (x )的图象有两个不同的交点,则只需0<a <1.评注:本题通过转化,使求解a 的取值范围问题转化为求函数的值域问题,再利用函数的连续性,进而转化为函数的最值问题.在对本题解法的探究中,转化是关键,构造函数是途径,“二次求导”是方法和策略.综上所述,通过构造函数再利用导数这一研究函数的有力工具,能够使解题思路自然流畅、过程清晰,正是应用化归与转化这一重要数学思想在解题中具有普遍指导意义的有力体现。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

处理函数双变量问题的六种解题思想吴享平(福建省厦门第一中学)361000在解决函数综合题时,我们经常会遇到在某个范围内都可以任意变动的双变量问题,由于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路,造成无从下手的之感,正因为如此,这样的问题往往穿插在试卷压轴题的某些步骤之中,是学生感到困惑的难点问题之一,本文笔者给出处理这类问题的六种解题思想,希望能给同学们以帮助和启发。

一、改变“主变量”思想例1.已知时在|2|,1)(2≤≥-+=m m mx x x f 恒成立,求实数x 的取值范围.分析:从题面上看,本题的函数式)(x f 是以x 为主变量,但由于该题中的“恒”字是相对于变量m 而言的,所以该题应把m 当成主变量,而把变量x 看成系数,我们称这种思想方法为改变“主变量”思想。

解: 01)1(122≥-+-⇔≥-+x x m m mx x 时在|2|≤m 恒成立,即关于m 为自变量的一次函数=)(m h 1)1(2-+-x m x 在]2,2[-∈m 时的函数值恒为非负值{0)2(0)2(≥-≥⇔h h 得{1301203222≥-≤⇔≥+-≥-+x x x x x x 或。

对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变量,而使问题快速获解。

二、指定“主变量”思想例2.已知,0n m <≤试比较)1ln(++-m e m n 与)1ln(1++n 的大小,并给出证明.分析:本题涉及到两个变量m,n ,这里不妨把m 当成常数,指定n 为主变量x ,解答如下解:构造函数),[),1ln(1)1ln()(+∞∈+--++=-m x x m e x f m x ,0≥m , 由0)1()1(1111)(>+-+=+-=+-='-m mx m x m x ex e e x x e e x e x f 在),[+∞∈m x 上恒成立,∴)(x f 在),[+∞m 上递增,∴0)()(min ==m f x f ,于是,当n m <≤0时,0)1ln(1)1ln()(>+--++=-n m e n f m n 即)1ln(++-m e m n >)1ln(1++n 。

因此,有些问题虽然有两个变量,只要把其中一个当常数,另一个看成自变量,便可使问题得以解决,我们称这种思想方法为:指定“主变量”思想。

三、化归为值域或最值思想例3.已知函数)1(,ln )(2>-+=a a x x a x f x ,对1|)()(|],1,1[,2121-≤--∈∀e x f x f x x ,求实数a 的取值范围。

分析:该题虽然在区间[-1,1]上有两个变量21,x x ,但由于]1,1[,21-∈∀x x 总有|)()(|21x f x f -小于)(x f 在区间]1,1[-上的最大值与最小值的差,因此该问题便可化归为求函数)(x f 在区间]1,1[-上的最大值与最小值问题。

解:由x a a a x a a x f x x 2ln )1(ln 2ln )(+-=-+=',0)0(='f ,当]0,1[-∈x 时,02,0ln ,01≤>≤-x a a x ,0)(≤'∴x f 即)(x f 在]0,1[-上递减;当]1,0[∈x 时,1-x a 0≥ 02,0ln ≥>x a ,0)(≥'∴x f 即)(x f 在]1,0[上递增,1)0()(min ==∴f x f ;=max )(x f)}1(),1(max{-f f ,又由)ln 11()ln 1()1()1(a aa a f f ++--+=--=a a a ln 21--,构造函数),1[,ln 21)(+∞∈--=a a a a a h ,0)1(211)(222≥-=-+='a a a a a h ,)(a h ∴在),1[+∞上递增,又0)1(=h ,∴当1>a 时0)(>a h 即a a f x f f f ln 1)1()(),1()1(max -+==∴->。

a a x f x f x f x f x x ln )()(|)()(|],1,1[,min max 2121-=-≤--∈∀,因此,要题设中的不等式恒成立,只需1ln -≤-e a a 成立便可,于是构造1ln )(+--=e a a a ϕ,),1(+∞∈a ,由=')(a ϕ0111>-=-aa a ,)(a ϕ∴在),1(+∞上递增,又0)(=e ϕ e a a ≤⇒≤∴0)(ϕ,又1>a e a ≤<∴1,因此,所求实数a 的取值范围为],1(e .四、化归为函数单调性思想例4.已知e b a >>,试比较a b b a 与的大小,并说明理由。

分析:要比较a b b a 与的大小,由e b a >>可知,只要比较a b ln 与b a ln 的大小⇔比较a a ln 与bb ln 的大小即可,因此,只要研究函数),(,ln )(+∞=e x x x f 在单调性便可,解答如下。

解:构造函数),(,ln )(+∞∈=e x x x x f ,0ln 1)(2<-='xx x f 在),(+∞e 上恒成立,∴)(x f 在),(+∞e 上递减,由e b a >>得a a ln <bb ln a b a b b a b a b a a b <⇔<⇔<⇔ln ln ln ln . 例 5.已知函数1ln )1()(2+++=ax x a x f (1-<a ),若对任意),0(,+∞∈n m ,||4|)()(|n m n f m f -≥-,求a 的取值范围解:由0)(,1,0,21)(<'∴-<>++='x f a x ax xa x f ,即)(x f 在),0(+∞上单调递减,不妨让n m <<0,∴)()(n f m f >,∴||4|)()(|n m n f m f -≥-⇔)()(n f m f -≥m n 44-⇔ n n f m m f 4)(4)(+≥+(*),因此,构造函数x x f x F 4)()(+=,由(*)⇔)(x F 在),0(+∞上递减,0)(≤'∴x F 04)(≤+'⇔x f ⇔0421≤+++ax xa 在),0(+∞上恒成立⇔12142++-≤x x a 在),0(+∞∈x 上恒成立,于是再次构造函数1214)(2++-=x x x h ),0(+∞∈x ,由22222222)12()21)(1(8)12(448)12(4)14(48)(+-+=+-+=++-+-='x x x x x x x x x x x h .当)21,0(∈x 时0)(<'x h ; 当),21(+∞∈x 时0)(>'x h ,2)21()(min -==∴h x h ,2-≤∴a ,因此满足题意要求的实数a 的取值范围为]2,(--∞.以上两例的解法均是通过等价转化与变形,使需要解决的问题等价化归为函数单调性问题来加以解决,我们将这一解题思想称之为:化归成函数单调性思想五、整体代换,“变量归-”思想例6.已知函数1ln 2)(2-+=x x x f ,若21,x x 是两个不相等的正数,且0)()(21=+x f x f ,试比较21x x +与2的大小,并说明理由。

解: 0)()(21=+x f x f ⇔)ln(22212221x x x x -=+ )ln(222)(2121221x x x x x x -+=+⇔①,设),0(21+∞∈=x x t ,则 t t x x x x x x ln 222)ln(222)(2121221-+=-+=+②,构造函数)(t h =t t ln 222-+,),0(+∞∈t ,由tt t t h )1(222)(-=-=',当)1,0(∈t 时0)(<'t h ;当),1(+∞∈t 时 0)(>'t h .∴4)1()(min ==h t h ,又因为,若121==x x t 时,则121x x =代入①式得121==x x ,这与21,x x 是两个不相等的正数相矛盾,121≠=∴x x t ∴)(t h =4ln 222>-+t t ,代入②式得2,4)(21221>+∴>+x x x x 。

例7.已知函数)0(2ln )(2>+--=a bx x a x x G 有两个零点21,x x ,且201,,x x x 成等差数列,试探究)(0x G '值的符号。

解:依题意得0)(0)(21==x G x G 且得{)1(02ln )2(02ln 11212222 =+--=+--x a bx x x a bx x ,21x x ≠ ,不妨设210x x <<,由(1)-(2)得 212121)ln (ln )(x x x x a b x x --=-+①,又)2()(210x x G x G +'='21212)(x x a b x x +--+=,将①式代入得21212102)ln (ln )(x x a x x x x a x G +---='])(2[ln 21212121x x x x x x x x a +---= ]1)1([ln 21212121+---=x x x x x x x x a ,令)1,0(21∈=x x t ,则 ]142[l n )(210++--='t t x x a x G ②,构造函数142ln )(++-=t t t h ,]1,0(∈t ,0)1()1()1(41)(222≥+-=+-='t t t t t t h 在]1,0(∈t 上恒成立。

∴)(t h 在]1,0(递增,∴0)1()(max ==h t h ,0)()1,0(<∈∴t h t 时,当,又因210x x <<,0>a , ∴0]142[ln )(210>++--='t t x x a x G ,所以)(0x G '恒为正值。

相关文档
最新文档