一种新型光伏并网逆变器控制策略

合集下载

光伏并网逆变器的控制策略研究

光伏并网逆变器的控制策略研究

光伏并网逆变器的控制策略研究光伏并网逆变器是将光伏发电系统产生的直流电转换为交流电并与电网进行连接的设备。

其控制策略的研究对于提高光伏发电系统的发电效率、稳定性和可靠性具有重要意义。

本文将从控制策略的目标、常见的控制策略以及研究中面临的挑战等方面进行综述。

光伏并网逆变器的控制策略的主要目标是实现光伏发电系统与电网之间的安全、稳定地交流功率传输。

为了达到这个目标,控制策略需要同时考虑逆变器的功率输出、电网的频率与电压以及光伏阵列的最大功率点追踪等多个因素。

常见的光伏并网逆变器的控制策略有以下几种:1.基于传统的电压与频率控制策略:该控制策略通过通过调整逆变器的输出电压与频率来实现光伏发电与电网的匹配。

这种控制策略简单直观,但对于电网电压与频率的变化较为敏感,在不稳定的电网条件下可能会导致逆变器输出功率的波动。

2.基于功率调节的控制策略:通过监测逆变器的输出功率与光伏阵列的实际发电功率之间的差异,并调整逆变器的输出电压与频率来实现功率的匹配。

这种控制策略能够实时跟踪光伏阵列的最大功率点,并能够更好地适应电网的变化。

3.基于自适应控制的策略:该控制策略通过建立逆变器与光伏阵列、电网之间的模型,实时调整控制参数以适应系统的变化。

这种控制策略能够提高系统的响应速度与稳定性,但对于逆变器与光伏阵列、电网之间的模型的准确性要求较高。

光伏并网逆变器的控制策略研究面临着一些挑战。

首先,光伏发电系统与电网之间存在的互动关系较为复杂,因此需要建立准确的数学模型进行研究。

其次,光伏发电的输出功率受天气、光照等因素的影响较大,因此对于最大功率点的追踪需要应对这些不确定性。

此外,光伏发电系统的规模不断扩大,需要研究大规模光伏并网逆变器的控制策略。

最后,光伏发电系统与电网之间的交流功率传输需要满足一定的安全性与稳定性要求,因此需要开展相关的安全性与稳定性分析。

在光伏并网逆变器的控制策略研究中,可以采用理论分析、仿真实验以及实际系统的测试等方法进行。

一种光伏并网逆变器的混合控制策略研究

一种光伏并网逆变器的混合控制策略研究
略 是 可 行 的
关键词 : 光伏并 网; 逆 变器; 自抗扰 控 制 ; 无源控制 ; 解 耦 中图 分 类 号 : T M 4 6 4 文献标志码 : A 文章 编 号 : 2 0 9 5 一 - 2 8 0 5 ( 2 0 1 3 ) 0 5 一 O 0 6 2 — 0 7
引 言
尖人才培育计划项 目( C I T & T C D 2 0 1 3 0 1 4l 】 1 ) ; 北 京 市 高 校
臂导通 , 下桥臂关断 , S : O时 , 上 桥臂 关 断 , 下 桥 臂 导通 。 L为输 出 电抗 器 , R 为 电阻与 逆变 系统 内 阻等
效 电阻 . /  ̄ d c 为 直 流侧 母 线 电压 , i 为光 伏 阵 列 所 提
策 略 进 行 电流 解 耦 控 制 的光 伏 并 网逆 变 器 控 制 策
略 仿真 和 实验 结 果 表 明 , 基 于 自抗 扰 和无 源控 制 的光伏 逆变 器控 制策 略是 可行 的。
定; 二 要 实 现并 网 电 流控 制 ( 网侧 单 位 功 率 因数 正
弦波 电流 控制 ) Ⅲ 。逆变 器控 制策 略多 采用 双 闭环控 制控制策略l 2 - 6 1 , 文献『 2 , 4 1 电压 外 环 采 用 P I 控 制 策 略。 由于并 网逆 变器 直 流侧 电压受 环 境 和光 照 强 度 的影 响 , 直流 侧 电压 存 在 超 调 、 响 应 时 间 慢 。 文 献 『 5 , 6 】 提 出 了 电压外 环采 用 自抗 扰 技 术 的控 制策 略 , 由于 采用 二 阶 自抗 扰模 型 , 可 调参 数 多 , 难 以实现 ; 电流 内环采 用 P I 反馈 解耦 ,虽 然也 能实 现解 耦 . 由 于前 反 馈 本 身 是 一 种 削弱 耦 合 的补 偿 控 制 并 且 解 耦 的性 能取 决 于 系统 参数 , 无法 实 现真 正 的解 耦 l 1 】 。 文 献『 7 , 8 1 采 用无 源控 制理 论 对 对 逆 变器 进 行 解 耦 单 级式 光伏 并 网逆变 器 拓 扑结 构 如 图 1 所示 。 由图 1光 伏并 网逆 变器 拓 扑结 构 可 知 , 在 三相 平 衡 电网 电压情况 下 ,光伏 并 网逆 变器 在 三相 a b c坐标 系 中 的数学模 型 为【 7 J

具有精确非线性补偿的三相光伏并网逆变器滑模变结构控制策略

具有精确非线性补偿的三相光伏并网逆变器滑模变结构控制策略
第 4期
2 0 1 3年 7月




No. 4
J o u r na l o f Po we r Su p p l y
J u l y . 2 01 3
具有精确非线性补偿 的三相光伏并 网逆变器 滑模变结构控制策略
黄 庆 义 , 段 启迪 , 郝 翔。 , 黄 浪。 , 刘 韬。 , 谢 瑞 良
死 区效应 和开关延 时引入 的非线性 进行精 确补偿【 垌 。
本 文分 析 了 由死 区效 应 和 开 关 延 时 等 非 线 性 影 响造 成 的逆变 器 输 出 电压失 真 , 并 建 立 了相 应 的 非 线性 效应模 型 。最 终根 据该 系统模 型 提 出了并 网 电流 的离散 积分 滑模 变结 构控制 策 略 。该 新 型控制
压扰 动 , 但是 其动态 性能较差 [ 5 - 6 1 ; 。无差拍 控制[ 7 1 虽 然
动 的强 鲁 棒性 和 零稳 态 误差 。此外 , 与不 具 有非 线 性 补偿 的滑模 控 制相 比 , 所 提 控制 策 略 能够 有效 地 减小 并 网 电流的 总谐波 失 真 。
有 良好 的稳 态和动态 性能 , 但 是对 系统参数 敏感 。 近 年来 , 由 于滑模 变 结 构控 制 算 法 优 良的动 态 性能 . 强 鲁 棒 性 和 低 谐 波 失 真 的特 点 , 被 广 泛 地 实 三 相光 伏并 网逆 变器 的 拓扑 结 构 如 图 1所示 。
鲁 棒 性 强 以及 优 良的 电 流谐 波抑 制 能 力 。
关键词 : 光伏逆 变器; 离散 积 分 滑模 控 制 ; 非 线 性 补偿 ; 总谐波失真 ; 动 态响 应 ; 强鲁 棒 性

光伏电站并网逆变器功率控制

光伏电站并网逆变器功率控制

光伏电站并网逆变器功率控制光伏电站并网逆变器功率控制是光伏发电系统中一个重要的技术环节。

它的作用是将太阳能光伏板所产生的直流电转换为交流电,并输出到电网中供用户使用。

在光伏电站中,逆变器是一个核心设备,它具有功率控制的功能,能够根据光伏板的输出功率、电网的负荷情况以及系统的安全性要求等因素,动态地调整逆变器的功率输出,以保证系统的运行稳定和安全。

本文将对光伏电站并网逆变器功率控制的原理和方法进行探讨。

一、光伏电站的运行原理在光伏电站中,光伏板接收太阳能辐射,将太阳能转化为电能。

由于光伏板的输出是直流电,而电网需要的是交流电,因此需要使用逆变器将直流电转换为交流电,并将其输出到电网中。

光伏电站的运行非常依赖于光照强度和太阳的角度。

当太阳照射光伏板时,光子会与光伏板上的半导体材料发生光电效应,产生电子-空穴对。

通过将这些电子-空穴对引导到电池片中,就可以形成电流。

这就是光伏板产生电能的基本原理。

二、光伏电站并网逆变器功率控制的意义光伏电站并网逆变器功率控制在光伏发电系统中具有重要的意义。

它能够根据光伏板的输出功率和电网的负荷情况,动态地调整逆变器的功率输出。

这样可以确保光伏电站对电网的稳定供电,并能够将多余的电能注入到电网中。

另外,光伏电站并网逆变器功率控制还能够提高系统的安全性,避免超载和故障等问题的发生。

三、光伏电站并网逆变器功率控制的方法光伏电站并网逆变器功率控制的方法主要包括响应式功率控制和主动功率控制两种。

响应式功率控制是根据电网电压和频率的变化来调节逆变器的输出功率。

当电网电压或频率发生变化时,逆变器能够根据这些变化自动调整输出功率,以保证光伏电站对电网的稳定供电。

这种方法的优点是实现简单、成本低,但其响应速度相对较慢。

主动功率控制是通过控制逆变器的工作方式和输出功率,来实现对光伏电站的功率控制。

在这种方法中,逆变器可以通过监测光伏板的输出功率和电网的负荷情况,来动态地调整逆变器的功率输出。

光伏并网逆变器控制策略与研究

光伏并网逆变器控制策略与研究

光伏并网逆变器控制策略与研究摘要】:能源危机和环境问题是世界各国普遍关注的话题,开发和利用可再生能源在各国能源战略中的地位越来越高。

随着科学技术的发展,光伏发电已经成为一种解决未来能源短缺及环境污染的主要方式。

本文介绍了光伏并网逆变器的拓扑结构,分析了逆变器的控制策略及电流控制技术。

【关键词】:光伏并网逆变器,控制策略,电流控制引言鉴于光伏发电具有间歇性和波动性的特点,随着光伏发电的应用愈来愈广泛、光伏发电并网规模愈来愈大,对电网的稳定运行也带来了愈来愈多的挑战。

并网逆变器是光伏阵列与电网进行电能交互的关键部分,负责将光伏板输出的直流电逆变为符合相关并网要求的交流电并入电网,与电力系统实现安全高效、稳定灵活的互联。

本文基于二极管钳位型三电平光伏逆变器,分析了光伏并网逆变器的控制策略及电流控制技术。

1、光伏并网逆变器的拓扑结构逆变器是光伏并网发电系统的核心部分,决定着整个并网系统的工作性能。

根据光伏阵列输出功率的转换级数可将光伏并网逆变器分为单级式及两级式。

单级式光伏并网逆变器是指将光伏阵列的输出直接通过光伏并网逆变器完成功率直一交的转换,并且由并网逆变器本身实现光伏阵列的最大功率跟踪(Maximum Power Point Tracking, MPPT),但单级式对光伏阵列输出电压大小要求较高。

并网逆变器只有满足一定的启动电压才能正常工作,一般通过多块太阳能电池板串联以满足光伏并网逆变器启动工作的直流母线电压要求。

两级式是在光伏逆变器前增加了一个DC/DC升压环节,用于解决单级式光伏阵列输出电压大小不满足并网逆变器直流母线电压幅值要求的问题。

且一般是采用Boost升压电路,其最关键的是可以在完成升压的同时通过阻抗匹配的原理实现MPPT功能。

光伏并网主要由光伏阵列、Boost升压模块、三电平光伏并网逆变器、系统控制器、锁相环和滤波环节组成。

系统工作原理:太阳能经过光伏阵列转换为直流电压,Boost升压模块将直流电压调节到逆变器直流母线电压幅值要求,从而使逆变器输出的电流满足与电网电压同频同相的要求,即将有功电流注入电网。

分布式光伏发电系统的并网型逆变器设计与控制

分布式光伏发电系统的并网型逆变器设计与控制

分布式光伏发电系统的并网型逆变器设计与控制摘要:随着可再生能源的快速发展,分布式光伏发电系统成为了一个受到广泛关注的领域。

在分布式光伏发电系统中,逆变器的设计与控制是关键的环节之一。

本文将介绍分布式光伏发电系统的基本原理,然后重点讨论并网型逆变器的设计与控制方法。

同时,将探讨当前存在的一些问题,并提出可能的解决方案。

1. 引言分布式光伏发电系统是一种将太阳能转化为电能的系统。

该系统将太阳能电池板转化的直流电能通过逆变器转化为交流电能,并输入到电网中。

逆变器是实现这一转换的核心设备之一。

并网型逆变器允许光伏发电系统与电网之间的双向电能流动。

当光伏发电系统产生的电能超过负载需求时,多余的电能将被输送到电网中,从而实现电能的共享与利用。

然而,为了确保安全稳定地将电能输送到电网中,逆变器的设计与控制变得尤为重要。

2. 分布式光伏发电系统的基本原理分布式光伏发电系统主要由太阳能电池板、逆变器、电网和负载组成。

太阳能电池板将太阳能转化为直流电能,逆变器将直流电能转化为交流电能,然后输入到电网中,最后供给负载使用。

光伏发电系统的工作过程如下:1) 太阳能电池板将太阳光转化为直流电能。

2) 逆变器将直流电能转化为交流电能。

3) 交流电能通过变压器升压之后,输入到电网中。

4) 电网将电能供给给负载使用。

3. 并网型逆变器的设计由于并网型逆变器需要将直流电能转化为交流电能并输入到电网中,因此其设计需要满足以下要求:1) 高效性:逆变器的转换效率应尽可能高,以最大程度地减少能源损耗。

2) 可靠性:逆变器需要具备稳定、可靠的运行能力,以确保电能的安全输送。

3) 控制性能:逆变器需要具备灵活、精确的控制能力,以应对电能输出的要求。

4. 并网型逆变器的控制并网型逆变器的控制包括全局控制和局部控制两个方面。

全局控制主要是通过监测电网的运行状态和负载需求来控制逆变器的电能输出,以实现对电网功率的调节。

局部控制主要是通过反馈控制回路来调整逆变器的输出特性,以保持稳定的输出电压和频率。

光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究1. 引言1.1 研究背景由于光伏发电系统的不稳定性和间歇性,逆变器的控制策略对系统整体性能具有至关重要的影响。

目前,虽然已经有一些传统的控制策略应用于光伏并网逆变器,但仍然存在诸多问题和局限性,如功率波动大、电压失调等。

对光伏并网逆变器控制策略的研究具有重要意义,可以提高系统的运行稳定性和效率,同时也有助于推动清洁能源的发展和应用。

本研究旨在通过对光伏并网逆变器控制策略进行深入探讨和优化设计,以实现系统的高效运行和提高发电效率。

结合实验验证和结果分析,为未来光伏并网逆变器的研究和应用提供参考和指导。

1.2 研究意义光伏并网逆变器是光伏发电系统中的核心设备,其控制策略的优劣直接影响着光伏发电系统的发电效率和运行稳定性。

研究光伏并网逆变器控制策略的意义非常重大。

合理的控制策略可以提高光伏发电系统的发电效率,最大限度地利用光伏板转换太阳能的能力。

通过优化逆变器控制策略,可以降低系统的损耗,提高系统的转换效率,从而提高光伏发电系统的整体发电量。

良好的控制策略可以提高光伏发电系统的稳定性和可靠性。

通过合理的控制策略设计,可以有效地降低系统在运行过程中出现的故障概率,保证系统的长期稳定运行,延长设备的使用寿命,降低系统维护成本。

研究光伏并网逆变器控制策略不仅有利于提高光伏发电系统的发电效率和运行稳定性,还对推动光伏发电技术的发展和应用具有重要的意义。

通过不断深入研究和优化控制策略,可以进一步完善光伏发电系统的性能,促进清洁能源的广泛应用。

1.3 研究现状光伏并网逆变器控制策略的研究现状在不断发展和完善。

目前,随着光伏发电系统规模的不断扩大和技术的不断进步,光伏并网逆变器控制策略也日趋多样化和复杂化。

传统的PI控制、PID控制等控制策略已经在实际应用中得到了广泛的应用,但在一些特定条件下存在着性能不佳,动态响应速度慢等问题。

研究人员开始着眼于改进和优化控制策略,以提高光伏并网逆变器的性能和效率。

光伏并网逆变器电流控制策略的研究

光伏并网逆变器电流控制策略的研究

光伏并网逆变器电流控制策略的研究
光伏并网逆变器电流控制策略是为了实现光伏发电系统与电网之间的
高效能转换和稳定的电能注入而进行的研究。

光伏并网逆变器是将光伏发
电系统输出的直流电能转换为交流电能并注入电网的装置,其电流控制策
略的优化能够提高系统的性能和稳定性。

1.电流控制器的设计:光伏并网逆变器必须能够根据电网的要求控制
输出电流的大小和波形。

传统的电流控制器采用PI控制器或者模糊控制器,但这种控制器在应对光伏输出电流瞬时变化较大的情况下容易产生误差。

因此,当前的研究主要集中在模型预测控制、自适应控制等非线性控
制策略的设计和实现。

2.电流调节策略的研究:为了满足电网对电流波形和功率因数的要求,需要对光伏并网逆变器的电流进行调节。

常见的调节策略有包络控制策略、直接电流控制策略和模糊控制策略等。

这些策略主要通过改变逆变器的控
制参数来实现对电流波形和功率因数的调节。

3.技术经济性的研究:光伏并网逆变器电流控制策略的研究还需要考
虑其对系统的技术经济性的影响。

比如,是否能够降低系统的成本、提高
系统的效率等。

为了实现这些目标,可以利用先进的控制算法和器件设计
来降低系统的能耗,提高系统的效率。

光伏并网逆变器电流控制策略是目前光伏发电系统中一个重要的研究
领域。

通过采用先进的控制策略,可以有效提高光伏并网逆变器的电流控
制性能,实现稳定的电能注入。

同时,可以降低系统运行的成本,提高系
统的技术经济性。

因此,对光伏并网逆变器电流控制策略的研究具有重要
的理论和实际意义。

光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究光伏并网逆变器是将光伏电池阵列输出的直流电转换为交流电,以并网方式接入电网的装置。

其控制策略的研究对于提高光伏发电系统的性能和效率具有重要意义。

本文将从以下几个方面对光伏并网逆变器的控制策略进行研究。

光伏并网逆变器的MPPT算法的研究。

MPPT(Maximum Power Point Tracking)算法用于寻找光伏电池阵列的最大功率点,即使光伏电池的输出功率达到最大。

常用的MPPT算法有Perturb and Observe(P&O)算法、Incremental Conductance(InCond)算法等。

本文可以通过实验和仿真方法比较不同MPPT算法在不同光照条件下的性能,选取最适合的MPPT算法。

光伏并网逆变器的控制策略研究。

光伏并网逆变器的控制策略包括功率控制策略和电压控制策略两种。

功率控制策略是通过调节光伏阵列的输出功率实现对逆变器输出电流的控制。

常用的功率控制策略有PQ(有功无功)控制策略、Pf(功率因数)控制策略等。

电压控制策略是通过调节光伏阵列的电压实现对逆变器输出电流的控制。

常用的电压控制策略有VQ(电压无功)控制策略、Vf(电压频率)控制策略等。

本文可以通过建立逆变器控制模型,比较不同控制策略在不同工况下的性能,选取最优的控制策略。

光伏并网逆变器的防电气干扰策略的研究。

光伏并网逆变器在工作过程中会产生电气干扰,对电网和其他设备造成干扰。

为了提高光伏并网逆变器的电气兼容性,可以采取一些防电气干扰策略,如滤波器的设计和使用、补偿技术的应用等。

本文可以通过实验和仿真方法研究不同防电气干扰策略的效果,选取最适合的防电气干扰策略。

光伏并网逆变器控制策略的研究涉及到光伏电池阵列的MPPT算法、逆变器的功率控制策略和电压控制策略,以及防电气干扰策略的研究。

通过对这些控制策略进行研究,可以提高光伏发电系统的性能和效率,推动光伏发电技术的发展。

并网逆变器控制策略

并网逆变器控制策略

并网逆变器控制策略在光伏发电系统中,逆变器是将直流电转换为交流电的核心设备,起着关键的作用。

并网逆变器作为一种常见的类型,具备将太阳能光伏发电系统产生的直流电能转换为交流电,并将其注入电网的功能。

而并网逆变器的控制策略,则决定了光伏发电系统的工作效率和稳定性。

本文将讨论并网逆变器控制策略的相关问题。

一、传统的在传统的并网逆变器控制策略中,主要采用的是电压源逆变器控制方法。

这种方法通过控制输出电压的幅值和频率,使得逆变器的输出电压与电网电压保持同步,实现无间断地将太阳能发电系统的电能注入电网。

这种控制策略结构简单,控制稳定性较高,但在面对复杂的电网情况时可能存在一些问题。

在电网故障或不稳定的情况下,传统的控制策略可能无法实时调整逆变器的输出电压和频率,导致逆变器无法正常工作。

二、改进的为了提高并网逆变器的工作效率和稳定性,研究者们提出了一系列的改进控制策略。

其中较为常见和有效的策略包括以下几种:1. 频率和电压双闭环控制策略:将传统的电压源逆变器控制策略与频率闭环控制策略相结合,通过控制输出电压和频率的误差信号,调整逆变器的工作参数。

这种策略能够使逆变器在面对电网电压波动和故障时,能够更加灵活地调整输出电压和频率,维持系统稳定运行。

2. 预测控制策略:通过预测电网的电压和频率变化趋势,进行先行控制,使逆变器能够提前调整输出电压和频率,以适应电网变化。

这种策略能够有效降低电网波动对逆变器性能的影响,提高逆变器的稳定性和响应速度。

3. 智能控制策略:利用人工智能和模糊控制等技术,根据电网状态和逆变器工作参数的实时反馈信息,智能地调整逆变器的控制策略。

这种策略能够根据不同的电网情况和工作条件,实时选择最优的控制方式,提高逆变器的工作效率和适应性。

三、并网逆变器控制策略的发展趋势随着太阳能光伏发电技术的不断发展和应用,对并网逆变器的要求越来越高。

未来并网逆变器控制策略的发展趋势主要体现在以下几个方面:1. 多元化控制策略的融合:将传统的控制策略与改进的控制策略相结合,形成更加多元化和灵活的控制方案。

光伏逆变器的并网控制策略研究

光伏逆变器的并网控制策略研究

光伏逆变器的并网控制策略研究光伏逆变器是将太阳能光电转换系统输出的直流电转换成交流电的关键设备。

在光伏发电系统中,光伏逆变器起着重要的作用,它能够将光伏阵列产生的直流电转换成符合电网要求的交流电并注入电网中。

光伏逆变器的并网控制策略是光伏发电系统中一个重要的研究方向。

并网控制策略主要包括功率控制策略、电压控制策略和频率控制策略等。

其中,功率控制策略是光伏逆变器的核心控制策略之一。

功率控制策略是光伏逆变器保持光伏阵列输出功率稳定并满足电网要求的方法。

光伏阵列的输出功率受到太阳辐照度的影响,受到阴影和天气等因素的影响。

因此,光伏逆变器需要根据光伏阵列的实时输出功率来调整自身的运行状态,保持输出功率的稳定。

常见的功率控制策略有最大功率点跟踪(MPPT)控制策略和功率反馈控制策略。

最大功率点跟踪控制策略通过调整光伏阵列的工作点,使得光伏阵列的输出功率达到最大值。

而功率反馈控制策略则通过测量光伏阵列的输出功率,将其与设定的目标功率进行比较,调整逆变器的输出功率使其等于目标功率。

电压控制策略是光伏逆变器保持电网电压稳定的方法。

电网电压稳定对于电力系统的稳定运行至关重要,因此,光伏逆变器需要根据电网的电压变化来调整自身的运行状态,保持电网电压的稳定。

常见的电压控制策略有无功电流注入控制策略和电压敏感无功调节控制策略。

无功电流注入控制策略是指根据电网的功率因数需求,通过调节逆变器的无功电流来维持电网的电压稳定。

而电压敏感无功调节控制策略则是通过测量电网的电压,将其与设定的电压参考值进行比较,调整逆变器的无功输出来维持电网的电压稳定。

频率控制策略是光伏逆变器保持电网频率稳定的方法。

电网频率稳定同样对电力系统的运行具有重要意义。

因此,光伏逆变器需要根据电网的频率变化来调整自身的运行状态,保持电网频率的稳定。

常见的频率控制策略有有功电流注入控制策略和频率敏感有功调节控制策略。

有功电流注入控制策略是指根据电网的频率偏差,通过调节逆变器的有功电流来维持电网的频率稳定。

LCL型单相光伏并网逆变器控制策略的研究

LCL型单相光伏并网逆变器控制策略的研究

LCL型单相光伏并网逆变器控制策略的研究一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的利用和开发受到了越来越多的关注。

其中,太阳能光伏发电作为一种清洁、可再生的能源形式,具有广阔的应用前景。

单相光伏并网逆变器作为太阳能光伏发电系统的核心设备之一,其控制策略的研究对于提高光伏发电系统的效率和稳定性具有重要意义。

本文旨在研究LCL型单相光伏并网逆变器的控制策略,以期在提升逆变器性能、优化系统运行方面取得突破。

本文将介绍LCL型单相光伏并网逆变器的基本结构和工作原理,为后续控制策略的研究奠定基础。

本文将重点分析LCL型逆变器的控制策略,包括最大功率点跟踪(MPPT)控制、并网电流控制、无功功率控制等。

在此基础上,本文将探讨如何通过优化控制策略,提高逆变器的效率和稳定性,实现光伏发电系统的优化运行。

本文还将对LCL型单相光伏并网逆变器的并网电流质量、电网适应性等关键问题进行深入研究。

通过理论分析和实验验证,本文将提出一种有效的控制策略,以提高逆变器的并网电流质量,增强其对电网的适应性。

本文将总结研究成果,并对未来的研究方向进行展望。

通过本文的研究,期望能为LCL型单相光伏并网逆变器的控制策略优化提供理论支持和实践指导,推动光伏发电技术的持续发展。

二、LCL型单相光伏并网逆变器的基本原理LCL型单相光伏并网逆变器是一种高效、可靠的电力转换设备,其核心功能是将光伏电池板产生的直流电能转换为交流电能,并使其与电网的电压和频率同步,从而实现对电网的并网供电。

这种逆变器的主要组成部分包括光伏电池板、直流侧电容、LCL滤波器、功率变换器以及控制系统。

在LCL型单相光伏并网逆变器中,LCL滤波器发挥着至关重要的作用。

它由两个电感(L)和一个电容(C)组成,能够有效地滤除功率变换器产生的谐波,提高并网电流的质量。

LCL滤波器的设计需要综合考虑滤波效果、系统成本以及动态响应能力等因素。

功率变换器是逆变器的核心部件,负责将直流电能转换为交流电能。

新能源并网逆变器控制策略研究综述与展望

新能源并网逆变器控制策略研究综述与展望

新能源并网逆变器控制策略研究综述与展望一、概述随着全球能源结构的转变和新能源技术的快速发展,新能源并网逆变器作为实现可再生能源并网发电的核心设备,其控制策略的研究与应用越来越受到关注。

新能源并网逆变器的主要功能是将光伏、风电等新能源产生的直流电能转换为交流电,并高效稳定地并入电网,以满足日益增长的清洁能源需求。

新能源并网逆变器的控制策略直接关系到其运行效率和稳定性,进而影响到整个新能源发电系统的性能。

传统的并网逆变器控制策略主要基于电压源逆变器控制方法,通过控制输出电压的幅值和频率,使逆变器的输出电压与电网电压保持同步。

随着新能源渗透率的不断提高,电网的复杂性和不确定性也在增加,传统的控制策略已难以满足现代电网的需求。

为此,研究者们提出了一系列改进的控制策略,如频率和电压双闭环控制策略、预测控制策略以及智能控制策略等。

这些策略通过引入先进的控制算法和优化方法,提高了并网逆变器的响应速度和稳定性,使其能够更好地适应复杂的电网环境。

展望未来,新能源并网逆变器的控制策略将继续朝着智能化、高效化和多样化的方向发展。

智能化控制策略将借助人工智能、大数据等技术,实现逆变器的自适应控制和优化运行。

高效化控制策略则通过采用新材料、新技术等手段,提高逆变器的功率密度和系统效率。

同时,随着新能源发电系统的规模化和多样化,控制策略也需要不断创新和完善,以适应各种应用场景和需求。

新能源并网逆变器的控制策略研究对于推动新能源发电技术的发展具有重要意义。

未来,我们需要在深入研究现有控制策略的基础上,不断探索新的控制方法和手段,为实现新能源发电的高效、稳定和安全运行提供有力支持。

1. 新能源并网逆变器的背景和重要性随着全球能源结构的转变和可再生能源的快速发展,新能源并网逆变器在电力系统中扮演着越来越重要的角色。

传统的化石能源日益枯竭,环境污染问题日益严重,这使得各国纷纷将目光投向了可再生能源,如太阳能、风能等。

这些可再生能源具有清洁、无污染、可再生的特点,符合可持续发展的要求。

新型光伏并网逆变器的建模与控制方法

新型光伏并网逆变器的建模与控制方法

新型光伏并网逆变器的建模与控制方法姚乐乐;刘晓悦【摘要】将由对称Z源逆变器和三相对称LCL滤波器组成的光伏并网逆变器作为研究对象,对Z源网络和一相LCL滤波器建立数学模型.将模型参数看作系统参数,模型输入信号的变化看作扰动,根据模型的固有缺陷,结合前期成果,重点研究两种情况的系统改进策略:①系统参数未变化且扰动可测;②系统参数变化或扰动不可测.针对第1种情况,改进时主要采取加入"模拟模块"和"开关切换"的策略;针对第2种情况,改进策略是对系统加入稳定性鲁棒控制器.通过仿真实验验证,结果表明Z源网络和一相LCL滤波器的数学模型正确,在此基础上针对第1种情况采取的改进策略比改进前暂态性能得到提高,稳态性能与原系统一致;针对第2种情况采取的改进策略比改进前稳定性得到提高.%The photovoltaic grid inverter consisting of a symmetric Z source inverter and a three-phase symmetric LCL filter is taken as the study object of this paper,and a mathematical model of the Z source network and LCL one-phase filter is established.The model parameters and the change of input signal are regarded as system parameters and distur?bance,respectively.In light of the model's inherent defects and combined with previous results,the following two sys?tem improvement strategies are studied,i.e.,system parameters without change but with measurable disturbance(Case 1),and system parameters with change or unpredictable disturbance(Case 2).In Case 1,the addition of simulation module and switching are adopted as the improvement strategy.In Case 2,the addition of the stability of robust control?ler is adopted as the improvement strategy.Simulation experiments prove thatthe mathematical model of Z source net?work and one-phase LCL filter is correct,based on which the transient performance is promoted under the improvement strategy in Case 1,together with the steady-state performance that agrees with the original system;moreover,the stable performance under the improvement strategy in Case 2 is also enhanced.【期刊名称】《电力系统及其自动化学报》【年(卷),期】2018(030)005【总页数】13页(P98-110)【关键词】Z源网络;LCL 滤波器;数学模型;模拟模块;稳定性鲁棒控制器【作者】姚乐乐;刘晓悦【作者单位】天津大学电气自动化与信息工程学院,天津 300072;华北理工大学电气工程学院,唐山 063009【正文语种】中文【中图分类】TM464面对传统能源的日益枯竭和环境问题的日益加重,在电力行业中,采用新能源发电已经成为了一个新的方向。

电网电压畸变不平衡情况下三相光伏并网逆变器控制策略

电网电压畸变不平衡情况下三相光伏并网逆变器控制策略

电网电压畸变不平衡情况下三相光伏并网逆变器控制策略一、概述随着全球能源结构的转型和可再生能源的快速发展,光伏发电系统在电力系统中的应用日益广泛。

三相光伏并网逆变器作为光伏发电系统与电网之间的关键接口,其性能直接影响到光伏发电的效率和电网的稳定性。

在实际运行中,电网电压的畸变和不平衡问题普遍存在,这些问题会严重影响逆变器的运行效率和寿命,甚至对电网稳定性造成威胁。

本文旨在研究电网电压畸变不平衡情况下三相光伏并网逆变器的控制策略。

分析了电网电压畸变和不平衡对逆变器性能的具体影响,包括功率损耗、谐波污染和系统稳定性等方面。

综述了当前针对此类问题的控制策略,包括传统的PI控制、矢量控制和现代智能控制方法等。

本文提出了一种新型的综合控制策略,该策略结合了模型预测控制和自适应控制技术,旨在提高逆变器在电网电压畸变不平衡条件下的性能和鲁棒性。

通过仿真和实验验证,本文提出的控制策略在应对电网电压畸变和不平衡方面表现出较高的效率和稳定性,有效提升了三相光伏并网逆变器的运行性能,对于推动光伏发电技术的发展和电网的稳定运行具有重要意义。

这个概述段落提供了文章的整体框架和研究重点,为读者理解后续章节的内容打下了基础。

1. 光伏并网逆变器的重要性光伏并网逆变器在现代可再生能源系统中扮演着至关重要的角色。

随着全球对清洁能源需求的日益增长,光伏技术作为其中的佼佼者,已经得到了广泛的关注和应用。

光伏并网逆变器作为连接光伏电池板和电力系统的桥梁,其性能直接影响到光伏系统的整体效率和稳定性。

光伏并网逆变器能够将光伏电池板产生的直流电能转换为交流电能,从而与电力系统实现无缝对接。

这种转换过程需要高效且稳定,以确保光伏系统能够持续、稳定地向电网输送电能。

光伏并网逆变器的控制策略显得尤为重要。

电网电压畸变和不平衡是电力系统中常见的问题,这些问题可能由多种因素引起,如电力设备的故障、负载的变化等。

当光伏系统接入电网时,如果其并网逆变器不能有效地应对这些问题,可能会导致电能质量的下降,甚至影响到电力系统的稳定性。

光伏并网逆变器M及双闭环控制技术研究

光伏并网逆变器M及双闭环控制技术研究

光伏并网逆变器M及双闭环控制技术研究一、概述随着全球能源危机和环境污染问题的日益严重,可再生能源的开发和利用受到了广泛关注。

光伏发电作为一种清洁、可再生的能源形式,已经成为全球能源转型的重要方向。

光伏并网逆变器作为光伏发电系统的核心设备,其性能直接关系到整个系统的发电效率和电能质量。

对光伏并网逆变器及其控制技术的研究具有重要的现实意义和应用价值。

光伏并网逆变器的主要功能是将光伏电池板产生的直流电能转换为交流电能,并将其并入电网中供用户使用。

在这一过程中,逆变器需要实现最大功率点跟踪(MPPT),以最大化光伏电池板的发电效率同时,还需要保证并网电流的波形质量,减少对电网的污染。

为了实现这些功能,光伏并网逆变器通常采用双闭环控制技术,即外环控制负责调整逆变器的输出功率,内环控制则负责调节并网电流的质量。

目前,光伏并网逆变器的控制技术已经得到了广泛的研究和应用。

随着光伏发电系统规模的扩大和电网对电能质量要求的提高,传统的控制技术已经难以满足实际需求。

研究新型的光伏并网逆变器及其控制技术,提高系统的发电效率和电能质量,是当前光伏领域的重要研究方向。

本文将对光伏并网逆变器及其双闭环控制技术进行深入研究和分析。

介绍光伏并网逆变器的基本原理和结构详细阐述双闭环控制技术的基本原理和实现方法分析现有控制技术存在的问题和不足提出一种新型的光伏并网逆变器及其控制技术,并通过仿真和实验验证其有效性和优越性。

本文的研究成果将为光伏发电系统的优化设计和高效运行提供理论支持和技术指导。

1.1 研究背景与意义随着全球能源结构的转型和可持续发展理念的深入人心,光伏产业作为清洁能源的重要组成部分,正日益受到各国政府和科技界的关注。

光伏并网逆变器作为光伏发电系统的核心设备,其性能直接关系到电能转换效率、系统稳定性及电网接入质量。

研究和优化光伏并网逆变器的控制技术,对于提高光伏发电系统的整体性能、推动光伏产业的健康发展以及实现能源的绿色转型具有重要意义。

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究一、本文概述随着全球对可再生能源需求的持续增长,光伏发电技术因其清洁、可再生、无污染的特性,受到了广泛关注。

光伏并网逆变器作为光伏发电系统的核心设备,其性能直接影响到整个系统的运行效率和电能质量。

传统的光伏并网逆变器通常采用变压器结构,虽然这种结构在一定程度上能够实现电气隔离和电压匹配,但也存在体积大、成本高、效率低等问题。

因此,研究无变压器结构的光伏并网逆变器拓扑及其控制策略,对于提高光伏系统的整体性能、降低成本、推动光伏发电技术的广泛应用具有重要意义。

本文首先介绍了光伏发电系统的基本原理和并网逆变器的功能要求,阐述了无变压器结构光伏并网逆变器的研究背景和必要性。

随后,文章详细介绍了无变压器结构光伏并网逆变器的拓扑结构,包括其基本原理、电路构成以及与传统变压器结构逆变器的区别。

在此基础上,文章重点研究了无变压器结构光伏并网逆变器的控制策略,包括最大功率点跟踪控制、并网电流控制、孤岛效应检测与保护等方面。

通过理论分析和仿真实验,验证了所提控制策略的有效性和优越性。

文章对无变压器结构光伏并网逆变器的应用前景进行了展望,并指出了进一步研究的方向和可能的挑战。

本文的研究成果将为光伏发电技术的发展提供新的思路和方法,有助于推动可再生能源技术的快速发展和应用。

二、无变压器结构光伏并网逆变器拓扑随着可再生能源的日益普及,光伏(PV)技术已成为一种重要的清洁能源解决方案。

光伏并网逆变器是光伏系统的核心组成部分,其设计对于提高系统的效率和可靠性至关重要。

传统的光伏并网逆变器通常采用变压器结构,但近年来,无变压器结构的光伏并网逆变器因其高效率、低成本和紧凑的设计而受到了广泛关注。

无变压器结构光伏并网逆变器拓扑主要基于直接功率转换技术,省去了传统的工频变压器,从而降低了系统的体积和重量。

这种拓扑结构的关键在于使用高效的电力电子开关器件和先进的控制策略,实现直流(DC)到交流(AC)的直接转换。

光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究光伏并网逆变器是将光伏直流发电系统转换为交流电并与电网进行连接的重要设备。

其控制策略的优劣直接影响系统的性能和稳定性。

本文将从光伏并网逆变器控制策略的发展、分类和应用等方面进行研究。

光伏并网逆变器控制策略的发展历程主要经历了传统控制策略、改进控制策略和新型控制策略三个阶段。

传统控制策略主要包括开环控制和闭环控制两种。

开环控制策略简单且成本低,但控制精度较差,不能保证系统的稳定性。

闭环控制策略通过反馈控制来提高系统的稳定性和响应速度,但随着系统复杂度的增加,闭环控制策略的实施成本也增加了。

为了克服传统控制策略的不足,改进控制策略应运而生。

改进控制策略主要采用模糊逻辑控制、神经网络控制和PID控制等方法,提高了系统的控制精度和稳定性。

新型控制策略则是在改进控制策略的基础上,引入了MPPT最大功率点跟踪控制、无功功率控制和谐波抑制控制等技术,进一步提升了系统的性能。

光伏并网逆变器控制策略可按照不同的技术要求进行分类。

根据控制目标可分为功率控制策略和电流控制策略。

功率控制策略主要关注光伏并网逆变器的输出功率与电网的需求功率之间的匹配,以保证系统的稳定性和可靠性。

常见的功率控制策略有PQ控制策略、PV控制策略和I-V控制策略等。

电流控制策略则主要关注光伏并网逆变器输出电流与电网的电流质量要求之间的关系,以保证系统对电网的影响最小化。

常见的电流控制策略有直流电流防护控制、无功功率控制和谐波抑制控制等。

光伏并网逆变器控制策略的应用主要包括分布式发电系统、光伏微电网和光伏智能电网等。

分布式发电系统是将多个光伏并网逆变器连接在一起,通过统一的控制策略实现系统的协调运行。

光伏微电网是将光伏并网逆变器与其他发电设备和储能装置相结合,形成了一个小型的独立供电系统,可以提供可靠的电力供应和能源管理。

光伏智能电网则是将光伏并网逆变器与智能电网技术结合,实现对电网的积极参与和调节,提高电网的可靠性和稳定性。

太阳能光伏逆变器控制策略

太阳能光伏逆变器控制策略

太阳能光伏逆变器控制策略一、太阳能光伏逆变器的结构和工作原理太阳能光伏逆变器是太阳能发电系统中的一个重要组成部分,其主要功能是将光伏电池阵列输出的直流电转换成交流电。

光伏逆变器的结构通常包括直流输入端、逆变电路和交流输出端。

其主要工作原理是通过将太阳能电池板产生的直流电源通过逆变电路中的开关器件转换成交流电源,以满足家用电器、工业设备等交流负载的需求。

太阳能光伏逆变器控制策略主要可以分为开环控制和闭环控制两种。

1. 开环控制开环控制是指在逆变器工作过程中,只对输入信号进行处理,不对输出信号进行监控和调节。

开环控制方法简单,成本低廉,但在实际应用中难以满足复杂的系统要求,且容易受到外部环境和负载变化的影响,稳定性和可靠性较差。

闭环控制是指在逆变器工作过程中,通过对输出电压、电流等参数进行监控和反馈控制,以实现对系统的动态稳定性和动态响应性的控制。

闭环控制方法可以有效提高系统的稳定性和可靠性,但相对来说控制系统复杂度较高,成本也会相应增加。

针对太阳能光伏逆变器的控制策略,可以通过以下几个方面进行优化:1. MPPT最大功率点跟踪光伏逆变器的工作效率与其工作点的选择密切相关,因此最大功率点跟踪(MPPT)技术是提高光伏逆变器整体效率的关键。

在不同的光照条件和温度条件下,光伏电池的工作点会发生变化,因此需要采用合适的MPPT算法来跟踪当前工作点,使得系统能够在不同条件下实现最大输出功率。

2. PWM或者直流开关调制技术在逆变电路中,PWM或者直流开关调制技术能够有效地调控输出交流电压、频率和波形,进而提高系统的输出功率质量和效率。

选择合适的调制技术,并结合合适的控制算法对逆变电路进行稳定控制,可以有效提高光伏逆变器的整体性能。

3. 并网控制策略随着分布式发电系统的不断发展,光伏逆变器的并网性能也变得越来越重要。

针对并网需求,逆变器控制策略必须具备良好的电网跟踪和同步性能,以确保系统能够与电网正常连接并稳定工作。

组串式光伏并网逆变器控制策略研究

组串式光伏并网逆变器控制策略研究

组串式光伏并网逆变器控制策略研究组串式光伏并网逆变器控制策略研究随着能源危机的日益突出,可再生能源的利用成为了世界范围内的关注焦点。

光伏发电作为一种重要的可再生能源技术,由于其可持续、清洁、无噪音等优势而受到了广泛应用。

而组串式光伏并网逆变器作为光伏系统的核心部件,起着将光伏阵列产生的直流电转换成交流电的关键作用。

因此,对组串式光伏并网逆变器的控制策略进行研究,对光伏发电系统的性能提升和效率提高具有重要意义。

首先,组串式光伏并网逆变器的控制策略要考虑光伏阵列的变化特性。

由于光照强度、温度等外界环境因素的变化,光伏阵列的发电功率会有所波动。

为了最大限度地利用光伏阵列的发电能力,可以采用MPPT(Maximum Power Point Tracking)算法来实现对光伏阵列电压和电流的调节。

通过不断追踪光伏阵列的最大功率点,可以使光伏系统的发电效率最大化。

其次,组串式光伏并网逆变器的控制策略还需考虑逆变器的输出电压和频率的稳定性。

在光伏系统并网发电时,逆变器需要将直流电转换成交流电,并按照电网的要求提供稳定的电压和频率。

因此,需要在逆变器中设计合适的控制回路来实现对输出电压和频率的精确控制。

此外,组串式光伏并网逆变器的控制策略还需考虑电网的接受能力。

当光伏系统并网发电时,逆变器需要将电能输送到电网中。

然而,由于电网本身容量的限制,光伏系统的发电功率可能超过电网的承受能力,造成电网的不稳定甚至过载。

因此,需要设计合理的控制策略,使光伏系统的发电功率与电网负荷之间实现平衡,以确保光伏系统与电网之间的正常运行。

最后,组串式光伏并网逆变器的控制策略还要考虑系统的可靠性和安全性。

逆变器是光伏系统的核心设备,其工作稳定性和可靠性至关重要。

在逆变器设计中,应考虑故障检测和保护机制,以及对逆变器的负载能力进行评估和优化。

同时,对逆变器进行合理的运行监控,及时发现和处理异常情况,确保光伏系统的运行安全。

综上所述,组串式光伏并网逆变器的控制策略研究在光伏发电系统中具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27卷第33期中国电机工程学报V ol.27 No.33 Nov. 20072007年11月Proceedings of the CSEE ©2007 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2007) 33-0103-05 中图分类号:TM 51 文献标识码:A 学科分类号:470⋅40一种新型光伏并网逆变器控制策略吴春华,陈国呈,丁海洋,武慧,宋丹(上海市电站自动化技术重点实验室(上海大学),上海市闸北区200072)A Novel Control Strategy for Photovoltaic Grid-connected InverterWU Chun-hua, CHEN Guo-Cheng, DING Hai-yang, WU hui, SONG Dan (Shanghai Key Lab of Power Station Automation Technology (Shanghai University), Zhabei District, Shanghai 200072, China)ABSTRACT: A novel triangle-triangle modulation method is proposed based on immittance converter and PV grid- connected inverter system. The characteristics of immittance converter are analyzed in depth and formulas of waveforms in the whole system are derived in detail. The shortages such as high harmonic of grid current and low power factor which traditional sine-triangle modulation method has are avoided under the new control strategy. Immittance converter technology is applied in PV grid-connect inverter by utilizing characteristics of voltage source-current source conversion. Passing through immittance converter, high-frequency transformer, high-frequency converter and 50Hz inverter individually, DC output voltage from PV arrays is inverted into sine current which is put into grid. Therefore current source grid-connected technology is realized. Compared with conventional current source grid-connected PV system, the novel inverter has advantages of small volume and low cost due to delete input inductor and replace 50Hz transformer by high-frequency transformer. Furthermore, output current in phase with grid voltage is realized by using crossing-zero signal of grid voltage to control 50Hz inverter. At the same time, system power factor is improved. The feasibility of the PV grid-connected inverter is verified by experiment results. The novel system is especially suitable for household PV grid-connected system.KEY WORDS: electric power engineering; photovoltaic grid-connected; immittance converter; high-frequency inverter; pulse width modulation; current source摘要:分析了导抗变换器的特性,详细推导了整个系统各点电压、电流,提出一种新颖的三角波−三角波调制方法,该控制策略克服了采用传统正弦波−三角波调制方法带来的并基金项目:教育部博士点基金项目(20060280018);上海市教委重点项目(06ZZ03);上海市重点学科建设项目(T0103);上海市登山计划(06DZ12211);台达电力电子科教发展基金项目(DREO2006017)。

网电流谐波含量高、功率因数低的弊端。

将导抗变换器和光伏并网逆变系统有机结合在一起,利用导抗变换器的电压源−电流源变换特性,将光伏电池阵列的直流电压变换为正弦包络线的高频电流,经过高频变压器隔离和电流等级变换,得到的高频电流再经过高频整流桥及工频逆变器逆变后并入电网,实现了电流源并网。

相对传统的电流源型并网发电系统,采用该方法不仅省去了串联电感,而且用高频变压器取代了工频变压器,有利于实现装置小型化和降低成本。

另外,利用电网电压过零信号控制工频逆变器,保证了并网电流和电网电压同步,进一步提高系统功率因数,实现正弦电流并网。

通过实验证明了该控制策略的可行性,该方法非常适合分散式家用光伏并网发电系统。

关键词:电力工程;光伏并网;导抗变换器;高频逆变器;脉宽调制;电流源型0 引言光伏发电是当前利用太阳能的主要方式[1-3],光伏并网逆变器主要分为电压源型和电流源型。

传统的电压源型逆变器[4-5]不仅体积大,而且为了降低馈入电流对电网产生的电力谐波,需要对并网电流进行反馈控制,因此并网电流受电网影响大,且控制算法复杂。

传统的电流源型逆变器通过串联一个大的直流电抗器实现电流源型并网[6],虽然无需反馈控制,但增大了系统体积,不利于装置小型化和降低成本,同时采用这种方法后,如果逆变器直流输入电流中含有脉动成分,则交流输出电流中的谐波分量就会增加。

为了抑制这些谐波分量,人们采取了有源滤波和无源滤波,不但增加了电路复杂性和系统成本,而且抑制效果并不理想。

导抗变换器是导纳-阻抗变换器的简称,在实现导纳-阻抗变换的同时,还可以实现电压源和电流源之间的变换[7-12]。

使用集中参数元件L、C构成104 中 国 电 机 工 程 学 报 第27卷的导抗变换器应用于电力电子中,可以实现装置小型化,减小能量传递过程中的损耗,是一种高效的能量传递装置[13-14]。

本文将导抗变换器和光伏并网逆变系统有机结合在一起,利用导抗变换器实现光伏系统电流型并网。

相比电压型并网,具有体积小、受电网影响小等优点。

文献[7]为了实现正弦波电流并网,使用正弦波-正弦波调制方式,即载波和调制波均为正弦波。

这种调制方式算法复杂,且由于一般单片机不能产生正弦载波,不利于系统数字化,阻碍了此方案的应用。

本文深入分析了导抗变换器的性质,推导了整个系统各点电压、电流,提出了一种新颖的三角波-三角波调制方法。

此方法不但算法简单,便于单片机实现,且在电网电压严重畸变的情况下,也能实现正弦电流并网。

相比于传统的电流源型逆变器,本方法利用导抗变换器电压源和电流源的变换特性,把光伏电池电压变换为电流源,不但省去了传统电流源型逆变器中的直流电抗器,而且通过高频变换进行功率传输,进一步减小了隔离变压器及输出滤波器中电感的体积,更加有利于装置的小型化和降低成本;同时,导抗变换器输出的电流源仅与光伏电池电压及高频逆变器的调制深度有关,不受电网电压的影响,从而提高了对电流谐波的抑制能力。

1 导抗变换器的工作原理图1所示为集中参数元件L 1、L 2、C 构成的T-LCL 型导抗变换器,图中L 1=L 2=L 。

其四端子表达式如下:22122121j (2)j 1u u LC L LC i i C LC ωωωωω⎡⎤⎡⎤−−⎡⎤=⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦ (1)当高频逆变器角频率等于谐振角频率,即ω=时,式(1)简化为0120120j j/0Z u u Zi i ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (2)式中0Z =为谐振阻抗。

从中可看出,导抗变换器输出电流不受负载影响,只与输入电压成正比,因此导抗变换器可实现电压源和电流源的变换。

L 1图1 T-LCL 型导抗变换器Fig. 1 T-LCL type immittance converter2 波形分析将导抗变换器与光伏并网逆变器结合在一起,利用导抗变换器实现光伏系统电流型并网,系统拓扑如图2所示。

图中DC/DC 变换器实现光伏电池最大功率点跟踪和智能充电。

图2各点电压、电流波形及计算公式如下所述,各计算式都含有PWM 输出占空比D 。

根据导抗变换器的特性,可以从蓄电池两端直流电压U d 推导出并网电流I G 。

(1)U d 为蓄电池两端电压,U A =U d 。

(2)B 点的PWM 输出电压用傅里叶级数表示。

取PWM 电压波形为偶函数,如图3所示,并且左右对称,脉冲宽度为D π,推导得到B 点电压傅里叶级数表达式[15]为 ds 14(21)[sincos(21)/(21)]2B m U m D U m t m ω∞=−π=⋅−−π∑ 式中:sin 项表示各谐波的振幅;cos 项表示开关频率ωs 的奇数倍成分。

光伏电池阵列图2 基于导抗变换器光伏并网发电系统拓扑图Fig. 2 Main circuit of photovoltaic grid-connected inverter based on immittance converter第33期 吴春华等: 一种新型光伏并网逆变器控制策略 105(3)导抗变换器是一种特殊的低通滤波器,将电压源变换为电流源,所以C 点电流是m =1的谐振频率(开关频率ωs )成份。

由式(2)知道,该电流是电压的1/Z 0倍,为d s 04sin()cos 2C U D I t Z ωπ=π (4)假设高频隔离变压器变比为1:N ,经变压器升压后,D 点电流下降N 倍,为d s 04sin()cos 2D U D I t NZ ωπ=π (5)经过VD 5~VD 8二极管整流后,取D 点电流的绝对值,得到E 点电流,为d s 04sin()cos 2E U D I t NZ ωπ=π(6)通过工频逆变器V 5~V 8,在电网电压(角频率为ω)的过零点将π<ωt <2π的半周期反相,F 点电流为ds 0d s 04sin()cos ,(024sin()cos ,22F U D t t NZ I U D t t NZ ωωωωπ⎧⋅<<π)⎪π⎪=⎨π⎪−⋅(π<<π)⎪π⎩(7)经低通滤波器将ωs 成分的谐波滤除,对F 点电流进行积分,/2s /212cos d πt t ωπ−π=π∫,因此,馈送到电网的电流由太阳能电池的输出直流电压U d 和占空比D 决定,与电网电压无关。

相关文档
最新文档