【物理】物理法拉第电磁感应定律的专项培优练习题(含答案)含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【物理】物理法拉第电磁感应定律的专项培优练习题(含答案)含答案解析
一、法拉第电磁感应定律
1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:
(1)线圈中的感应电流的大小和方向;
(2)电阻R两端电压及消耗的功率;
(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】
【详解】
(1)0﹣4s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:
由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:
消耗的功率为:
4﹣6s内,R两端的电压为:
消耗的功率为:
故R消耗的总功率为:
(3)前4s内通过R的电荷量为:
2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α
=︒,两
侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高
(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q
【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J 【解析】 【详解】
解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;
ab 杆加速度为:a gsin α=
2s t =时刻速度为:10m/s v at ==
ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=
(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1
E I R =
==⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg
放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热
根据能量守恒定律则有:
300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=
3.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。
一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。
已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求:
(1)金属棒匀速运动的速度大小;
(2)金属棒与金属导轨间的动摩擦因数μ;
(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。
【答案】(1);(2);(3)mgL2。
【解析】
【分析】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;
(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;
(3)根据功能关系结合焦耳定律求解。
【详解】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,
由于
解得:;
(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;
根据平衡条件可得:mg=μF A,
通过导体棒的电流I′=,则F A=BI′L1,
解得μ=;
(3)金属棒经过efgh区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;
根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W克=mgL2,
则Q总=mgL2,
定值电阻R上产生的焦耳热Q R=Q总=mgL2。
【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功
能关系等列方程求解。
4.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀
速向上运动;当金属杆受到平行于斜面向下大小为
2
F
的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:
(1)金属杆的质量;
(2)金属杆在磁场中匀速向上运动时速度的大小。
【答案】(1)4sin F m g α=;(2)2222
344tan RE RF
v B l B l μα
=-。
【解析】 【分析】 【详解】
(1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得
sin cos F mg mg BIl αμα=++,
同理可得
sin cos 2
F
mg mg BIl αμα+=+, 由闭合电路的欧姆定律可得
E IR =,
由法拉第电磁感应定律可得
E BLv =,
联立解得
4sin F
m g α
=
,
(2)金属杆在磁场中匀速向上运动时速度的大小
2222344tan RE RF
v B l B l μα
=
-。
5.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2mR gr
x =
,两棒速度稳定之后,再经过一段时
间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:
(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?
(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =rh
x ∆=12Q mgr =
【解析】 【分析】 【详解】
(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:
2
012
mgr mv =
解得a 棒沿圆弧轨道最低点M 时的速度02v gr 从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:
012mv mv =
解得两棒以相同的速度做匀速运动的速度0
122gr
v v =
=(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离
开轨道过程中a 棒受到安培力的冲量大小:
2222A B L x
I ILBt BL Rit R
∆Φ===
由动量定理:
21A I mv mv --=
解得224
gr
v =
由平抛运动规律得,两棒落到地面后的距离()
1222
h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳
热:220111
(2)22
Q mv m v =
- 解得:1
2
Q mgr =
6.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻为r ,并与导轨接触良好。
整个装置处于方向竖直向上磁感应强度为B 的匀强磁场中。
现给ab 杆一个初速度v 0,使杆向右运动。
(1)当ab 杆刚好具有初速度v 0时,求此时ab 杆两端的电压U ;a 、b 两端哪端电势高; (2)请在图2中定性画出通过电阻R 的电流i 随时间t 变化规律的图象;
(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示。
同样给ab 杆一个初速度v 0,使杆向右运动。
请分析说明ab 杆的运动情况。
【答案】(1)0Bl R
U R r
=
+v ;a 端电势高(2) (3)当ab 杆以初速度
v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆
在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。
当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。
【解析】
【分析】
(1)求解产生感应电动势大小,根据全电路欧姆定律求解电流强度和电压,根据右手定则判断电势高低;
(2)分析杆的受力情况和运动情况,确定感应电流变化情况,由此画出图象;
(3)杆在向右运动过程中速度逐渐减小、由此分析安培力的变化,确定运动情况;根据动量定理求解最后的速度大小。
【详解】
(1)ab 杆切割磁感线产生感应电动势: E = Bl v 0 根据全电路欧姆定律:E
I R r
=
+ ab 杆两端电压即路端电压:U IR = 解得0Bl R
U R r
=
+v ;a 端电势高。
(2)杆在向右运动过程中速度逐渐减小、感应电动势逐渐减小,根据闭合电路的欧姆定律可得感应电流逐渐减小,通过电阻R 的电流i 随时间变化规律的图象如图所示:
(3)当ab 杆以初速度v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。
当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。
【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键。
7.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:
(1)磁感应强度B 的大小;
(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】
(1)导体棒在沿斜面方向的重力分力与安培力平衡: 得sin mg BIL θ=
导体棒切割磁感线产生的电动势为: E BLv =
由闭合电路欧姆定律知:
E
I R r
=
+ 3.66/0.6
x v m s t =
== 联立解得:0.4B T = (2)6()()()
E BsL
q It t t C R r t R r R r R r ∆Φ∆Φ==
====+∆+++ (3)由功能关系得:2
1sin 2
mgx mv Q θ=
+ 5.4R Q
Q R J R r
=
=+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J
点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.
8.两平行金属导轨位于同一水平面上,相距l , 左端与一电阻R 相连;整个系统置于匀强磁场中,磁感应强度大小为B ,方向竖直向下。
一质量为m 的导体棒置于导轨上,在水平外力作用下沿导轨以速率v 匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g ,导轨和导体棒的电阻均可忽略。
求
(1)导体棒产生的电动势和通过R 的电流; (2)电阻R 消耗的功率; (3)水平外力的大小。
【答案】(1)E =Blv , I =Blv /R (2)P =B 2l 2v 2/R (3)F =B 2l 2v/R + μmg 【解析】(1)根据法拉第电磁感应定律有:E =Blv ① 则导体棒中的电流大小为: E I R
= 则可得Blv
I R
=
② (2)电阻R 消耗的功率:P =I 2R ③
联立②③可解得: 222
B l v P R
= ④
(2)由于导体棒ab 匀速运动,故向右的水平外力F 等于向左的安培力F 安和摩擦力的和, 则水平外力:F =μmg +F 安 ⑤ 安培力: ==BLv
F BIL B L R
⋅
安 ⑥ 则拉力为: 22B L v
F mg R
μ=+ ⑦
【点睛】本题是电磁感应与电路、力学知识的综合,安培力是联系力与电磁感应的桥梁,安培力经验公式 是常用的式子.
9.如图所示,无限长金属导轨EF 、PQ 固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L =1 m ,底部接入一阻值为R =0.4 Ω的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度B =2 T .一质量为m =0.5 kg 的金属棒ab 与导轨接触良好,ab 与导轨间的动摩擦因数μ=0.2,ab 连入导轨间的电阻r =0.1 Ω,电路中其余电阻不计.现用一质量为M =2.86 kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab 相连.由静止释放M ,当M 下落高度h =2.0 m 时,ab 开始匀速运动(运动中ab 始终垂直导轨,并接触良好).不计空气阻力,sin 53°=0.8,cos 53°=0.6,取g =10 m/s 2.求:
(1)ab 棒沿斜面向上运动的最大速度v m ;
(2)ab 棒从开始运动到匀速运动的这段时间内电阻R 上产生的焦耳热Q R 和流过电阻R 的总电荷量q .
【答案】(1)3m/s . (2)26.3J ,8C 【解析】 【分析】 【详解】
(1)由题意知,由静止释放M 后,ab 棒在绳拉力T 、重力mg 、安培力F 和轨道支持力N 及摩擦力f 共同作用下做沿轨道向上做加速度逐渐减小的加速运动直至匀速运动,当达到最大速度时,由平衡条件有: T ﹣mgsin θ﹣F ﹣f =0…① N ﹣mgcos θ=0…② T =Mg …③
又由摩擦力公式得 f =μN …④ ab 所受的安培力 F =BIL …⑤ 回路中感应电流 I m BLv R r
=
+⑥
联解①②③④⑤⑥并代入数据得: 最大速度 v m =3m/s …⑦
(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及摩擦而转化的内能之和,有: Mgh ﹣mghsin θ()2
12
m
M m v =
++Q+fh …⑧ 电阻R 产生的焦耳热 Q R R
R r
=
+Q …⑨ 根据法拉第电磁感应定律和闭合电路欧姆定律有: 流过电阻R 的总电荷量 q I =△t …⑩ 电流的平均值 E I R r
=
+⑪
感应电动势的平均值 E t
Φ=
⑫
磁通量的变化量△Φ=B •(Lh )…⑬
联解⑧⑨⑩⑪⑫⑬并代入数据得:Q R =26.3J ,q =8C
10.如图所示,导体棒ab 质量m 1=0.1kg ,,电阻10.3R =Ω,长度L=0.4m ,横放在U 型金属框架上。
框架质量m 2=0.2kg ,,放在绝缘水平面上,与水平面间的动摩擦因数为0.2,MM'、NN'相互平行,相距0.4m ,电阻不计且足够长。
连接两导轨的金属杆MN 电阻
20.1R =Ω。
整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T 。
垂直于ab 施加
F=2N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM'、NN'保持良好接触。
当ab 运动到某处时,框架开始运动。
设框架与水平面间最大静摩擦力等于滑动摩擦力, 210/g m s =。
(1)求框架开始运动时ab 速度的大小;
(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量量0.1Q J =,求该过程ab 位移x 的大小;
(3)从ab 开始运动到框架开始运动,共经历多少时间。
【答案】(1)6/m s (2)1.1m (3)0.355s
【解析】(1)由题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力为: 12)N f F m m g μμ==+(
ab 中的感应电动势为: E Blv =,MN 中电流为: 12
E I R R =+ MN 受到的安培力为:
F IlB =安,框架开始运动时,有: F f =安
由上述各式代入数据,解得: 6/v m s =;
(2)导体棒ab 与MN 中感应电流时刻相等,由焦耳定律2Q I Rt =得知, Q R ∝ 则闭合回路中产生的总热量: 122R R Q Q R +=
总 由能量守恒定律,得: 2112
Fx m v Q =
+总 代入数据解得: 1.1x m = (3)ab 加速过程中,有: 22112
B l v F m a R R -=+ 取极短时间间隔t ∆, 22112
B l v F t t m a t R R ∆-∆=∆+ 即: 22
112
B l F t x m v R R ∆-∆=∆+ 对整过程求和可得: 22
112
0B l Ft x m v R R -=-+() 解得: ()22
112m v B l t x F R R F
=++ 代入数据解得: 0.355t s =
点睛:ab 向右做切割磁感线运动,产生感应电流,电流流过MN ,MN 受到向右的安培
力,当安培力等于最大静摩擦力时,框架开始运动,根据安培力、欧姆定律和平衡条件等知识,求出速度,依据能量守恒求解位移,对加速过程由动量定理列式,可得出合外力的冲量与动量变化之间的关系;本题是电磁感应中的力学问题,考查电磁感应、焦耳定律、能量守恒定律定律等知识综合应用和分析能力,要注意正确选择物理规律列式求解。
11.如图所示,两足够长的平行光滑的金属导轨MN 、PQ 相距为d ,导轨平面与水平面的夹角30θ=︒,导轨电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面向上.长为的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m 、电阻为r R =.两金属导轨的上端连接一个灯泡,灯泡的电阻L R R =,重力加速度为g .现闭合开关S ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为F mg =的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它的额定功率.求:
(1)金属棒能达到的最大速度v m ;
(2)灯泡的额定功率P L ;
(3)若金属棒上滑距离为L 时速度恰达到最大,求金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q r .
【答案】(1) 22mgR B d ;(2) 22224m g R B d
;(3) 322444m g R mgL B d - 【解析】
【详解】
解:(1)金属棒先做加速度逐渐减小的加速运动,当加速度为零时,金属棒达到最大速度,此后开始做匀速直线运动;设最大速度为m v ,当金属棒达到最大速度时,做匀速直线运动,由平衡条件得:30F BId mgsin =+︒
又:F mg = 解得:2mg I Bd =
由2L E E I R r R
==+,m E Bdv = 联立解得:22
m mgR v B d =; (2)灯泡的额定功率:222222()24L L mg m g R P I R R Bd B d
=== (3)金属棒由静止开始上滑4L 的过程中,由能量守恒定律可知:
2144302
m Q F L mg Lsin mv =•-•︒- 金属棒上产生的电热:322
44
124r m g R Q Q mgL B d ==-
12.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L =1 m ,左侧接一阻值为R =0.5 Ω的电阻.在MN 与PQ 之间存在垂直轨道平面的有界匀强磁场,磁场宽度d =1 m .一质量m =1 kg 的金属棒a b 置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab 受水平力F 的作用从磁场的左边界MN 由静止开始运动,其中,F 与x (x 为金属棒距MN 的距离)的关系如图乙所示.通过电压传感器测得电阻R 两端电压随时间均匀增大.则:
(1)金属棒刚开始运动时的加速度为多少?
(2)磁感应强度B 的大小为多少?
(3)若某时刻撤去外力F 后金属棒的速度v 随位移s 的变化规律满足v =v 0﹣22
B L mR
s (v 0为撤去外力时的速度,s 为撤去外力F 后的位移),且棒运动到PQ 处时恰好静止,则金属棒从MN 运动到PQ 的整个过程中通过左侧电阻R 的电荷量为多少?外力F 作用的时间为多少?
【答案】(1)a=0.4m/s 2;(2)B=0.5T ;(3)t=1s
【解析】
【详解】
解:(1)金属棒开始运动时,0x =,0v =,金属棒不受安培力作用
金属棒所受合力为:0.4N F =
由牛顿第二定律得:20.4m/s F a m
== (2)由题意可知,电阻R 两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由E BLv =可知,金属棒的速度v 随时间t 均匀增大,则金属棒做初速度为零的匀加速运动.加速度:20.4m/s a =
由匀变速直线运动的位移公式可得:22v ax =
由图乙所示图象可知,0.8m x =时,0.8N F =
由牛顿第二定律得:22B L v F ma R -= 解得:0.5T B = (3)金属棒经过磁场的过程中,感应电动势的平均值: B S BLd E t t t ϕ∆∆=
==∆∆∆ 感应电流的平均值:E I R
= 通过电阻R 的电荷量:q I t =∆
解得:1C BLd q R R
ϕ∆=== 设外力F 的作用时间为t ,力F 作用时金属棒的位移为:212x at =
撤去外力后,金属棒的速度为:022
B s v v L Rm
=- 到PQ 恰好静止,0v =
则撤去外力后金属棒运动的距离为:22
mR at B L s •= 则 22
212B L at at d Rm
+•= 解得:1s t =
13.如图所示,两根互相平行的金属导轨MN 、PQ 水平放置,相距d=1m 、且足够长、不计电阻。
AC 、BD 区域光滑,其它区域粗糙且动摩擦因数μ=0.2,并在AB 的左侧和CD 的右侧存在着竖直向下的匀强磁场,磁感应强度B=2T 。
在导轨中央放置着两根质量均为m=1kg ,电阻均为R=2Ω的金属棒a 、b ,用一锁定装置将一弹簧压缩在金属棒a 、b 之间(弹簧与a 、b 不栓连),此时弹簧具有的弹性势能E=9J 。
现解除锁定,当弹簧恢复原长时,a 、b 棒刚好进入磁场,且b 棒向右运动x=0.8m 后停止,g 取10m/s 2,求:
(1)a 、b 棒刚进入磁场时的速度大小;
(2)金属棒b 刚进入磁场时的加速度大小
(3)整个运动过程中电路中产生的焦耳热。
【答案】(1)3m/s (2)8m/s 2(3)5.8J
【解析】
【分析】
对ab 系统,所受的合外力为零,则动量守恒,根据动量守恒定律和能量关系列式求解速
度;(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,求解感应电流,根据牛顿第二定律求解b 刚进入磁场时的加速度;(3)由能量守恒求解产生的热量.
【详解】
(1)对ab 系统,由动量守恒:0=mv a -mv b 由能量关系:221122
P a b E mv mv =
+ 解得v a =v b =3m/s
(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,则有:
E a =E b =Bdv a =6V 又:232a E I A R == 对b ,由牛顿第二定律:BId+μmg=ma b
解得a b =8m/s 2
(3)由动量守恒可知,ab 棒速率时刻相同,即两者移动相同距离后停止,则对系统,由能量守恒:E P =2μmgx+Q
解得Q=5.8J
【点睛】
此题是力、电磁综合题目,关键是分析两棒的受力情况和运动情况,运用动量守恒定律和能量守恒关系列式求解.
14.如图所示,水平放置的平行金属导轨宽度为d =1 m ,导轨间接有一个阻值为R =2 Ω的灯泡,一质量为m =1 kg 的金属棒跨接在导轨之上,其电阻为r =1 Ω,且和导轨始终接触良好.整个装置放在磁感应强度为B =2 T 的匀强磁场中,磁场方向垂直导轨平面向下.金属棒与导轨间的动摩擦因数为μ=0.2,现对金属棒施加一水平向右的拉力F =10 N ,使金属棒从静止开始向右运动.求:
则金属棒达到的稳定速度v 是多少?此时灯泡的实际功率P 是多少?
【答案】6 m/s 32W
【解析】
由1Bdv I R r
=+和F 安=BId 可得221B d v F R r
=+安 根据平衡条件可得F =μmg +F 安
解得v 1=6 m/s
由P=I 2R 得P=32W
15.如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计).磁感应强度为B 的匀强磁场方向垂直于纸面向外.金属棒ab 的质量为m ,与导轨接触良好,不计摩擦.从静止释放后ab 保持水平而下滑.
试求:(1)金属棒ab 在下落过程中,棒中产生的感应电流的方向和ab 棒受到的安培力的方向.
(2)金属棒ab 下滑的最大速度v m .
【答案】(1)电流方向是b→a .安培力方向向上.
(2)22
m mgR v B L =
【解析】
试题分析:(1)金属棒向下切割磁场,根据右手定则,知电流方向是b→a .根据左手定则得,安培力方向向上.
(2)释放瞬间ab 只受重力,开始向下加速运动.随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小.当F 增大到F=mg 时,加速度变为零,这时ab 达到最大速度. 由22m B L v F mg R
==, 可得22
m mgR v B L = 考点:电磁感应中的力学问题.。