北师大版(七年级)初一上册数学期末测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版(七年级)初一上册数学期末测试题及答案
一、选择题
1.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2
B .﹣2
C .8
D .﹣8
2.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )
A .500个
B .501个
C .602个
D .603个
3.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )
A .a b a b -<<<-
B .b a b a <-<-<
C .a b b a -<-<<
D .b a a b <-<<-
4.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1
B .2
C .3
D .4
5.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )
A .第80个图形
B .第82个图形
C .第84个图形
D .第86个图形 6.若3x-2y-7=0,则 4y-6x+12的值为( )
A .12
B .19
C .-2
D .无法确定
7. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD
等于( )
A .15 cm
B .16 cm
C .10 cm
D .5 cm
8.下列方程为一元一次方程的是( )
A .x+2y =3
B .y+3=0
C .x 2﹣2x =0
D .
1
y
+y =0 9.下列计算正确的是( ) A .b ﹣3b =﹣2 B .3m +n =4mn C .2a 4+4a 2=6a 6
D .﹣2a 2b +5a 2b =3a 2b
10.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由
12
26
x x -+-=2,得3x ﹣3﹣x +2=12 11.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )
A .3mn
B .5mn
C .7mn
D .9mn
12.观察下列算式:122=,224=,328=,4216=,5232=,6264=,
72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( )
A .2
B .4
C .6
D .8
13.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )
A .
B .
C .
D .
14.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻
“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )
A .1
B .1-
C .2
D .2-
15.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度 B .7度 C .8度 D .9度 16.如果a+b <0,并且ab >0,那么( )
A .a <0,b <0
B .a >0,b >0
C .a <0,b >0
D .a >0,b <0
17.在上午八点半钟的时候,时针和分针所夹的角度是( )
A .85°
B .75°
C .65°
D .55°
18.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )
A .a >﹣2
B .a >﹣b
C .a >b
D .|a |>|b |
19.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2- B .8±或2± C .8- 或2
D .8或2
20.下列方程中,属于一元一次方程的是( ).
A .23x y +=
B .21x >
C .720222020x +=
D .241x =
21.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米
B .30千米
C .32千米
D .36千米
22.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )
A .9
B .11
C .13
D .15
23.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )
A .a +b >0
B .|b |<|a |
C .a ﹣b >0
D .a •b >0
24.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种
B .3种
C .4种
D .5种
25.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =
D .如果1
22
a b =
,那么a b = 26.“比a 的3倍大5的数”用代数式表示为( ) A .35a +
B .3(5)a +
C .35a -
D .3(5)a -
27.下列说法错误的是( )
A .25mn -
的系数是2
5
-,次数是2 B .数字0是单项式 C .1
4
ab 是二次单项式
D .
2
3
xy π的系数是
1
3
,次数是4 28.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).
A .45条
B .21条
C .42条
D .38条
29.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<
D .a b b a -<-<<
30.若式子(
)
2
2
2mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .
49
B .
32
C .
54
D .
94
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】
把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可. 【详解】
把x =1代入方程3x ﹣m =5得:3﹣m =5, 解得:m =﹣2, 故选:B . 【点睛】
本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.
2.B
解析:B 【解析】 【分析】
观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有
21351n n n ++=+个小圆圈. 【详解】
解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …
∴第n 个图形有21351n n n ++=+个小圆圈.
∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】
本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.
3.D
解析:D 【解析】 【分析】
从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案. 【详解】
从数轴上可以看出b <0<a ,|b|>|a |, ∴-a <0,-a >b ,-b >0,-b >a , 即b <-a <a <-b , 故选D . 【点睛】
本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.
4.C
解析:C 【解析】 【分析】
根据题意,由n =x +y +xy ,可得n +1=x +y +xy +1,所以n +1=(x +1)(y +1),因此如果n +1是合数,则n 是“好数”,据此判断即可. 【详解】 根据分析,
∵8=2+2+2×2,
∴8是好数;
∵9=1+4+1×4,
∴9是好数;
∵10+1=11,11是一个质数,
∴10不是好数;
∵11=2+3+2×3,
∴11是好数.
综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.
故选C.
【点睛】
此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.
5.C
解析:C
【解析】
【分析】
根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)
×1
2
,偶数个图形的火柴棒个数,8+7(n-2)×
1
2
,由此可解决问题.
【详解】
解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,
第3个图形有12根火柴棒,
第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×1
2
,偶数
个图形的火柴棒个数,8+7(n-2)×1
2
,
若5+7(n-1)×1
2
=295,没有整数解,
若8+7(n-2)×1
2
=295,解得n=84,
即用295根火柴搭成的图形是第84个图形,
故选:C.
【点睛】
本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.
6.C
解析:C
【解析】
【分析】
把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】
解:∵3x-2y-7=0,
∴3x-2y=7,
∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.
故选:C.
【点睛】
本题考查了代数式求值,整体思想的利用是解题的关键.
7.A
解析:A
【解析】
【分析】
根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=1
2
AB,CD=
1
2
CB,
AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】
∵点C是线段AB的中点,AB=20cm,
∴BC=1
2
AB=
1
2
×20cm=10cm,
∵点D是线段BC的中点,
∴BD=1
2
BC=
1
2
×10cm=5cm,
∴AD=AB-BD=20cm-5cm=15cm.
故选A.
【点睛】
本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.
8.B
解析:B
【解析】
【分析】
根据一元一次方程的定义即可求出答案.
【详解】
解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,
A. x+2y=3,两个未知数;
B. y+3=0,符合;
C. x2﹣2x=0,指数是2;
D. 1
y
+y=0,不是整式方程.
故选:B.
【点睛】
考核知识点:一元一次方程.理解定义是关键.
9.D
解析:D
【解析】
【分析】
根据合并同类项的法则即可求出答案.
【详解】
A. b﹣3b=﹣2b,故原选项计算错误;
B. 3m+n不能计算,故原选项错误;
C. 2a4+4a2不能计算,故原选项错误;
D.﹣2a2b+5a2b=3a2b计算正确.
故选D.
【点睛】
本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.
10.B
解析:B
【解析】
【分析】
根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.
【详解】
解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;
B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;
C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;
D、
12
26
x x
-+
-=2,去分母得:3x-3-x-2=12,故本选项错误;
故选:B.
【点睛】
本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.
解析:B 【解析】 【分析】
如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】
如图,根据题意可得:
1
()2
FDE HBG S S n n m mn ∆∆==+=, 1
()2
ECH GAF S S m m n mn ∆∆==
+=, 又矩形ABCD 的面积为mn ,
所以,四边形EFGH 的面积为:
++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,
故选:B . 【点睛】
此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.
12.D
解析:D 【解析】 【分析】
根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】
解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】
本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.
13.C
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.
【详解】
根据正方体的表面展开图,相对的面之间一定相隔一个正方形,
A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;
B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;
C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;
D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.
故选C.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
14.C
解析:C
【解析】
【分析】
由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,
a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,
a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.
【详解】
∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,
∴a1=a5=a9=…=x-1,
同理可得a2=a6=a10=…=-7,
a3=a7=a11=…=-2x,
a4=a8=a12= 0
∵a1+a2+a3+a4=-10,
∴x-1-7-2x+0=-10,
解得:x=2.
故答案为:2.
【点睛】
本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的
因素,然后推广到一般情况.
15.D
解析:D
【解析】
【分析】
先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】
解:∵这5天的日用电量的平均数为9117108
5
++++
=9(度),
∴估计他家6月份日用电量为9度,
故选:D.
【点睛】
本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.16.A
解析:A
【解析】
分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.
详解:∵ab>0,
∴a与b同号,
又a+b<0,
则a<0,b<0.
故选A.
点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B
解析:B
【解析】
【分析】
根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.
【详解】
解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.
∵钟表12个数字,每相邻两个数字之间的夹角为30°,
∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.
故选:B.
【点睛】
本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.
18.D
解析:D
【解析】
分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.
详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,
∴|a|>|b|,a<﹣b,b>a,a<﹣2,
故选D.
点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.
19.A
解析:A
【解析】
【分析】
根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.
【详解】
解:∵|m|=5,|n|=3,且m+n<0,
∴m=−5,n=3或m=−5,n=−3,
∴m−n=−8或m-n=-2
故选A.
【点睛】
本题考查了有理数的加减法和绝对值的代数意义.
20.C
解析:C
【解析】
【分析】
只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【详解】
解:A、含有两个未知数,不是一元一次方程,选项错误;
B、不是方程是不等式,选项错误;
C、符合一元一次方程定义,是一元一次方程,正确;
D、未知项的最高次数为2,不是一元一次方程,选项错误.
故选:C.
【点睛】
本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.
21.D
解析:D
【解析】
【分析】
第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.
【详解】
解:设第一次相遇时,甲、乙的速度和为xkm/h,
5小时36分钟=53
5
(小时)
由题意可得:2×2x=(53
5
-2)(x+2),
解得:x=18,
∴A、B两地的距离=2×18=36(km),
故选:D.
【点睛】
本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.
22.B
解析:B
【解析】
【分析】
首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.
【详解】
解:首先不考虑题目中最上面两个盘子大小相同的情况,
当盘子数量n=1时,游戏结束需要移动的最少次数为1;
当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;
盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;
当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,
故选B.
【点睛】
本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.
解析:C
【解析】
【分析】
先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.
【详解】
解:由数轴可得,
b<﹣2<0<a<2,
∴a+b<0,故选项A错误,
|b|>|a|,故选项B错误,
a﹣b>0,故选项C正确,
a•b<0,故选项D错误,
故答案为C.
【点睛】
本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.
24.D
解析:D
【解析】
【分析】
根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.
【详解】
解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,
∴动点的不同运动方案为:
方案一:0→-1→0→1→2→3;
方案二:0→1→0→1→2→3;
方案三:0→1→2→1→2→3;
方案四:0→1→2→3→2→3;
方案五:0→1→2→3→4→3;
共计5种.
故选:D.
【点睛】
本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.25.A
解析:A
【解析】
【分析】
根据等式的性质,可得答案.
A.两边都除以-2,故A正确;
B.左边加2,右边加-2,故B错误;
C.左边除以2,右边加2,故C错误;
D.左边除以2,右边乘以2,故D错误;
故选A.
【点睛】
本题考查了等式的性质,熟记等式的性质是解题的关键.
26.A
解析:A
【解析】
【分析】
根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】
解:比a的3倍大5的数”用代数式表示为:3a+5,
故选A.
【点睛】
本题考查列代数式,解题的关键是明确题意,列出相应的代数式.27.D
解析:D
【解析】
【分析】
根据单项式系数、次数的定义逐一判断即可得答案.
【详解】
A.
2
5
mn
-的系数是
2
5
-,次数是2,正确,故该选项不符合题意,
B.数字0是单项式,正确,故该选项不符合题意,
C.1
4
ab是二次单项式,正确,故该选项不符合题意,
D.
2
3
xy
π
的系数是
3
π
,次数是3,故该选项说法错误,符合题意,
故选:D.
【点睛】
本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.28.A
解析:A
【解析】
【分析】
观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.
【详解】
解:由图形可知,
两个星球之间,它们的路径只有1条;
三个星球之间的路径有2+1=3条,
四个星球之间路径有3+2+1=6条,
……,
按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .
【点睛】
本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.
29.A
解析:A
【解析】
【分析】
由题意可知||||a b >,再根据有理数的大小比较法则比较即可.
【详解】
解:0a >,0b <,0a b +>,
||||a b ∴>,如图,
, a b b a ∴-<<-<.
故选:A .
【点睛】
本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.
30.D
解析:D
【解析】
【分析】
直接利用去括号法则化简,再利用合并同类项法则计算得出答案.
【详解】
解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关,
∴2m-3=0,-2+n=0,
解得:m=32
,n=2,
故m n=(3
2
)2= 9
4
.
故选D.
【点睛】
此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.。