人教版八年级数学上册第十五章《分式》单元测试
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版八年级数学上册第十五章《分式》测试带答案解析

人教版八年级数学上册第十五章《分式》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.据报道,在新冠疫苗的防重症保护效力下,德尔塔毒株的“突破性感染”占比约为0.00098,将0.00098用科学记数法表示为( ) A .29.810-⨯ B .39.810-⨯C .49.810-⨯D .59.810-⨯2.若分式23x x -+的值等于0,则x 的值是( ) A .2B .﹣2C .3D .﹣33.在某核酸检测任务中,甲医疗队比乙医疗队每小时多检测15人,甲队检测600人所用的时间比乙队检测500人所用的时间少10%.设甲队每小时检测x 人,根据题意,可列方程为( ) A .600500(110%)15x x =⨯-- B .600500(110%)15x x ⨯-=- C .600500(110%)15x x=⨯-- D .600500(110%)15x x⨯-=- 4.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x 元( ) A .4030201.5x x-= B .4030201.5x x-= C .3040201.5x x-= D .3040201.5x x-= 5.某班级开展活动共花费2300元,但有4位同学因时间冲突缺席,若总费用由实际参加的同学平均分摊,则每人比原来多支付4元,设原来有x 人参加活动,由题意可列方程( ) A .2300230044x x =++ B .2300230044x x +=+ C .2300230044x x =+- D .2300230044x x +=- 6.代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个7.若关于x 的方程221mx x =+无解,则m 的值为( ) A .0B .4或6C .6D .0或48.数学家斐波那契编写的《算经》中有如下问题,一组人平分90元钱,每人分得若干,若再加上6人,平分120元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x 人,则可列方程为( ) A .90x =120(x +6) B .90(x ﹣6)=120x C .901206x x =+ D .901206x x=- 9.若整数a 使关于x 的不等式组41232x a x x x -≤-⎧⎪⎨--<⎪⎩有且只有2个偶数解,且关于y 的分式方程342122y y ay y --+=--有整数解,则符合条件的所有整数a 的和为( ) A .4 B .8 C .10 D .1210.已知关于x 的方程232x mx +=-解是正数,那么m 的取值范围为( ) A .m >﹣6且m ≠2 B .m <6C .m >﹣6且m ≠﹣4D .m <6且m ≠﹣211.分式方程1112x x x --=+的解为( ) A .=1x -B .1x =C .2x =-D .2x =12.若数a 使关于x 的不等式组51123522x x x a x a-+⎧+≤⎪⎨⎪->+⎩至少有五个整数解,关于y 的分式方程32211a y y--=--的解是非负整数,则满足条件的所有整数a 之和是( ) A .15 B .14 C .8 D .7二、填空题 13.分式方程532x x=-的解是_______. 14.计算:21211a a a +-=++______.15.若关于x 的分式方程7344mx x x +=--无解,则实数m =_________. 16.分式方程3111x x x +=--的解是_______三、解答题17.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.18.解分式方程:1133x x x =-+-. 19.戴口罩可以有效降低感染新型冠状病毒的风险.某学校在本学期开学初为九年级学生购买A 、B 两种口罩,经过市场调查, A 的单价比B 的单价少2元,花费450元购买A 口罩和花费750元购买B 口罩的个数相等. (1)求A 、B 两种口罩的单价;(2)若学校需购买两种口罩共500个,总费不超过2100元,求该校本次购买A 种口罩最少有多少个?20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?21.2022年北京冬奥会吉祥物“冰墩墩”深受人们的喜欢,为了抓住商机,某商店决定购进A ,B 两种“冰墩墩”纪念品进行销售.已知每件A 种纪念品比每件B 种纪念品的进价高30元.用1000元购进A 种纪念品的数量和用400元购进B 种纪念品的数量相同.求A ,B 两种纪念品每件的进价分别是多少元? 22.计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭23.先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 24.观察下列等式: 第1个等式:1411=332⎛⎫-÷ ⎪⎝⎭;第2个等式:1921=483⎛⎫-÷ ⎪⎝⎭;第3个等式:11631=5154⎛⎫-÷ ⎪⎝⎭;第4个等式:12541=6245⎛⎫-÷ ⎪⎝⎭;第5个等式:13651=7356⎛⎫-÷ ⎪⎝⎭;……按照以上规律,解决下列问题: (1)写出第6个等式:___________;(2)写出你猜想的第n个等式_________(用含n的等式表示),并证明.25.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共100件,且总费用不超过2800元,则最多购买B型学习用品多少件?参考答案:1.C【分析】小于1的正数用科学记数法表示一般形式为10n a -⨯ ,n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00098=9.8410-⨯ 故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤a <10,n 为由原数左边起第一个不为零的数字前面的0的个数. 2.A【分析】根据分式的值为0的条件:分子为0,分母不为0性质即可求解. 【详解】由题意可得:20x -=且30x +≠,解得2,3x x =≠-. 故选A .【点睛】此题主要考查分式为零的条件,解题的关键是熟知分式的性质. 3.A【分析】设甲队每小时检测x 人,根据甲队检测600人所用的时间比乙队检测500人所用的时间少10%,列出分式方程,即可解答. 【详解】设甲队每小时检测x 人,根据题意得,600500(110%)15x x =⨯--, 故选A .【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程. 4.B【分析】若设荧光棒的单价为x 元,根据等量关系“缤纷棒比荧光棒少20根”可列方程求解. 【详解】解:设荧光棒的单价为x 元,则缤纷棒单价是1.5x 元,由题意可得: 4030201.5x x-= 故选:B .【点睛】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.5.D【分析】设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐,根据“总费用由实际参加的同学平均分摊,则每人比原来多支付4元”,列出方程即可解答. 【详解】解:设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐, 根据题意得,2300230044x x +=- 故选:D .【点睛】本题考查由实际问题抽象出分式方程,是重要考点,掌握相关知识是解题关键. 6.B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++, ∴分式有3个, 故选:B .【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 7.D【分析】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=, 整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =;当40m -≠时,0x =或210x +=,此时,24x m =-, 解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4; 故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键. 8.D【分析】设第二次分钱的人数为x 人,则第一次分钱的人数为(x -6)人,根据两次每人分得的钱数相同,即可得出关于x 的分式方程,此题得解.【详解】解:设第二次分钱的人数为x 人,则第一次分钱的人数为(x ﹣6)人, 依题意得:906x -=120x .故选:D .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 9.C【分析】解不等式组得13a-≤x <4,再由题意可得a 的可取值由1,2,3,4,5,6,解分式方程得y =3﹣2a且y ≠2,由此可得符合条件的a 的值有4,6.【详解】解:41?232x a x x x -≤-⎧⎪⎨--<⎪⎩①②, 由①得,x ≥13a -, 由②得,x <4, ∴13a-≤x <4, ∵不等式组有且只有2个偶数解, ∴﹣2<13a-≤0, ∴1≤a <7, ∵a 是整数,∴a 的可取值由1,2,3,4,5,6,342122y y ay y --+=--, 去分母得3y ﹣4+y ﹣2=2y ﹣a , 解得y =3﹣2a ,∵方程有整数解, ∴a 是2的倍数,∵3﹣2a≠2,∴a ≠2,∴a 的取值为4,6,∴符合条件的所有整数a 的和为10, 故选:C .【点睛】本题主要考查了解不等式组和分式方程,解题的关键是掌握解不等式的和分式方程方法. 10.C【分析】先求得分式方程的解(含m 的式子),然后根据解是正数可知m +6>0,从而可求得m >-6,然后根据分式的分母不为0,可知x ≠2,即m +6≠2,由此即可求解. 【详解】将分式方程转化为整式方程得:2x +m =3x -6 解得:x =m +6.∵方程得解为正数,所以m +6>0,解得:m >-6. ∵分式的分母不能为0, ∴x -2≠0,∴x ≠2,即m +6≠2. ∴m ≠-4.故m >-6且m ≠-4. 故选C .【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m 的不等式是解题的关键. 11.A【分析】根据解分式方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,解方程,最后验根即可求解. 【详解】解:1112x x x --=+ 去分母得:(1)(2)(2)x x x x x -+-=+ , 去括号得:22222x x x x x x +---=+ , 合并同类项移项得:22x =- , 系数化为1得:=1x - ,当=1x -时,2()0x x +≠ , ∴ 经检验,=1x -是原方程的根.故选A .【点睛】本题考查了分式方程的求解,注意在去分母时,常数也要乘以公分母,并且最后必须验根,这是解分式方程的易错点和关键点. 12.D【分析】解不等式组,根据整数解的个数判断a 的取值范围;解分式方程,用含a 的式子表示y ,检验增根的情况,再根据解的非负性,确定a 的范围,然后根据方程的整数解,确定符合条件的整数a ,相加即可.【详解】51123522x x x a x a -+⎧+≤⎪⎨⎪->+⎩①② 解不等式①,得x ≤11 解不等式②,得x >a∵不等式组至少有五个整数解 ∴a <732211a y y--=-- 322(1)a y -+=- 122a y -=- 21y a =+12a y +=10y -≠ 1y ∴≠∴112a +≠ ∴1a ≠ ∵0y ≥ ∴102a +≥ ∴1a ≥-∴1<7,1a a -≤≠且,a 为整数又∵12a +为整数 ∴a 可以取-1,3,5∴满足条件的所有整数a 之和是-1+3+5=7 故选:D【点睛】本题考查解不等式组求整数解、解分式方程、正确解不等式组是关键,利用不等式组的解集求参数是中考的常考题型. 13.x =-3【分析】方程两边都乘x (x -2)得出整式方程,求出方程的解,再进行检验即可. 【详解】解:方程两边都乘x (x -2),得 5x =3(x -2), 解得:x =-3,检验:当x =-3时x (x -2)≠0, 所以x =-3是原方程的解, 故答案为:x =-3.【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验. 14.1a -##1a -+【分析】直接利用分式的加减运算法则计算即可.【详解】解:原式=2121a a +-+ =211a a -+ =(1)(1)1a a a +-+=1a -.【点睛】本题考查了分式的加减运算法则,正确掌握分式的加减运算法则是解题的关键. 15.3-或74【分析】将分式方程转化为整式方程,根据分式方程无解,分类讨论求解即可. 【详解】解:由7344mx x x +=--可得:3127mx x +-= 即(3)19m x += 因为分式方程无解,所以,30m +=或4x =由30m +=可得3m =-将4x =代入(3)19m x +=可得,(3)419m +⨯=,解得74m = 故答案为:3-或74【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.16.x =2【分析】两边都乘以(x -1),去分母,得到x +x -1=3,再移项合并同类项系数化成1,得到化成整式方程的根x =2,检验10x -≠,确定原方程的根为x =2. 【详解】3111x x x +=--, 去分母,得,x +x -1=3移项合并同类项,得,2x =4,系数化成1,得,x =2,检验:当x =2时,12110x -=-=≠,∴x =2是原方程的根,∴故答案为:x =2.【点睛】本题考查了解分式方程,解决问题的关键是熟练去分母,解化成的整式方程,最后须验根.17.甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元【分析】设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵,根据题意列出方程求解即可.【详解】解:设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵, 依题意得:48010x +=360x, 解得:x =30,经检验,x =30是原方程的解,x +10=30+10=40(元),答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.【点睛】本题考查了分式方程的应用,解题关键是设出未知数,根据题目中的等量关系列出方程,注意:分式方程要检验.18.6x =-【分析】观察可得最简公分母是(x +3)(x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程两边同乘以最简公分母()(33)x x +-,得3(3)(3)(3)x x x x x -=+-+-去括号,得22339x x x x -=+-+解方程,得6x =-检验:当6x =-时,(3)(3)0x x +-≠∴原方程的根是6x =-【点睛】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(1)A 、B 两种型号口罩的单价分别为3元、5元;(2)该校本次购买A 种口罩最少有200个.【分析】(1)设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元,根据题意列出方程并解答即可;(2)设购买A 种口罩m 个,则购买B 种口罩(500-m )个,利用总价=单价×数量,结合总价不超过2100元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元, 依题意得:4507502x x =+, 解得:x =3,经检验:x =3是原方程的根,且符合题意,∴x +2=5.答:A 、B 两种型号口罩的单价分别为3元、5元;(2)解:设购买A 种口罩m 个,则购买B 种口罩(500-m )个,依题意得:3m +5(500-m )≤2100,解得:m ≥200.答:该校本次购买A 种口罩最少有200个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 20.40万【分析】设原先每天生产x 万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可.【详解】解:设原先每天生产x 万剂疫苗,由题意可得:()2402200.5120%x x +=+, 解得:x =40,经检验:x =40是原方程的解,∴原先每天生产40万剂疫苗.【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.21.A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元【分析】设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元,根据题意列出分式方程,解方程即可得出答案.【详解】解:设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元, 根据题意列分式方程得,100040030x x =-, 去分母得,1000(30)400x x -=,解得50x =,经检验,50x =是原方程的解,所以A 种纪念品每件的进价为:50(元),B 种纪念品每件的进价为:503020-=(元)答:A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元.【点睛】本题考查分式方程的实际应用,根据题目中等量关系列出分式方程是解题关键,注意求出解后要进行检验.22.(1)243b ab --1x - 【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.23.32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--= 2232m m m m-⋅-=2m -∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5,∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.24.(1)14961=8487⎛⎫-÷ ⎪⎝⎭ (2)21(1)12(2)1n n n n n n +⎛⎫-÷= ⎪+++⎝⎭,见解析【分析】(1)根据题目中的等式,可以写出第6个等式;(2)根据题目中的等式,可以写出第n 个等式,然后根据分式的乘除法,以及平方差公式因式分解,可以将等号左边的式子化简,从而可以证明结论成立.【详解】(1)解:由题意可得,第6个等式:1497486(1)4889784-÷=⨯=, 故答案为:1496)87(148-÷=; (2)解:猜想:第n 个等式是:()2211(1)2(1)11n n n n n +-÷=++-+, 证明: ()2211(1)2(1)1n n n +-÷++- ()221(2)21n n n n n +-+=⋅++ ()2111n n n +=⋅+1n +∴()2211(1)2(1)11n n n n n +-÷=++-+成立. 【点睛】本题考查数字的变化类规律探究,分式乘除法,掌握发现数字的变化特点,写出相应的式子.分式乘除法法则,平方差公式,规律探究的方法是解题关键.25.(1)A ,B 两种学习用品的单价分别为20元和30元(2)80【分析】(1)设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元,由题意得18012010x x=+,然后解分式方程解即可; (2)设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件,由题意得,()30201002800x x +⨯-≤,解不等式即可.【详解】(1)解:设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元 由题意得18012010x x=+ 去分母得,()18012010x x =+移项合并得,601200x =系数化为1得,20x经检验,20x 是原分式方程的解∴1030x +=元∴A 、B 两种学习用品的单价分别为20元和30元.(2)解:设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件由题意得,()30201002800x x +⨯-≤解得80x ≤∴最多购买B 型学习用品80件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键在于根据题意正确的列等式与不等式.。
人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。
人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。
新人教版八年级数学上册第十五章《分式》单元测试卷及答案

新人教版八年级数学上册第十五章《分式》单元测试试卷及答案一、选择题1、若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠32、若分式的值为0,则x的值为 ( )A.2 B.2 C.-2 D.03、分式、与的最简公分母是 ( )A. B. C. D.4、若中的和的值都缩小2倍,则分式的值()A.缩小2倍 B.缩小4倍 C.扩大2倍 D.扩大4倍5、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、(2017临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. B. C. D.7、方程的根为A.或3 B. C.3 D.1或8、(2016黑龙江省齐齐哈尔市)若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,39、3-去分母,得().A.3-2(5x+7)=-(x+17) B.12-2(5x+7)=-x+17 C.12-2(5x+7)=-(x+17) D.12-10x+14=-(x+17)10、某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.560二、填空题11、计算_______________.12、函数的自变量x的取值范围是________.13、计算的结果为__________.14、计算:=________.15、已知:,则=_________.16、某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将此商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程________.17、(2017黄冈)化简:=______.18、当x=_____时,分式的值为0.19、已知9x-6x+1=0,则代数式3x+的值为________20、若代数式的值为零,则代数式(a+2)(a2-1)-24的值是_________.三、计算题21、(1)计算:(2017-π)0-+|-2|;(2)化简:.22、解方程:.23、先化简,再求值:,其中.24、先化简,再求值:其中x=.四、解答题(题型注释)25、为了防止水土流失,某村开展绿化荒山活动,计划经过若干年使本村绿化总面积新增360万平方米.自2014年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.问实际每年绿化面积多少万平方米?26、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生.若校车的速度是他骑车速度的2倍,则现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同,试求小军骑车的速度.27、今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.(1) 求v的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.参考答案1、D2、B3、B4、C5、D6、B7、C8、C9、C10、B11、12、x>213、x+114、2a+1215、1516、17、118、219、220、-2421、(1)-1 (2)22、x=0.23、2-24、25、实际每年绿化面积为54万平方米.26、1527、(1) ;(2)骑自行车的学生应提前出发.【解析】1、分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选:D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、分析:要使一个分式的值为零,则必须满足分式的分子为零,分母不为零,根据性质即可求出答案.详解:根据题意可得:,解得:x=2,故选B.点睛:本题主要考查的是分式的性质,属于基础题型.要使分式有意义,则必须满足分式的分母不为零;要使一个分式的值为零,则必须满足分式的分子为零,分母不为零.3、分析:最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积,根据定义即可得出答案.详解:根据题意可得最简公分母为:12abc,故选B.点睛:本题主要考查的就是最简公分母的求法,属于基础题型.理解最简公分母的定义是解决这个问题的关键.4、分析:依题意分别用和去代换原分式中的x和y,利用分式的基本性质化简即可.详解:分别用和去代换原分式中的x和y得,,∴分式的值变为原来的2倍.故选C.点睛:本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5、x2-3x-4=0,(x-4)(x+1)=0,解得x1=4,x2=-1,∵x2-x-4≠0,∴x≠4,∴当x=-1时,原式=.故选D.点睛:本题在解出x代入分式的时候一定要考虑分式有意义的条件即分母不为0.6、解:设乙每小时做x个,则甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得:,故选B.7、分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3.故选C.点睛:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8、试题解析:等式的两边都乘以(x﹣2),得:x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程的解为正数,得:m=1,m=3,故选C.点睛:本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.9、试题解析:方程两边同乘以4得,12-2(5x+7)=-(x+17).A.第一项3没有乘以公分母4;B.等号右边去括号未变号;C.正确;D. 等号左边去括号未变号.故选C.点睛: 本题主要考查一元一次方程的解法,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10、试题分析:设第一次购进计算器x个,则第二次购进计算器3x个,根据每个进价比上次优惠1元,求出购进计算器的个数,再根据总售价﹣成本=利润,即可得出答案.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选B.考点:分式方程的应用.11、分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.12、根据题意得,x﹣2>0,解得x>2.故答案是:x>2.13、=.故答案是:x+1.14、原式====2a+12.故答案为2a+12.点睛:分式混合运算的步骤:先乘方,再乘除,最后加减,有括号的要先算括号内的.注意分式化简的最后结果是最简分式.15、【分析】利用等式性质两边除以a,得;同时平方得;再利用乘法公式,原式化为:,再代入求值.【详解】等式两边除以a,得:,所以,,所以,,所以,,所以,原式===15【点睛】此题考核知识点:等式的性质;整式乘法公式.解题的关键在于:灵活运用等式基本性质对等式进行变形,灵活运用整式乘法公式.16、分析:求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:第二个月的销售量比第一个增加了80件.等量关系为:第二个月的销售量-第一个月的销售量,算出后可得到此商品的进价.详解:解:设此商品进价是x元.,则有,故答案为:.点睛:本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、原式===1,故答案为:1.18、=0,则19、9x2-6x+1=0利用完全平方公式对方程左侧的整式进行因式分解,得 (3x-1)2=0,∴3x-1=0,∴.当时,.故本题应填写:2.20、因为=0,所以-1=0且a2+a-2≠0,解得a=±1,且a≠1,a≠-2,所以a=-1.将a=-1代入(a+2)(a2-1)-24得(-1+2)×(1-1)-24=-24.故答案为:-24.点睛:分式为零的条件是:分子为零且分母不为零.21、分析:(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.本题解析:解:(1)原式=1-4+2=-1.(2)原式=÷==·=.22、方程两边同时乘以:得:,解得:,检验:当时,,∴是原方程的解.点睛:解分式方程的“基本思想是去分母化分式方程为整式方程”,所以我们第一步要去分母,这时需注意方程两边各项要同时乘以最简公分母,不要漏乘;第二需注意解分式方程可能会产生增根,所以最后必须检验.23、试题分析:可先将小括号里的通分化简,然后将除法转化为乘法进行进一步化简。
初中数学人教版八年级上册第十五章 分式15.3 分式方程-章节测试习题(11)

章节测试题1.【题文】某工程队修建一条1200m的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】解:(1)设这个工程队原计划每天修建道路x米.由题意,得.解得x=100.经检验,x=100是所列方程的根.答:这个工程队原计划每天修建100米.(2)设实际平均每天修建道路的工效比原计划增加y%.据题意,得解得y=20.经检验,y=20是所列方程的根.答:实际平均每天修建道路的工效比原计划增加20%.【分析】【解答】2.【题文】某公司需在一个月(31天)内完成新建办公楼装修工程.如果由甲、乙两队合做,12天可以完成;如果由甲、乙两队单独做,甲队单独完成所用的时间是乙队单独完成所用时间的.(1)求甲、乙两队单独完成此工程所需的时间;(2)若请甲队施工,公司每日需付费用2000元;若请乙队施工,公司每日需付费用1400元.在规定时间内,有下列三种方案;方案一:请甲队单独施工完成此工程;方案二:请乙队单独施工完成此工程;方案三:甲、乙两队合作完成此工程.以上三种方案哪一种费用最少?【答案】解:(1)设乙队单独完成此工程所需的时间为x天.根据题意,得.解这个方程得x=30.经检验,x=30是所列方程的根.则(天).所以,甲队单独完成此工程所需时间为20天,乙队单独完成此工程所需的时间为30天.(2)方案一,费用为2000×20=40000(元);方案二,费用为1400×30=42000(元);方案三,费用为(2000+1400)×12=40800(元).所以,方案一费用最少.【分析】【解答】3.【题文】某校进行期末体育达标测试,甲、乙两班的学生人数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.【答案】解:设乙班的达标率为x,则甲班的达标率为(x+6%)根据题意,得.解这个方程,得x=0.9.经检验,x=0.9是所列方程的根.故乙班的达标率为90%.【分析】【解答】4.【题文】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.求粽子与咸鸭蛋的价格各是多少.【答案】解:设咸鸭蛋的价格是x元,则粽子的价格是(x+1.8)元,根据题意,得.解得x=1.2.经检验,x=1.2是所列分式方程的根.∴x+1.8=3.答:粽子的价格是3元,咸鸭蛋的价格是1.2元.【分析】【解答】5.【题文】某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔.毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支.求钢笔、毛笔的单价分别是多少元.【答案】解:设钢笔的单价为x元/支,则毛笔的单价为1.5x元/支.据题意,得.解得x=10.经检验,x=10是原方程的根.当x=10时,1.5x=15.答:钢笔的单价为10元/支,毛笔的单价为15元/支.【分析】【解答】6.【题文】近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A,B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B 种设备的数量相同.(1)求A种、B种设备每台各多少万元.(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台.【答案】解:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元.根据题意,得.解得x=0.5.经检验,x=0.5是所列方程的根,且符合题意.∴x+0.7=1.2.答:每台A种设备0.5万元,每台B种设备1.2万元.(2)设购买A种设备m台,则购买B种设备(20-m)台.根据题意,得0.5m+1.2(20-m)≤15.解得.∵m为整数,∴m≥13.答:A种设备至少要购买13台.【分析】【解答】7.【题文】烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,是进价的2倍价格销售,剩下的小苹果以高于进价的10%销售.乙超市销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【答案】解:(1)设苹果进价为每千克x元,由题意,得.解得x=5.经检验,x=5是原方程的根.答:苹果进价为每千克5元.(2)由(1)知每个超市苹果总量为(千克).大、小苹果售价分别为10元和5.5元.∴乙超市获利(元)∵甲超市获利2100>1650,∴甲超市的销售方式更合算.【分析】【解答】8.【答题】下列方程中,是分式方程的是()A. B.C. D. 6x2+4x+1=0【答案】B【分析】【解答】9.【答题】解分式方程时,去分母后可得到()A. x(2+x)-2(3+x)=1B. x(2+x)-2=2+xC. x(2+x)-2(3+x)=(2+x)(3+x)D. x-2(3+x)=3+x【答案】C【分析】【解答】10.【答题】分式方程的解为()A. x=1B. x=-1C. 无解D. x=-2【答案】C【分析】【解答】去分母,得x(x+2)-(x-1)(x+2)=3.解得x=1.检验:把x=1代入(x-1)(x+2)=0.所以分式方程的无解.11.【答题】关于z的分式方程的解为x=4,则常数a的值为()A. a=1B. a=2C. a=4D. a=10【答案】D【分析】【解答】把x=4代入方程,得.解得a=10.选D12.【答题】某加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件).设安排x人加工A零件,由题意列方程得()A. B.C. D.【答案】A【分析】【解答】13.【答题】关于x的分式方程的解为负数,则a的取值范围是()A. a>1B. a<1C. a<1日a≠-2D. a>1且a≠2【答案】D【分析】【解答】解分式方程得x=1-a.根据分式方程解为负数,得1-a<0,且1-a≠-1.解得a >1且a≠2.选D.14.【答题】已知x=1是分式方程的根,则实数k=______.【答案】【分析】【解答】把x=1代入分式方程,得.所以.15.【答题】若关于x的方程有增根,则m的值是______.【答案】0【分析】【解答】由x-2=0得方程的增根x=2..方程两边都乘x-2,得2-x-m=2x-4.将x=2代入,得2-2-m=2×2-4.解得m=0.16.【答题】端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个.求平时每个粽子卖多少元.设每个粽子卖x元,列方程为______.【答案】【分析】【解答】17.【答题】已知关于x的分式方程有一个正数解,则k的取值范围为______.【答案】k<6且k≠3【分析】【解答】.方程两边都乘(x-3),得x=2(x-3)+k,x=6-k≠3.关于x 的方程有一个正数解,∴x=6-k>0.∴k<6,且k≠3.18.【题文】解方程:(1);(2).【答案】解:(1)方程两边同乘(x-2)(x+3),得6(x+3)=x(x-2)-(x-2)(x+3),.化简得.当时,(x-2)(x+3)≠0,所以当是原方程的根.(2)整理,得.方程两边都乘(x-3),得2x-x-3=2x-6.解这个方程,得x=3.检验:当x=3时,x-3=0.因此x=3是增根,原方程无解.【分析】【解答】19.【题文】若关于x的方程无解,求m的值.【答案】解:去分母,得x-2=m+2x-10,x=-m+8.因为原方程无解,所以x=-m+8为原方程的增根.又由于原方程的增根为x=5,所以-m+8=5.所以m=3.【分析】【解答】20.【题文】某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.【答案】解:设每人每小时的绿化面积为x平方米.则有.解得x=2.5.经检验,x=2.5是所列分式方程的根.答:每人每小时的绿化面积为2.5平方米.【分析】【解答】。
2021-2022学年人教版八年级数学上册《第15章分式》单元综合练习题(附答案)

2021-2022学年人教版八年级数学上册《第15章分式》单元综合练习题(附答案)1.分式有意义的条件是()A.x≠3B.x≠9C.x≠±3D.x≠﹣32.关于x的分式方程=0的解为x=2,则常数a的值为()A.a=﹣1B.a=1C.a=2D.a=53.计算(x3y2)2•,得到的结果是()A.xy B.x7y4C.x7y D.x5y64.若分式的值总是正数,a的取值范围是()A.a是正数B.a是负数C.a>D.a<0或a>5.分式可变形为()A.B.﹣C.D.﹣6.若分式的值等于0,则x的值为()A.±1B.0C.﹣1D.17.某工程公司开挖一条500米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.8.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元9.甲,乙两个工程队,甲队修路300米与乙队修路400米所用的时间相等,乙队每天比甲队多修10米.若可列方程=表示题中的等量关系,则方程中x表示()A.甲队每天修路的长度B.乙队每天修路的长度C.甲队修路300米所用天数D.乙队修路400米所用天数10.若关于x的一元一次不等式组无解,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.7B.8C.14D.1511.化简:﹣=.12.计算:=.13.计算:+=.14.当x=时,分式的值为0.15.当x时,分式无意义;当x时,分式值为零.16.若分式的值是负数,则x的取值范围是.17.解分式方程:.18.某校庆为祝建国70周年举行“爱国读书日”活动,计划用500元购买某种爱国主义读书,现书店打八折,用500元购买的爱国主义读本比原计划多了5本,求该爱国主义读本原价多少元?19.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?20.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.21.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?参考答案1.解:当x2﹣9≠0时,分式有意义,由x2﹣9≠0得x2≠9,则x≠±3,故选:C.2.解:方程两边都乘以x(x﹣a),得:3x﹣2(x﹣a)=0,将x=2代入,得:6﹣2(2﹣a)=0,解得a=﹣1,故选:A.3.解:(x3y2)2•=x6y4•=x7y.故选:C.4.解:由题意可知:a>0且2a﹣1>0,或a<0且2a﹣1<0,∴a>或a<0,故选:D.5.解:分式可变形为:﹣.故选:D.6.解:==x﹣1=0,∴x=1;经检验:x=1是原分式方程的解,故选:D.7.解:设原计划每天挖x米,则原计划用时为:天,实际用时为:天.所列方程为:﹣=4,故选:A.8.解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据题意得:,解得:x=2000,经检验:x=2000是原方程的解,答:原计划每间直播教室的建设费用是2000元,故选:C.9.解:方程中x表示甲队每天修路的长度,故选:A.10.解:解不等式组,得,∵不等式组无解,∴a﹣1≤6,∴a≤7.解分式方程,得y=,∵y=为非负整数,a≤7,∴a=﹣1或1或3或5或7,∵a=1时,y=1,原分式方程无解,故将a=1舍去,∴符合条件的所有整数a的和是﹣1+3+5+7=14,故选:C.11.解:原式==.故答案为:.12.解:=.故答案为:.13.解:原式===2,故答案为:214.解:∵分式的值为0,∴,解得x=﹣2.故答案为:﹣2.15.解:(1)若分式无意义,则x+2=0,故x=﹣2,(2)分式的值为0,即x2﹣4=0且x+2≠0,故x=2.16.解:∵<0,x2+1≥1>0,∴2﹣3x<0,解得:x>.故答案为:x>17.解:去分母得:72000﹣60000=24x,合并得:24x=12000,解得:x=500,经检验x=500是分式方程的根.∴x=500.18.解:设爱国主义读本原价x元,=+5,解得:x=25,经检验,x=25是分式方程的解,答:爱国主义读本原价25元19.解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.20.解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:﹣﹣=﹣;(2)第n个等式为:﹣﹣=﹣,证明:左边==﹣,右边=﹣,∴左边=右边,∴原式成立.21.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.。
人教版八年级数学上《第15章分式》单元测试(6)含答案解析

《第15章分式》一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.62.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.53.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米D.米4.式子2a﹣1可以化为()A. B.C.﹣2a D.2a﹣15.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6D.(2x﹣2)﹣3=﹣8x66.下列分式是最简分式的()A.B.C.D.7.下面约分的式子中,正确的是()A.B.C. D.8.下列各式中,可能取值为零的是()A.B.C.D.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.10.分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y311.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2B. =C. = D. =12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5D.2.5×10﹣613.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变B.是原来的20倍C.是原来的10倍D.是原来的15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B.C.D.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=117.化简÷(1+)的结果是()A.B.C.D.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.519.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.20.若+=,则用u、v表示f的式子应该是()A.B.C.D.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.5122.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.二、填空题:23.如果分式的值为零,那么x的值为.24.若关于x的分式方程的解为正数,那么字母a的取值范围是.25.若|a|﹣2=(a﹣3)0,则a= .26.分式,,的最简公分母为.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为米.28.①若=,则= .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.30.计算:①()﹣2014•(﹣)﹣2015= ;②(π﹣)0+(﹣)﹣3= ;③﹣2﹣3= .31.计算化简(结果若有负指数幂要化为正整数指数幂):= .32.计算(m﹣)÷(n﹣)的结果为.33.若M=,N=,P=,则M﹣N+P= .34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.36.当x= 时,2x﹣3与的值互为倒数.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= .38.若32m=,()n=262m,则m+n= .39.若a1=1﹣,a2=1﹣,a3=1﹣…则a2014的值为(用含m的式子表示),a2015的值为(用含m的式子表示).40.若x2+4x=1,则①x+= ;②x2+x﹣2= ;③x4+= ;④ = .三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣ [(1﹣)÷(﹣)]《第15章分式》参考答案与试题解析一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.6【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,,3x﹣2,a﹣2﹣b﹣2的分母中含有字母,因此是分式.﹣,﹣y2,,分母中均不含有字母,因此它们是整式,而不是分式.故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.5【考点】分式有意义的条件;负整数指数幂;二次根式有意义的条件.【分析】根据分式有意义,分母不等于0,二次根式的被开方数大于等于0,零指数幂和负整数指数幂的底数不等于0,对各小题分析判断即可得解.【解答】解:①,x≠﹣4无意义;②,x取全体实数;③,a=1无意义;④,m=﹣1无意义;⑤3y﹣3+2,y≠0;⑥,b取全体实数;⑦(x﹣2)0,x≠2,所以,在字母取任何值的情况下都有意义的是②⑥共2个.故选A.【点评】本题考查了分式有意义的条件,负整数指数幂,零指数幂,二次根式有意义的条件,是基础题,需熟记.3.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米D.米【考点】列代数式(分式).【专题】应用题.【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度.【解答】解:根据题意得:剩余电线的质量为b克的长度是米.所以这卷电线的总长度是(+1)米.故选B.【点评】首先根据长度=质量÷每米的质量求得剩余的长度,最后不要忘记加1.解决问题的关键是读懂题意,找到所求的量的等量关系.4.式子2a﹣1可以化为()A. B.C.﹣2a D.2a﹣1【考点】负整数指数幂.【分析】根据负整数指数幂的运算法则进行计算.【解答】解:2a﹣1=2×=.故选:B.【点评】本题考查了负整数指数幂.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.5.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6D.(2x﹣2)﹣3=﹣8x6【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数的幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x10÷x5=x5,故本选项错误;B、x﹣4•x=x﹣3,正确;C、应为x3•x2=x5,故本选项错误;D、应为(2x﹣2)﹣3=x6,故本选项错误.故选B.【点评】本题主要考查同底数幂乘法,同底数幂除法的运算,熟练掌握运算法则是解题的关键,另外负指数次幂是学生容易出错的地方.6.下列分式是最简分式的()A.B.C.D.【考点】最简分式;分式的基本性质;约分.【专题】计算题.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.【解答】解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选C.【点评】本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解此题的关键.7.下面约分的式子中,正确的是()A.B.C. D.【考点】约分.【分析】根据分式的基本性质作答.分子和分母同乘以(或除以)一个不为0的数,分数值不变.【解答】解:A、不能将幂约掉,故A错误;B、分子和分母同时减掉一个数,比值会发生变化,故B错误;C、=,故C错误;D、将分母变为﹣(a﹣b),然后化简得﹣1,故D正确.故选D.【点评】解答此类题一定要熟练掌握分式的基本性质以及约分的概念.8.下列各式中,可能取值为零的是()A.B.C.D.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须使分式分子的值为0,与分母的值不为0,同时成立.【解答】解:根据m2+1≠0一定成立,故选项A,D一定错误;C、m+1=0,解得:m=﹣1,由分子m2﹣1=0解得:m=±1.故C不可能是0;B、m2﹣1=0,解得:m=±1,当m=±1时,分母m2+1=2≠0.所以m=±1时,分式的值是0.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选B.【点评】通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.11.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2B. =C. = D. =【考点】通分.【分析】按照通分的方法依次验证各个选项,找出不正确的答案.【解答】解:A、最简公分母为最简公分母是(x﹣2)(x+3)2,正确;B、=,通分正确;C、=,通分正确;D、通分不正确,分子应为2×(x﹣2)=2x﹣4;故选:D.【点评】根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分保证(1)各分式与原分式相等;(2)各分式分母相等.12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】根据负整数指数幂、有理数的乘方、零指数幂的定义将a、b、c、d的值计算出来即可比较出其值的大小.【解答】解:因为a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣=﹣,c=(﹣)﹣2==9,d=(﹣)0=1,所以c>d>a>b.故选D.【点评】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数大于0;0大于负数;两个负数,绝对值大数的反而小.14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变B.是原来的20倍C.是原来的10倍D.是原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;分式中的m、n的值同时扩大到原来的10倍,则此分式的值扩大10倍,故选:C.【点评】本题考查了分式基本性质,利用了分式的基本性质.15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B.C.D.【考点】列代数式(分式).【分析】把某项工程看作单位1,再进一步根据工作总量=工作效率×工作时间×工作人数这一公式灵活变形求解.【解答】解:根据m人需a天完成某项工程,得1人1天完成,则(m+n)个人完成这项工程需要的天数是1÷=.故选B.【点评】此题考查了工程问题中各个量之间的关系,能够求得每人每天的工作效率.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=1【考点】分式的混合运算.【分析】根据分式的混合运算的顺序即可求解.【解答】解:A、÷﹣÷=•﹣•=﹣=,选项错误;B、÷=•=,选项错误;C、÷(1﹣)=÷=1,选项正确;D、(1﹣)÷=•(2﹣x)=﹣,选项错误.故选C.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.17.化简÷(1+)的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【考点】分式方程的解.【专题】计算题;压轴题.【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.19.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.20.若+=,则用u、v表示f的式子应该是()A.B.C.D.【考点】分式的加减法.【专题】计算题.【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【解答】解: +=,变形得:f=.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.51【考点】分式的混合运算.【专题】计算题.【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【解答】解:已知等式x﹣=7两边平方得:(x﹣)2=x2+﹣2=49,则x2+=51.故选D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.二、填空题:23.如果分式的值为零,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】分式的值为0:分子等于0,分母不等于0.【解答】解:依题意得|x|﹣3=0,且2x﹣6≠0,解得 x=﹣3.故答案是:﹣3.【点评】本题考查了分式的值为0的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2 .【考点】分式方程的解.【专题】计算题.【分析】将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.【点评】此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.25.若|a|﹣2=(a﹣3)0,则a= ﹣3 .【考点】零指数幂.【分析】根据零指数幂的知识可得等式右边为1,然后进行绝对值的化简,求出a的值.【解答】解:∵|a|﹣2=(a﹣3)0=1,∴|a|=3,即a=±3.∵(a﹣3)0=1(a≠3),∴a=﹣3.故答案为:﹣3.【点评】本题考查了零指数幂的知识,关键是掌握a0=1(a≠0).26.分式,,的最简公分母为36m2n(m+n)(m﹣n)2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是36m2n,4mn(m ﹣n)2,6mn(m+n)(m﹣n),故最简公分母是36m2n(m+n)(m﹣n)2,故答案是:36m2n(m+n)(m﹣n)2.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为 4.5×10﹣5米.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式).其中1≤|a|<10,n表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:∵1纳米=10﹣9米,∴45 000纳米=4.5×104纳米=4.5×10﹣5米.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).28.①若=,则= ﹣8 .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .【考点】分式的化简求值.【专题】计算题.【分析】①对所要求的式子进行变形,即分子和分母都除以式子n2,然后把条件代入即可求值;②令,则x=3k,y=4k,z=5k,然后代入即可求值;③由条件可以得到a+b=4ab,然后代入进行求值即可;④把要求的式子进行变形为,然后把条件代入即可求值.【解答】解:① ==﹣8;②令,则x=3k,y=4k,z=5k,所以==;③由得a+b=4ab,所以=;④=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为,故答案为:.【点评】本题考查了分式的基本性质,利用了分式的基本性质.30.计算:①()﹣2014•(﹣)﹣2015= ﹣24029;②(π﹣)0+(﹣)﹣3= ﹣7 ;③﹣2﹣3= ﹣.【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】原式各项利用负指数幂法则计算即可得到结果.【解答】解:①()﹣2014•(﹣)﹣2015=﹣()﹣4029=﹣24029;②(π﹣)0+(﹣)﹣3=1﹣8=﹣7;③﹣2﹣3=﹣.故答案为:①﹣24029;②﹣7;③﹣【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.31.计算化简(结果若有负指数幂要化为正整数指数幂):= .【考点】负整数指数幂.【专题】计算题.【分析】原式利用积的乘方与幂的乘方运算法则变形,再利用负指数幂法则计算即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.32.计算(m﹣)÷(n﹣)的结果为.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=.故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.33.若M=,N=,P=,则M﹣N+P= 0 .【考点】分式的加减法.【专题】计算题.【分析】将M,N以及P代入M﹣N+P计算即可得到结果.【解答】解:∵M=,N=,P=,∴M﹣N+P=﹣+==0,故答案为:0【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.【考点】分式的乘除法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:÷=•=,则“☀”处的式子为.故答案为:.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【专题】配方法.【分析】根据相反数及非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”求出a、b的值,再代入所求代数式计算即可.【解答】解:由题意知a2﹣6a+9+|b﹣1|=(a﹣3)2+|b﹣1|=0,∴a﹣3=0,b﹣1=0,∴a=3,b=1.∴()÷(a+b)=•===.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.36.当x= 3 时,2x﹣3与的值互为倒数.【考点】解一元一次方程.【专题】计算题.【分析】首先根据倒数的定义列出方程2x﹣3=,然后解方程即可.【解答】解:∵2x﹣3与的值互为倒数,∴2x﹣3=,去分母得:5(2x﹣3)=4x+3,去括号得:10x﹣15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.所以当x=3时,2x﹣3与的值互为倒数.【点评】本题主要考查了倒数的定义及一元一次方程的解法,属于基础题比较简单.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= 1 .【考点】负整数指数幂.【专题】新定义.【分析】原式根据题中的新定义计算即可得到结果.【解答】解:根据题意得:2▲(﹣4)=2﹣4=,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]=×16=1,故答案为:1【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.38.若32m=,()n=262m,则m+n= 60 .【考点】负整数指数幂.【分析】将32m=化为=3﹣4,再将()n=262m,化为2﹣2n=262m,根据对应相等求得m,n的值,代入即可.【解答】解:∵32m=,()n=262m,∴=3﹣4,2﹣2n=262m,∴2m=﹣4,﹣2n=62m,∴m=﹣2,n=62,∴m+n=﹣2+62=60,故答案为60.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.39.若a1=1﹣,a2=1﹣,a3=1﹣…则a2014的值为1﹣()2013(用含m的式子表示),a2015的值为1﹣()2014(用含m的式子表示).【考点】分式的混合运算.【专题】规律型.【分析】根据已知求得a 2=1﹣=1﹣,a 3=1﹣=1﹣()2,从而找出规律,即可解答.【解答】解:∵a 1=1﹣,a 2=1﹣,a 3=1﹣, ∴a 2=1﹣=1﹣=1﹣==1﹣,a 3=1﹣=1﹣=1﹣==1﹣()2,∴a 2014=1﹣()2013,a 2015=1﹣()2014.【点评】本题考查了分式的混合运算,找出已知式子的规律是本题的关键.40.若x 2+4x=1,则①x += ±2 ;②x 2+x ﹣2= 18 ;③x 4+= 322 ;④ = .【考点】分式的混合运算.【分析】(1)移项后两边都除以x ,即可求出x ﹣,求出x 2+的值,再根据完全平方公式求出即可;(2)移项后两边都除以x ,即可求出x ﹣,求出x 2+的值即可; (3)根据完全平方公式变形后,代入求出即可;(4)先分子和分母都除以x 2,再代入求出即可.【解答】解:∵x 2+4x=1,∴x 2+4x ﹣1=0,∴x+4﹣=0,∴x ﹣=4,∴(x ﹣)2=16,∴x 2﹣2+=16,∴x2+=18,(1)∵(x+)2=x2++2=18+2=20,∴x+=±2,故答案为:±2;(2)x2+x﹣2=x2+=18,故答案为:18;(3)x4+=(x2+)2﹣2x2•=182﹣2=322,故答案为:322;(4)===,故答案为:.【点评】本题考查了对完全平方公式的灵活运用,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.【考点】负整数指数幂;零指数幂.【分析】①根据a﹣p=进行计算即可;②先算乘方,再按同底数幂的乘法运算进行计算即可;③根据乘方、绝对值、算术平方根、零指数幂、负整数指数幂进行计算.【解答】解:①原式=﹣+﹣=﹣;②原式=27×10﹣15÷9×10﹣12×9×10﹣14=3×10﹣3×9×10﹣14=27×10﹣17=2.7×10﹣16,③原式=1﹣7+3﹣5=﹣8.【点评】本题考查了负整数指数幂,零指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.【考点】负整数指数幂.【分析】①根据分式的乘方、乘除进行计算即可;②先算乘方,再根据负指数幂运算进行即可;③根据除以一个数等于乘以这个数的倒数进行计算即可.【解答】解:①原式=••=x5;②原式=b2c﹣2•8b6c﹣6=8b8c﹣8=;③原式=a2b3•a2b×a2b=a6b5.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣ [(1﹣)÷(﹣)]⑧(+)﹣⑨+++⑩(a﹣2﹣b﹣2)÷(a﹣1+b﹣1)+(a﹣2﹣b﹣2)÷(a﹣1﹣b﹣1)【考点】分式的混合运算.【分析】①、②、③、⑤、⑥、⑦、⑧先算括号里面的,再算乘除,最后算加减即可;②根据分式的除法法则进行计算即可;⑨根据分式的加法法则进行计算即可;⑩先根据负整数指数幂的计算法则计算出各数,再根据分式混合运算的法则进行计算即可.【解答】解:①原式=•=•=;②原式=÷=•=;③=•(a﹣1)(a+1)=2a(a+1)﹣a(a﹣1)=2a2+2a﹣a2+a=a2+3a;④原式=+﹣=;⑤(﹣)÷(+﹣2)÷=0÷(+﹣2)÷=0;⑥[×(a﹣4+)]÷(﹣1)=(×)÷=×=;⑦原式= [÷]= [•]=•=;【点评】本题考查的是分式的混合运算,在解答此类题目时要注意通分及约分的灵活应用.。
人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。
人教版八年级数学上册 第十五章 分式 单元练习题及答案

第十五章 分式 单元练习一、选择题1.若分式x 2-1x -1的值为零,则x 的值为( ) A .0 B .1 C .-1 D .±12.下列式子计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a=-1 D.1c +2c =3c 3.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-74.化简a +1a 2-2a +1÷⎝⎛⎭⎫1+2a -1的结果是( ) A.1a 2-1 B.1a +1C.1a -1D.1a 2+15.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( )A.2500x =3000x -50B.2500x =3000x +50C.2500x -50=3000xD.2500x +50=3000x 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32C .m >-94D .m >-94且m ≠-34二、填空题7.若分式3x x -2有意义,则x 应满足的条件是________. 8.方程12x =1x +1的解是________. 9.若3x -1=127,则x =________. 10.已知a 2-6a +9与(b -1)2互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b )的值是________.11.关于x 的方程2a x -1=a -1无解,则a 的值是________. 12.若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 三、13.计算(1)-(-1)2016-(π-3.14)0+⎝⎛⎭⎫-12-2;(2)13a 2+12ab.14.化简:(1)⎝⎛⎭⎫1x 2-4+4x +2÷1x -2;(2)⎝⎛⎭⎫a +1a +2÷⎝⎛⎭⎫a -2+3a +2.15.先化简,再求值:⎝⎛⎭⎫x x +1-1÷1x 2-1,其中x =2016.16.解方程:(1)3x -1-x +3x 2-1=0;(2)2x +1+3x -1=6x 2-1.17.先化简,再求值:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1,x 在1,2,-3中选取合适的数.四、18.先化简,再求值:x 2+2x +1x +2÷x 2-1x -1-x x +2,其中x 是不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1的整数解.19.以下是小明同学解方程1-x x -3=13-x-2的过程. 解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步解得x =4. ……………………………………第二步检验:当x =4时,x -3=4-3=1≠0. ………第三步所以,原分式方程的解为x =4. …………………第四步(1)小明的解法从第________步开始出现错误;(2)写出解方程1-x x -3=13-x-2的正确过程.20.某中学组织学生到离学校15km 的东山游玩,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h ,先遣队的速度是多少?大队的速度是多少?五、21.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:⎝ ⎛⎭⎪⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?22.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/时,走了约3分钟.(1)由此估算这段路长约________千米;(2)然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a 米种一棵树,绘制出了示意图,考虑到投入资金的限制,他设计了另一种方案,将原计划的a 扩大一倍,则路的两侧共计减少400棵树,请你求出a 的值.六、23.观察下列方程的特征及其解的特点.①x +2x=-3的解为x 1=-1,x 2=-2; ②x +6x=-5的解为x 1=-2,x 2=-3; ③x +12x=-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程:____________,其解为____________;(2)根据这类方程特征,写出第n 个方程:____________________,其解为________________;(3)请利用(2)的结论,求关于x 的方程x +n 2+n x +3=-2(n +2)(其中n 为正整数)的解.参考答案与解析1.C 2.A 3.C 4.C 5.C6.B 解析:去分母得x +m -3m =3x -9,整理得2x =-2m +9,解得x =-2m +92.∵关于x 的方程x +m x -3+3m 3-x=3的解为正数,∴-2m +9>0,解得m <92.当x =3时,即-2m +92=3,解得m =32.故m 的取值范围是m <92且m ≠32.故选B. 7.x ≠2 8.x =1 9.-2 10.2311.1或0 12.12 -12 1021 解析:1(2n -1)(2n +1)=a 2n -1+b 2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1)=2n (a +b )+a -b (2n -1)(2n +1),∴⎩⎪⎨⎪⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12.∴1(2n -1)(2n +1)=122n -1+-122n +1=12⎝⎛⎭⎫12n -1-12n +1,∴m =11×3+13×5+15×7+…+119×21=12⎝⎛⎭⎫1-13+13-15+15-17+…+119-121=12⎝⎛⎭⎫1-121=1021. 13.解:(1)原式=-1-1+4=2.(3分)(2)原式=2b 6a 2b +3a 6a 2b =3a +2b 6a 2b.(6分) 14.解:(1)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(3分) (2)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(6分) 15.解:原式=x -x -1x +1·(x 2-1)=-(x -1)=-x +1.(3分) 当x =2016时,原式=-2015.(6分)16.解:(1)方程两边同乘x 2-1,得3(x +1)-(x +3)=0,解得x =0.(2分)检验:当x =0时,x 2-1≠0,∴原分式方程的解为x =0.(3分)(2)方程两边同乘x 2-1,得2(x -1)+3(x +1)=6,解得x =1.(5分)检验:当x =1时,x 2-1=0,∴x =1不是原分式方程的解,∴原分式方程无解.(6分)17.解:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1=x 2-9x -1·x -1x +3=(x +3)(x -3)x -1·x -1x +3=x -3.(3分)∵当x =1和x =-3时,原分式无意义,∴选取x =2.当x =2时,原式=2-3=-1.(6分)18.解:原式=(x +1)2x +2·1x +1-x x +2=x +1x +2-x x +2=1x +2.(2分)解不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1,得-2≤x ≤1.(4分)∵x 是整数,∴x =-2,-1,0,1.当x =-2,-1,1时,原分式无意义,故x 只能取0.(6分)当x=0时,原式=12.(8分) 19.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以,原分式方程的解为x =4.(8分)20.解:设大队的速度为x km/h ,则先遣队的速度是1.2x km/h.(1分)根据题意得15x =151.2x+0.5,解得x =5.(5分)经检验,x =5是原分式方程的解且符合实际.(6分)1.2x =1.2×5=6.(7分)答:先遣队的速度是6km/h ,大队的速度是5km/h.(8分)21.解:(1)设所捂部分化简后的结果为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1.(4分) (2)原代数式的值不能等于-1.(5分)理由如下:若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0.当x =0时,除式x x +1=0,故原代数式的值不能等于-1.(9分) 22.解:(1)3(3分)(2)由题意可得3000a -30002a =12×400.(6分)解方程得a =7.5.经检验,a =7.5满足方程且符合题意.(8分) 答:a 的值是7.5.(9分)23.解:(1)x +20x=-9 x 1=-4,x 2=-5(3分) (2)x +n 2+n x=-(2n +1) x 1=-n ,x 2=-n -1(6分) (3)x +n 2+n x +3=-2(n +2),x +3+n 2+n x +3=-2(n +2)+3,(x +3)+n 2+n x +3=-(2n +1),由(2)知x +3=-n 或x +3=-(n +1),即x 1=-n -3,x 2=-n -4.(10分)检验:∵n 为正整数,当x 1=-n -3时,x +3=-n ≠0;当x 2=-n -4时,x +3=-n -1≠0.∴原分式方程的解是x 1=-n -3,x 2=-n -4.(12分)。
人教版八年级数学上册第十五章分式-测试题带答案

人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。
人教版八年级数学上册 第十五章 分式 单元测试题

人教版八年级数学上册 第十五章 分式 单元测试题一、选择题1.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁2.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 3.把分式方程211x x x -=+化为整式方程正确的是( ) A .22(1)1x x +-=B .22(1)1x x ++=C .22(1)(1)x x x x +-=+D .22(1)(1)x x x x -+=+4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x += 5.甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t 1小时后,快者追上慢者;若相向而行,则t 2小时后,两人相遇,那么快者速度是慢者速度的( )A .112t t t +B .121t t t +C .1212t t t t -+D .1212t t t t +- 6.若关于x 的不等式组2132x a x a -≥⎧⎪⎨+-≤⎪⎩ 有解,且关于x 的分式方程2ax x -–1=32x x -的解为整数,则满足条件的整数a 的值的和是( (A .–6B .–1C .–3D .–47.若a 使关于x 的不等式组02432x a x x -⎧⎪⎨⎪-+⎩<<()至少有三个整数解(且关于x 的分式方程3a x x +-+23x -=2有正整数解(a 可能是( (A .(3B .3C .5D .88.下列运算正确的是( )A .11x y x y xy --=B .=-1b a a b b a+-- C .21111a a a --=--+ D .2111·1a a a a a--=-+ 9.初三学生周末去距离学校120km 的某地游玩.一部分学生乘慢车先行1小时后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车的速度是慢车的2倍,求慢车的速度.设慢车的速度是 /xkm h ,根据题意列方程为( ). A .12012012x x-= B .12012012x x -= C .12012012x x+= D .120120112x x -=- 10.化简﹣等于( ) A .B .C .﹣D .﹣二、填空题11.已知x 2﹣4x ﹣5=0,则分式265x x x --的值是_____.12.已知x ,y 为实数,y 求5x +6y 的值________. 13.若方程81877--=--x x x有增根,则增根是____________. 14.若关于x 的分式方程322x a x -=-的解为正数(那么字母a 的取值范围是__________________( 15.游泳者在河中逆流而上,于桥A 下面将水壶遗失被水冲走,继续前游30分钟后他发现水壶遗失,于是立即返回追寻水壶,在桥A 下游距桥1.2公里的桥B 下面追到了水壶,那么该河水流的速度是_________(三、解答题16.计算下列各式:(1)322441124a a a b a b a b a b +++-+++; (2)()()()222222x yz y zx z xy x y z x yz y z x y zx z y x z xy+-++++--++++-- ; (3)()2333232221112212211x x x x x x x x x x +--+++++-+-- ; (4)()()()()()()()()()()()()222222y x z x z y x y x z y z x z y x y z x y z y z x y z x x z y ------+++-+-+-+-+-+- . 17.观察下列算式:111111111111;;;2121262323123434==-==-==-⨯⨯⨯…… (1)通过观察,你得到什么结论?用含n (n 为正整数)的等式表示:________.(2)利用你得出的结论,计算:1111(1)(2)(2)(3)(3)(4)(4)(5)a a a a a a a a +++--------18.按要求完成下列题目.()1求:()11111223341n n +++⋯+⨯⨯⨯+的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成()11+n n 的形式,而()11111n n n n =-++,这样就把()11+n n 一项(分)裂成了两项. 试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出111112233420162017+++⋯+⨯⨯⨯⨯的值. ()2若()()()()()112112A B n n n n n n n =++++++①求:A 、B 的值:②求:()()11112323412n n n ++⋯+⨯⨯⨯⨯++的值. 19.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案? (3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?20.某绿色食品有限公司准备购进A 和B 两种蔬菜,B 种蔬菜每吨的进价比A 中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A 种蔬菜的吨数与用6万元购进的B 种蔬菜的吨数相同,请解答下列问题:(1)求A (B 两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A (B 两种蔬菜,若A 种蔬菜以每吨2万元的价格出售,B 种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.21.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A 类图书的数量恰好比单独购买B类图书的数量少10本,请求出A(B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a 元(0(a(5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?22.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x小时,乙单独完成需要y小时,丙单独完成需要z小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a倍,乙单独完成的时间是甲丙合作完成时间的b倍,丙单独完成的时间是甲乙合作完成时间的c倍,求111111a b c+++++的值.23.A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的43倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【参考答案】1.D 2.A 3.C 4.B 5.D 6.B 7.C 8.B 9.B 10.B 11.212.-1613.714.a>4且a≠6.15.0.02km/min16.(1)7888aa b-;(2)0;(3)0;(4)1.17.(1)1114(2)(1)1(1)(5) n n n n a a=--++--18.() ()()3 412n nn n+++19.(1)9万元(2(共有5种进货方案(3(购买A款汽车6辆,B款汽车9辆时对公司更有利20.(1)每吨A种蔬菜的进价为1.5万元,每吨B种蔬菜的进价为2万元;(2(W=176a-+((3)有三种购买方案.21.(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.22.(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)123.(1)甲车速度为60千米/时;(2)甲车至少提速15千米/。
人教版八年级数学上《第15章分式》单元测试含答案解析

《第15章分式》一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣3.下列分式是最简分式的是()A.B.C.D.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=06.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×1098.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1二、填空题11.若分式的值为零,则x=______.当x=______时,分式的值为0.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是______m.13.计算: =______.14.,,的最简公分母为______.15.已知3m=4n≠0,则=______.16.若解分式方程产生增根,则m=______.17.当x=______时,分式无意义;当x______时,分式有意义.18.将下列分式约分:(1)=______;(2)=______;(3)=______.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为______千米/时.20.要使分式有意义,则x应满足的条件是______.三、解答题21.计算(1)(2)(3)1﹣(4).22.解方程(1)(2)(3)(4).23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.《第15章分式》参考答案与试题解析一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个【考点】分式的定义.【分析】判断分式的依据是分式的定义,主要是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.分式不含等号.【解答】解:,, x+y,的分母中均不含有字母,因此它们是整式,而不是分式.含有等号,不是分式.,﹣,分母中含有字母,因此是分式.故选C.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A 叫做分式的分子,B叫做分式的分母.注意分式不含等号,也不含不等号.2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣【考点】分式的基本性质.【分析】根据分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,可得答案.【解答】解:A,故A错误;B,故B正确;C ,故C错误;D,故D错误;故选:B.【点评】本题考查了分式的性质,分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,注意分式的分子分母都乘或都除以同一个整式(0除外),不能遗漏.3.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.【点评】本题考查最简分式,是简单的基础题.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定【考点】分式的基本性质.【分析】根据已知得出=,求出后判断即可.【解答】解:将分式中的x、y的值同时扩大2倍为=,即分式的值扩大2倍,故选A.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣1=0,且x+1≠0,解得x=1.故选:B.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.【考点】负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、合并同类项法则结合负整数指数幂的计算公式可得答案.【解答】解:A、2÷2﹣1=4,故此选项错误;B、2x﹣3÷4x﹣4=,故此选项错误;C、(﹣2x﹣2)﹣3=﹣x6,故此选项错误;D、3x﹣2+4x﹣2=,故此选项正确;故选:D.【点评】本题主要考查了负指数幂的运算.负整数指数为正整数指数的倒数.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】压轴题.【分析】若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产x套,先求出实际25天完成的套数,再求出实际的工作效率=,最后依据工作时间=工作总量÷工作效率解答.【解答】解:由分析可得列方程式是: =25.故选B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1【考点】解分式方程.【专题】方程思想.【分析】观察可得最简公分母是(x﹣3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3)(x﹣1),得x(x﹣1)=(x﹣3)(x+1),x2﹣x=x2﹣2x﹣3,解得x=﹣3.检验:把x=﹣3代入(x﹣3)(x﹣1)=24≠0.∴原方程的解为:x=﹣3.故选B.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二、填空题11.若分式的值为零,则x= ﹣3 .当x= ﹣3 时,分式的值为0.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得|x|﹣3=0且x﹣3≠0,解得x=﹣3.由题意可得x2﹣9=0且x﹣3≠0,解得x=﹣3.故答案为:﹣3;﹣3.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.计算: = .【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.,,的最简公分母为6x2y2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,的分母分别是2xy、3x2、6xy2,故最简公分母为6x2y2.故答案为6x2y2.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.15.已知3m=4n≠0,则= .【考点】分式的化简求值.【分析】首先化简分式,再进一步用n表示m,代入求得数值即可.【解答】解:∵3m=4n≠0,∴,∴原式======.故答案为:.【点评】此题考查分式的化简求值,注意先化简,再代入求值.16.若解分式方程产生增根,则m= ﹣5 .【考点】分式方程的增根.【专题】计算题.【分析】分式方程去分母后转化为整式方程,由分式方程无解得到x=﹣4,代入整式方程即可求出m的值.【解答】解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.【点评】此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.17.当x= 1 时,分式无意义;当x ≠±3 时,分式有意义.【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0列式计算即可得解;根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1=0,解得x=1;x2﹣9≠0,解得x≠±3.故答案为:1;≠±3.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.将下列分式约分:(1)= ;(2)= ;(3)= 1 .【考点】约分.【分析】根据约分的定义,把分子分母同时约去它们的公因式,即可得出答案.【解答】解:(1)=;(2)=﹣;(3)==1;故答案为:,﹣,1.【点评】此题主要考查了分式的约分,关键是正确的找出分子分母的公因式.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为40 千米/时.【考点】分式方程的应用.【专题】行程问题.【分析】设该冲锋舟在静水中的最大航速为x千米/时.等量关系:洪水顺流以最大速度航行2千米所用时间与以最大速度逆流航行1.2千米所用时间相等,根据等量关系列式.【解答】解:设该冲锋舟在静水中的最大航速为x千米/时.根据题意,得,即2(x﹣10)=1.2(x+10),解得x=40.经检验,x=40是原方程的根.所以该冲锋舟在静水中的最大航速为40千米/时.故答案为:40.【点评】此题中用到的公式有:路程=速度×时间,顺流速=静水速+水流速,逆流速=静水速﹣水流速.20.要使分式有意义,则x应满足的条件是x≠﹣1,x≠2 .【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,(x+1)(x﹣2)≠0,解得x≠﹣1,x≠2.故答案为:x≠﹣1,x≠2.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.三、解答题21.计算(1)(2)(3)1﹣(4).【考点】分式的混合运算.【专题】计算题.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(3)原式第二项利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算即可得到结果;(4)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式==;(2)原式=÷=•=;(3)原式=1﹣•=1﹣==﹣;(4)原式=﹣÷=﹣•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.解方程(1)(2)(3)(4).【考点】解分式方程.【专题】计算题.【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:4+(x+3)(x+2)=(x﹣1)(x﹣2),去括号得:4+x2+5x+6=x2﹣3x+2,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解;(3)去分母得:x(x+2)+2=x2﹣4,去括号得:x2+2x+2=x2﹣4,移项合并得:2x=﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解;(4)去分母得:7(x﹣1)+x+1=6x,去括号得:7x﹣7+x+1=6x,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=﹣3与x=3代入进行计算即可.【解答】解:原式=(+)•(x+2)(x﹣2)=•(x+2)(x﹣2)=x2+4,∵(﹣3)2+4=32+4=9+4,∴她的计算结果也是正确的.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=[﹣]•=•=•=,当x=1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.【考点】分式方程的应用.【专题】应用题.【分析】本题中有两个相等关系:“B的速度是A的速度的3倍”以及“B比A少用3小时20分钟”;根据等量关系可列方程.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.【点评】利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.【考点】分式方程的应用.【分析】用到的关系式为:路程=速度×时间.由题意可知:加速后用的时间+40分钟+1小时=原计划用的时间.注意加速后行驶的路程为180千米﹣前一小时按原计划行驶的路程.【解答】解:设前一个小时的平均行驶速度为x千米/时.依题意得:1++=,3x+2(180﹣x)+2x=3×180,3x+360﹣2x+2x=540,3x=180,x=60.经检验:x=60是分式方程的解.答:前一个小时的平均行驶速度为60千米/时.【点评】本题考查了列分式方程解应用题,与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【考点】分式方程的应用.【专题】工程问题;压轴题.【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【考点】分式方程的应用.【专题】方案型.【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得++=1,.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.。
新人教版八年级数学上册第十五章分式单元测试题

新人教版八年级数学上册第十五章分式单元测试题第十五章 分式测试题班级: 姓名: 成绩:一、选择题(每小题3分;共30分)1、在式子:23123510,,,,,94678xy a b c x y x a x yπ+++中;分式的个数是()A :2B :3C :4D :52、化简1x x y x÷⋅的结果是( ) A :1 B :xy C :y x D :x y3、若把分式xyx 23+的x 、y 同时扩大10倍;则分式的值 ( )A :扩大10倍B :缩小10倍C :不变D :缩小5倍4、化简2293m mm --的结果是( )A :3+m m B :3+-m m C :3-m m D :mm-3 5、对于分式23x -有意义;则x 应满足的条件是( ) A :3x ≥ B :3x > C :3x ≠ D :3x < 6、用科学记数法表示-0.0000064记为( )A :-64×10-7B :-0.64×10-4C :-6.4×10-6D :-640×10-87、若分式112--x x 的值为0;则x 的取值为( )A :1=xB :1-=xC :1±=xD :无法确定 8、下列等式成立的是( )A :9)3(2-=-- B :()9132=-- C :2222b a b a ⨯=⨯-- D :b a a b b a +=--22 9、若方程342(2)a x x x x =+--有增根;则增根可能为( ) A :0 B :2 C :0或2 D :110、小明和小张两人练习电脑打字;小明每分钟比小张少打6个字;小明打120个字所用的时间和小张打180个字所用的时间相等。
设小明打字速度为x 个/分钟;则列方程正确的是( ) A :x x 1806120=+ B :x x 1806120=- C :6180120+=x x D :6180120-=x x 二、填空题(每小题3分;共30分)11、计算:=-321)(b a ;=+-203π ; 12、方程xx 527=-的解是 ; 13、分式,21x xyy 51,212-的最简公分母为 ; 14、约分:=-2264xyyx ;932--x x = ; 15、若关于x 的方程211=--ax a x 的解是x=2;则a= ; 16、计算ab bb a a -+-= ; 17、如果分式121+-x x 的值为-1;则x 的值是 ;18、已知31=b a ;分式ba ba 52-+的值为 ;19、当x 时;分式21xx -的值为正数;20、轮船顺水航行46km 和逆水航行34km 所用的时间恰好相等;水的流速是 3km/h ;设轮船在静水中的速度是xkm/h ;可列得方程为 。
人教版八年级数学上《第15章分式》单元测试(5)含答案解析

《第15章分式》一、选择题1.在,,,,中,分式的个数为()A.2 B.3 C.4 D.52.如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍 B.不变 C.缩小3倍 D.扩大2倍3.下列各分式中,最简分式是()A.B.C.D.4.下列等式成立的是()A.(﹣3)2=﹣9 B.(﹣3)﹣2=C.(a﹣12)2=a14D.(﹣a﹣1b﹣3)﹣2=﹣a2b65.若xy=x﹣y≠0,则分式=()A.B.y﹣x C.1 D.﹣16.已知甲做360个零件与乙做480个零件所用的时间相同,两人每天共做140个零件,设甲每天做x个零件,根据题意,可列方程为()A.B.C.D.二、填空题7.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.8.若分式的值等于0,则y= .9.分式,的最简公分母是.10.甲、乙两个港口之间的海上行程为s km,一艘轮船以a km/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.三、解答题(第11,12题每题10分,第13题16分,第14题14分,共50分)11.化简下列各式:(1)﹣x﹣2;(2)(﹣)•÷(+).12.化简,求值:•﹣(+1),其中x=﹣.13.解下列方程(1);(2).14.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.《第15章分式》参考答案与试题解析一、选择题1.在,,,,中,分式的个数为()A.2 B.3 C.4 D.5【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,的分母中均不含有字母,因此它们是整式,而不是分式.,的分母中含有字母,因此是分式.故选:A.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍 B.不变 C.缩小3倍 D.扩大2倍【考点】分式的基本性质.【分析】依题意,分别用3x和3y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用3x和3y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选B.【点评】解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.下列各分式中,最简分式是()A.B.C.D.【考点】最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.4.下列等式成立的是()A.(﹣3)2=﹣9 B.(﹣3)﹣2=C.(a﹣12)2=a14D.(﹣a﹣1b﹣3)﹣2=﹣a2b6【考点】幂的乘方与积的乘方;负整数指数幂.【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【解答】解:A、(﹣3)2=9≠﹣9,本选项错误;B、(﹣3)﹣2=,本选项正确;C、(a﹣12)2=a﹣24≠a14,本选项错误;D、(﹣a﹣1b﹣3)﹣2=a2b6≠﹣a2b6,本选项错误.故选B.【点评】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则.5.若xy=x﹣y≠0,则分式=()A.B.y﹣x C.1 D.﹣1【考点】分式的加减法.【专题】计算题.【分析】异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.【解答】解:原式=.故选C.【点评】本题主要考查异分母分式的加减运算,通分是解题的关键.6.已知甲做360个零件与乙做480个零件所用的时间相同,两人每天共做140个零件,设甲每天做x个零件,根据题意,可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设甲每天做x个零件,根据甲做360个零件与乙做480个零件所用的时间相同,列出方程即可.【解答】解:设甲每天做x个零件,根据题意得:=;故选A.【点评】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.二、填空题7.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.若分式的值等于0,则y= ﹣5 .【考点】分式的值为零的条件;绝对值.【专题】计算题.【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【解答】解:若分式的值等于0,则|y|﹣5=0,y=±5.又∵5﹣y≠0,y≠5,∴y=﹣5.若分式的值等于0,则y=﹣5.故答案为﹣5.【点评】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.9.分式,的最简公分母是12x2y3.【考点】最简公分母.【分析】取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母即为最简公分母.【解答】解:故答案为:12x2y3【点评】本题考查最简公分母,属于基础题型.10.甲、乙两个港口之间的海上行程为s km,一艘轮船以a km/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.【考点】列代数式.【分析】用航行的路程除以逆水航行的速度即可得到时间.【解答】解:∵甲港顺水以akm/h的航速航行到乙港,已知水流的速度为xkm/h,∴逆水航行的速度为(a﹣2x)km/h,∴返回时的时间为: h.故答案是:.【点评】本题考查了列代数式的知识,熟练掌握顺水速度、逆水速度、静水速度、水流速度之间的关系是解题的关键.三、解答题(第11,12题每题10分,第13题16分,第14题14分,共50分)11.化简下列各式:(1)﹣x﹣2;(2)(﹣)•÷(+).【考点】分式的混合运算.【分析】利用分式的性质即可求出答案.【解答】解:(1)原式=﹣==(2)原式=×÷=×=【点评】本题考查分式的混合运算,涉及分式的基本性质,属于基础题型.12.化简,求值:•﹣(+1),其中x=﹣.【考点】分式的化简求值.【分析】首先把分式按照运算顺序化简,进一步代入求得数值即可.【解答】解:原式=﹣=﹣=;当x=﹣时,原式==﹣.【点评】此题考查分式的化简求值,注意先化简,再进一步代入求值.13.解下列方程(1);(2).【考点】解分式方程.【专题】计算题;转化思想.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】(1)解:两边同乘x﹣2,得:3+x=﹣2(x﹣2),去括号得:3+x=﹣2x+4,移项合并得:3x=1,解得:x=,经检验,x=是原方程的解;(2)两边同乘(x﹣1)(x+1),得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验,x=1是原方程的增根,则原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动47m所用时间相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,根据时间相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x m/s,由题意得, =,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般.word版数学11 / 11。
人教版数学 八年级上册第15章 分式 测试卷(3)(含答案解析)

第15章分式测试卷(3)一、选择题1.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D.+=202.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=3.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+204.岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.=B.=C.=D.=5.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A 类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.= C.=D.=7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A.=15% B.=15% C.90﹣x=15% D.x=90×15%8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A.+=2 B.﹣=2C.+=D.﹣=10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.12.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=313.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=14.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1 B.=1 C.=1 D.=115.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=16.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A.=×2 B.=﹣35C.﹣=35 D.﹣=3517.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题18.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.19.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为.20.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x 千米/时,根据题意可列方程为.21.若分式方程﹣=2有增根,则这个增根是.22.若关于x的方程﹣1=0有增根,则a的值为.23.分式方程的解是.24.解方程:﹣1=,则方程的解是.25.分式方程=3的解是.26.分式方程的解x=.27.分式方程=的解为.三、解答题28.人教版教科书对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程﹣=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.29.解分式方程:.30.解方程组和分式方程:(1)(2).参考答案与试题解析一、选择题1.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D.+=20【考点】由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.2.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.【解答】解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x ﹣5)个,由题意得,=,故选B.【点评】本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.3.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20【考点】由实际问题抽象出分式方程.【分析】表示出汽车的速度,然后根据汽车行驶的时间等于骑车行驶的时间减去时间差列方程即可.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,=+.故选C.【点评】本题考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解题的关键.4.岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得:=,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.5.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A 类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.【解答】解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得,=,故选:C.【点评】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.= C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A.=15% B.=15% C.90﹣x=15% D.x=90×15%【考点】由实际问题抽象出分式方程.【分析】设这种玩具的成本价为x元,根据每件售价90元,可获利15%,可列方程求解.【解答】解:设这种玩具的成本价为x元,根据题意得=15%.故选A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数,根据利润率=(售价﹣成本)÷成本列方程.8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.【解答】解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选:A.【点评】本题考查了分式方程的增根,关于增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程,检验是否符合题意.9.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A.+=2 B.﹣=2C.+=D.﹣=【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程.【解答】解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得,=.故选:B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.【解答】解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,由题意得,=.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.14.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1 B.=1 C.=1 D.=1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.15.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据题意设出未知数,根据甲所用时间=乙所用时间列出分式方程即可.【解答】解:设甲每天完成x个零件,则乙每天完成(x﹣4)个,由题意得,=,故选:A.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.16.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A.=×2 B.=﹣35C.﹣=35 D.﹣=35【考点】由实际问题抽象出分式方程.【分析】设出未知数,根据客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,列出方程即可.【解答】解:设该客车由高速公路从甲地到乙地所需时间为x小时,那么由普通公路从甲地到乙地所需时间为2x,由题意得,﹣=35,故选:D.【点评】本题考查的是列分式方程解应用题,正确设出未知数、找出合适的等量关系是解题的关键.17.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题18.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.【解答】解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.19.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为=.【考点】由实际问题抽象出分式方程.【分析】设小芳每小时做x个零件,则小明每小时做(x+20)个零件,根据小明做220个零件与小芳做180个零件所用的时间相同,列方程即可.【解答】解:设小芳每小时做x个零件,则小明每小时做(x+20)个零件,由题意得,=.故答案为:=.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.20.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为﹣=.【考点】由实际问题抽象出分式方程.【分析】设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,根据骑摩托车走完全程可比骑自行车少用小时,列方程即可.【解答】解:设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,由题意得,﹣=.故答案为:﹣=.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.若分式方程﹣=2有增根,则这个增根是x=1.【考点】分式方程的增根.【专题】计算题.【分析】根据分式方程有增根,让最简公分母为0确定增根,得到x﹣1=0,求出x的值.【解答】解:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.22.若关于x的方程﹣1=0有增根,则a的值为﹣1.【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,得a=﹣1.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.23.分式方程的解是x=2.【考点】解分式方程.【专题】计算题.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程得到解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣1=3(x﹣1),去括号得:2x﹣1=3x﹣3,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.解方程:﹣1=,则方程的解是x=﹣.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣x+2=﹣3,解得:x=﹣,经检验是分式方程的解.故答案为:x=﹣.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.25.分式方程=3的解是x=3.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。
人教版八年级数学上册第十五章分式测试题(附答案)

人教版八年级数学上册第十五章分式测试题(附答案)一、单选题(共12题;共24分)1.当分式的值为0时,x的值是()A. 0B. 1C. -1D. -22.若分式有意义,则x满足的条件是()A. B. C. D.3.某校九年级学生从学校出发,到相距8千米的科技馆参观,第一组学生骑自行车先走,过了20分钟,第二组学生乘汽车出发,结果两组学生同学同时到达科技馆,已知第二组学生的速度是第一组学生速度的2倍,设第一组学生的速度为x千米/时,下面所列方程正确的是()A. ﹣=B. =20C. ﹣=D. =204.若分式的值为零,则x的值为()A. 3B. 3或﹣3C. 0D. -35.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. +=9B.C. +4=9D.6.关于x的方程=1的解是正数,则a的取值范围是()A. a>-1B. a>-1且a≠0C. a<-1D. a<-1且a≠-27.某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m,则根据题意可列方程为()A. ﹣=2B. ﹣=2C. ﹣=2D. ﹣=28.已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程正确的是()A. B. C. D.9.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A. B. C. D.10.化简:=()A. 0B. 1C. xD.11.用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。
2022年新人教版初中八年级数学上册第15章《分式》学习质量检测卷(附参考答案)

2022年新人教版初中八年级数学上册 第15章《分式》学习质量检测卷时间:90分钟 满分:100分班级__________姓名__________得分__________一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•宾阳县期中)我国自主研发的北斗三号新信号22纳米工艺射频基带一体化导航定位芯片已实现规模化应用.已知22纳米=0.000000022米,数据0.000000022用科学记数法表示为( ) A .2.2×108B .2.2×10﹣8C .0.22×10﹣7D .22×10﹣9 2.(3分)(2022秋•安乡县期中)在式子1x−2,3xy π,−2ab 2c 3,2xy 中,分式的个数是( ) A .1个B .2个C .3个D .4个3.(3分)(2022•恩施市模拟)已知关于x 的分式方程1−mx−1−2=21−x 的解是非负数,则m 的取值范围是( ) A .m ≤5且m ≠﹣3 B .m ≥5且m ≠﹣3 C .m ≤5且m≠3D .m ≥5且m ≠34.(3分)(2021•黑龙江模拟)若关于x 的分式方程xx−3=1+mx−29−x 2无解,则m的值为( ) A .﹣3或−163 B .−163或−23 C .﹣3或−163或−23D .﹣3或−235.(3分)(2021•和平区二模)计算3x+1−3xx+1的结果为( ) A .3B .﹣3C .3−3xx+1D .3x−3x+16.(3分)(2021春•吴兴区期末)现有一列数:a 1,a 2,a 3,a 4,…,a n ﹣1,a n(n 为正整数),规定a 1=2,a 2﹣a 1=4,a 3﹣a 2=6,…,a n ﹣a n ﹣1=2n (n ≥2),若1a 2+1a 3+1a 4⋯1a n=97198,则n 的值为( )A .97B .98C .99D .1007.(3分)(2021•北碚区校级模拟)若数m 使关于x 的不等式组{2−x 3≤2+xx <m3有解且至多有3个整数解,且使关于x 的分式方程mx−2x−1+31−x =2有整数解,则满足条件的所有整数m 的个数是( ) A .5B .4C .3D .28.(3分)(2021•澧县模拟)若数a 使关于x 的不等式组{x−52+1≤x+135x −2a >2x +a至少有五个整数解,关于y 的分式方程a−3y−1−21−y=2有非负整数解,则满足条件的所有整数a 之和是( ) A .15B .14C .8D .79.(3分)(2020秋•云阳县期末)若关于x 的不等式组{x −3(x −2)>−2a+x 2<x 有解,关于y 的分式方程ay−14−y +3y−4=−2有整数解,则符合条件的所有整数a 的和为( ) A .0B .1C .2D .510.(3分)(2020•汉阳区校级自主招生)已知abc =1,a +b +c =2,a 2+b 2+c 2=3,则1ab+c−1+1bc+a−1+1ca+b−1的值为( ) A .﹣1B .−12C .2D .−2311.(3分)(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( ) A .1316小时B .1312小时C .1416小时D .1412小时12.(3分)(2022秋•沙坪坝区校级期中)若整数a 使关于y 的不等式组{2y−53≤y−13a−y+3≥0至少有3个整数解,且使得关于x的分式方程3x(x−1)−a1−x=2x的解为正数,则所有符合条件的整数a的和为()A.﹣6B.﹣9C.﹣11D.﹣14二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•张店区校级月考)关于x的分式方程mx−3−23−x=1无解,则m的值14.(3分)(2022秋•旌阳区校级月考)若a+b=√5,则a4+a2b2+b4a2+ab+b2+3ab=.15.(3分)(2022秋•岳阳楼区月考)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际每天施工多少平方米?设原计划平均每天施工x平方米,则可列出方程为.16.(3分)(2022春•封丘县期中)受疫情的影响,“84”消毒液需求量猛增,某商场用4000元购进一批“84”消毒液后,供不应求,商场又用6750元购进第二批这种消毒液,所购的瓶数是第一批瓶数的 1.5倍,但每瓶单价贵了1元;则该商场第一批购进“84”消毒液每瓶的单价为元17.(3分)(2022春•济阳区期末)若x+1y =1,y+1z=1,则xyz=.18.(3分)(2022春•双流区期末)若关于x的分式方程上1x =x+2kx(x−1)−6x−1有正根,则k的取值范围为.三、解答题(共7小题,满分66分)19.(9分)(2022秋•门头沟区校级期中)先化简,再求值(1+y2x2−y2)⋅x−yx,其中xy=3.20.(9分)(2022秋•港南区期中)(1)计算:(﹣1)2020﹣(﹣3)+(7﹣π)0+(−12)﹣1;(2)解方程:xx−1−2=2x−1.21.(9分)(2022秋•文登区期中)先化简(x+2x2−2x −x−1x2−4x+4)÷x+2x3−4x,然后从2,0,﹣1三个数中选一个你喜欢的数代入求值.22.(9分)(2022秋•淅川县期中)阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=2,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x−1x =3,求x2+1x2的值.23.(9分)(2022秋•青州市期中)如图,小琪的作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x+3. (1)求被墨水污染的部分;(2)该题化简的结果1x+3能等于17吗?为什么?24.(10分)(2022秋•北碚区校级期中)为了尽快建一条全长11000米的道路,安排甲乙两队合作完成任务,最终乙队所修的道路比甲队所修的道路的两倍少1000米.(1)甲乙两队各修道路多少米?(2)实际修建过程中,乙队每天比甲队多20米,最终乙队完成任务时间是甲队完成任务时间的54倍,乙队每天修建道路多少米?25.(11分)(2022秋•朝阳区校级期中)先阅读下列解法,再解答后面的问题. 已知3x−4(x−1)(x−2)=Ax−1+Bx−2,求A 、B 的值.解法一:将等号右边通分,再去分母,得:3x ﹣4=A (x ﹣2)+B (x ﹣1), 即:3x ﹣4=(A +B ) x ﹣(2A +B ), 由多项式相等的意义可知, ∴{A +B =32A +B =4. 解得{A =1B =2.解法二:在已知等式中取x =0,有﹣A +B−2=−2,整理得2A +B =4; 取x =3,有A2+B =52,整理得A +2B =5. 解{2A +B =4A +2B =5, 得:{A =1B =2.(1)已知2(x−1)(x+1)=Ax−1+Bx+1,用上面的解法一或解法二求A 、B 的值.(2)①计算:[2(x−1)(x+1)+2(x+1)(x+3)+2(x+3)(x+5)+⋯+2(x+9)(x+11)](x +11);②直接写出使①中式子的值为正整数的所有整数x 的值之和.参考答案一、选择题(共12小题,满分36分,每小题3分)1.B ; 2.B ; 3.C ; 4.C ; 5.C ; 6.B ; 7.C ; 8.D ; 9.B ; 10.D ; 11.C ; 12.C ;二、填空题(共6小题,满分18分,每小题3分) 13.﹣2 14.5 15.33000x−330001.2x=1116.8 17.﹣118.k >−12且k ≠52;三、解答题(共7小题,满分66分) 19.解:原式=(x 2−y 2x 2−y 2+y 2x 2−y 2)•x−y x=x 2(x+y)(x−y)•x−y x=xx+y , ∵x y =3, ∴x =3y ,∴原式=3y3y+y =34. 20.解:(1)原式=1+3+1﹣2 =3;(2)去分母得:x ﹣2(x ﹣1)=2, 解得:x =0,检验:当x =0时,x ﹣1≠0, ∴原分式方程的解为x =0. 21.解:(x+2x 2−2x −x−1x 2−4x+4)÷x+2x 3−4x =[x+2x(x−2)−x−1(x−2)2]•x(x+2)(x−2)x+2=(x+2)(x−2)−x(x−1)x(x−2)2•x (x ﹣2)=x 2−4−x 2+xx−2=x−4x−2,∵x=2或0时,原分式无意义,∴x=﹣1,当x=﹣1时,原式=−1−4−1−2=53.22.解:(1)∵ab=2,∴(2a3b2﹣3a2b+4a)•(﹣2b)=﹣4a3b3+6a2b2﹣8ab=﹣4•(ab)3+6•(ab)2﹣8ab=﹣4×23+6×22﹣8×2=﹣4×8+6×4﹣8×2=﹣32+24﹣16=﹣24;(2)∵x−1x=3,∴x2+1x2=(x−1x)2+2=32+2=9+2=11.23.解:(1)设被墨水污染的部分是A,由题意得:x−4x2−9÷Ax−3=1x+3,x−4 (x+3)(x−3)⋅x−3A=1x+3,x−4A=1,解得:A=x﹣4;故被墨水污染的部分为x﹣4;(2)解:不能,理由如下:若1x+3=17,则x =4,由分式,x−4x 2−9÷x−4x−3=x−4x 2−9•x−3x−4, 当x =4时,原分式无意义, 所以不能.24.解:(1)设甲队修道路x 米,则乙队修道路(2x ﹣1000)米, 由题意得:x +2x ﹣1000=11000, 解得:x =4000, 则2x ﹣1000=7000,答:甲队修道路4000米,乙队修道路7000米;(2)乙队每天修建道路y 米,则甲队每天修建道路(x ﹣20)米, 由题意得:7000x =4000x−20×54,解得:x =70,经检验,x =70是原方程的解,且符合题意, 答:乙队每天修建道路70米.25.解:(1)等号右边通分、再去分母,得:2=A (x +1)+B (x ﹣1), 即2=(A +B )x +(A ﹣B ), ∴{A +B =0A −B =2, 解得:{A =1B =−1;(2)①原式=(1x−1−1x+1+1x+1−1x+3+1x+3−1x+5+⋯+1x+9−1x+11)(x +11) =(1x−1−1x+11)(x +11) =12(x−1)(x+11)•(x +11) =12x−1;②∵式子的值为正整数, ∴x ﹣1=1、2、3、4、6、12, 则x =2、3、4、5、7、13, ∴2+3+4+5+7+13=34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
第十五章《分式》单元测试
考试时间:60分钟 总分:100 班别: 姓名:___________ 一、填空题(每题3分,共30分) 1.利用分式的基本性质填空:())0(10 53≠=a axy
xy a 2.以下分式12x ,212y ,15xy
-的最简公分母为 3.分式方程1
111112-=+--x x x 去分母时,两边都乘以 . 4.1纳米=0.000000001米,则2纳米用科学记数法表示为 米; 5.计算:ab
b a b ab -÷
-)(2= . 6.当x ________时,分式x x 2121-+有意义. 7.有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式
有意义时的取值范围是x ≠±1;丙:当x= —2时,分式的值为1.请你写出满足上述全部特点的一个分式: .
8.已知,则222
n m m n m n n m m ---++________.
9.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,问原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.
10.代数式11
x -有意义时,x 应满足的条件是_____________. 二、选择题(每题3分,共24分)
11.下列各式中,分式的个数为( )
3x y -,21a x -,,3a b -,12x y +,12x y +,2123
x x =-+.
A.5
B.4
C.3
D.2 .
12.把分式b
a a +2中a 、
b 都扩大2倍,则分式的值( ) A 、扩大4倍 B 、扩大2倍
C 、缩小2倍
D 、不变 13.能使分式1
22--x x x 的值为零的所有x 的值是( ) A 、 0=x B 、1=x C 、0=x 或1=x D 、0=x 或1±=x
14.化简1x x y x
÷⋅的结果是( ) A 、 1 B 、 xy C 、 x
y D 、 y x 15.一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。
A 、b a 11+
B 、ab 1
C 、b a +1
D 、b
a a
b + 16.与分式
b
a b a --+-相等的是( ) A.b a b a -+ B.b a b a +- C.b a b a -+- D.b
a b a +-- 17.分式方程214111
x x x +-=--若有增根,则增根可能是( ) A .1 B .1- C .1或1- D .0 18.若三角形三边分别为a 、b 、c ,且分式c
a b bc ac ab --+-2
值为0,则此三角形一定是( ) A. 不等边三角形 B. 腰与底边不等的等腰三角形
C. 等边三角形
D. 直角三角形
三、解答题(共46分)
19.计算:(每题8分,共16分)
(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2) 2
22246⎪⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y
20.解分式方程:(每题8分,共16分)
(1)87176=-+--x
x x (2) 132543297=-----x x x x
21.(本题14分)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价.
第十五章《分式》参考答案
一、填空题: (每题3分,共30分)
1.6a 2 2. 10xy 2 3.21x - 4.-9210⨯ 5.2ab
6.12≠ 7.231x - 8.222n m n - 9.420960960=+-x x
10.1x ≠±. 二、选择题: (每题3分,共24分)
11 C 12 D 13 A 14 C 15 D 16 B 17 C 18 B
三、解答题:(共46分)
19.(1)1 (2)22
49x y 20、(1)8x = (2) 1x =
21.解:设第一批盒装花的进价是x 元/盒,则
2×
x 000 3= 5000 5-x
解得 x =30. 经检验,x =30是原分式方程的根.
答:第一批盒装花每盒的进价是30元.。