瓯海区第二中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

瓯海区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知变量,x y 满足约束条件20
170
x y x x y -+≤⎧⎪
≥⎨⎪+-≤⎩
,则y x 的取值范围是( )
A .9[,6]5
B .9(,][6,)5
-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]
2. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),
则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2
,且
函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( ) A .0<a <1 B
.﹣≤a
≤ C .﹣1≤a ≤1 D .﹣2≤a ≤2
3. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3
D .﹣1或﹣3
4. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣
>0的解集为( ) A .(2,+∞)
B .(0,2)
C .(0,4)
D .(4,+∞)
5. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<
6. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )
A .123S S S <<
B .123S S S >>
C .213S S S <<
D .213S S S >>
7. 设a ,b
为正实数,11a b
+≤23
()4()a b ab -=,则log a b =( )
A.0
B.1-
C.1 D .1-或0
【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 8. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1
B .2
C .3
D .4
9. 实数x ,y
满足不等式组
,则下列点中不能使u=2x+y 取得最大值的是( )
A .(1,1)
B .(0,3) C
.(,2) D
.(,0)
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.给出下列各函数值:①sin100°;②cos(﹣100°);③tan(﹣100°);④.其中符号为
负的是()
A.①B.②C.③D.④
11.已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是()
A.1 B.C.D.
12.若f(x)=sin(2x+θ),则“f(x)的图象关于x=对称”是“θ=﹣”的()
A.充分不必要条件B.必要不充分条件
C.充要条件 D.既不充分又不必要条件
二、填空题
13.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.14.曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:
①曲线C过点(﹣1,1);
②曲线C关于点(﹣1,1)对称;
③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;
④设p1为曲线C上任意一点,则点P1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.
其中,所有正确结论的序号是.
15.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于.
16.已知f(x)=x(e x+a e-x)为偶函数,则a=________.
17.某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元.
18.在△ABC中,已知=2,b=2a,那么cosB的值是.
三、解答题
19.函数f(x)=sin2x+sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,]时,求f(x)的值域.
20.已知数列{a n }的首项a 1=2,且满足a n+1=2a n +3•2n+1,(n ∈N *). (1)设b n =
,证明数列{b n }是等差数列;
(2)求数列{a n }的前n 项和S n .
21.(本题满分15分)
设点P 是椭圆14
:2
21=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.
(1)求证:PB PA =;
(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
22.有编号为A 1,A 2,…A 10的10个零件,测量其直径(单位:cm ),得到下面数据:
编号
A 1
A 2
A 3
A 4
A 5
A 6
A 7
A 8
A 9
A 10
直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46
1.53 1.47 其中直径在区间[1.48,1.52]内的零件为一等品. (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率.
23.已知函数f (x )=ax 3+bx 2﹣3x 在x=±1处取得极值.求函数f (x )的解析式.
24.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2
ln R f x x ax x a =-+-∈.
(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.
瓯海区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A 【解析】
试题分析:作出可行域,如图ABC ∆内部(含边界),y
x 表示点(,)x y 与原点连线的斜率,易得59(,)22
A ,(1,6)
B ,
9
9
2552
OA
k ==,661OB k ==,所以965y x ≤≤.故选A .
考点:简单的线性规划的非线性应用. 2. 【答案】 B
【解析】解:定义域为R 的函数f (x )是奇函数, 当x ≥0时,
f (x )=|x ﹣a 2|﹣a 2=
图象如图,
∵f (x )为R 上的1高调函数,当x <0时,函数的最大值为a 2
,要满足f (x+l )≥f (x ),
1大于等于区间长度3a 2﹣(﹣a 2),
∴1≥3a 2﹣(﹣a 2
),
∴﹣≤a ≤ 故选B
【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
3. 【答案】A
【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,
所以=


解得 a=﹣3,或a=1. 故选:A .
4. 【答案】B
【解析】解:定义在(0,+∞)上的函数f (x )满足:<0.
∵f (2)=4,则2f (2)=8, f (x )﹣>0化简得,
当x <2时,

成立. 故得x <2,
∵定义在(0,+∞)上.
∴不等式f (x )﹣>0的解集为(0,2). 故选B .
【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.
5. 【答案】D
【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=,
∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,
(11)(3)(14)(1)(1)f f f f f ==-+=--=,
又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D. 6. 【答案】A 【解析】

点:棱锥的结构特征. 7. 【答案】B.
【解析】2
3
2
3
()4()()44()a b ab a b ab ab -=⇒+=+,故
11a b a b ab
++≤≤
2322()44()11
84()82
()()a b ab ab ab ab ab ab ab ab
++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.
8. 【答案】B
【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .
9. 【答案】 D
【解析】解:由题意作出其平面区域,
将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,
使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,
故(1,1),(0,3),(,2)成立,
而点(,0)在直线y=3﹣2x 上但不在阴影区域内,
故不成立;
故选D .
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.
10.【答案】B
【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,
④∵sin>0,cosπ=﹣1,tan<0,
∴>0,
其中符号为负的是②,
故选:B.
【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.
11.【答案】B
【解析】解:由约束条件作出可行域如图,
由图可知A(a,a),
化目标函数z=2x+y为y=﹣2x+z,
由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解
得:a=.
故选:B.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
12.【答案】B
【解析】解:若f(x)的图象关于x=对称,
则2×+θ=+kπ,
解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,
反之成立,
即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,
故选:B
【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.
二、填空题
13.【答案】
【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①
又a2,a3,a4-2成等差数列.
∴2a3=a2+a4-2,
即8k2=2k2+8k2-2.②
由①②联立得k1=-1,k2=1,
∴a n=2n-1.
答案:2n-1
14.【答案】②③④.
【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,
对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;
对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|
∴|PA|+|PB|≥2=2k,③正确;
对于④,由题意知点P在曲线C上,根据对称性,
则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.
故答案为:②③④.
【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.
15.【答案】.
【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,
∴3aa=1(1﹣2a),解得a=﹣1或a=,
经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
16.【答案】
【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,
即(-x)(e-x+a e x)=x(e x+a e-x),
∴a(e x+e-x)=-(e x+e-x),∴a=-1.
答案:-1
17.【答案】18.2
【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,
∵x=20,
∴y=0.9×20+0.2=18.2(亿元).
故答案为:18.2.
【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.
18.【答案】.
【解析】解:∵=2,由正弦定理可得:,即c=2a.
b=2a,
∴==.
∴cosB=.
故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)…(2分)
令解得…
f(x)的递增区间为…(6分)
(2)∵,∴…(8分)
∴,∴…(10分)
∴f(x)的值域是…(12分)
【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.20.【答案】
【解析】解:(1)∵=,
∴数列{b n}是以为首项,3为公差的等差数列.
(2)由(1)可知,
∴①

①﹣②得:



【点评】本题主要考查数列通项公式和前n 项和的求解,利用定义法和错位相减法是解决本题的关键.
21.【答案】(1)详见解析;(2)详见解析
.
∴点P 为线段AB 中点,PB PA =;…………7分
(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,
故122
-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212
+-+=-+=k t k x x k AB ,…………11分
点O 到直线AB 的距离2
22
1141k
k k
m d ++=
+=,…………13分
∴122
1
2-=⋅=
∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 22.【答案】
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.
设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )
=
=;
(Ⅱ)(i )一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.
从这6个一等品零件中随机抽取2个,
所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},
{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4}, {A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6}共有15种. (ii )“从一等品零件中,随机抽取的2个零件直径相等”记为事件B B 的所有可能结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6},
{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种.
∴P (B )=

【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.
23.【答案】
【解析】解:(1)f'(x )=3ax 2
+2bx ﹣3,依题意,f'(1)=f'(﹣1)=0,
即,解得a=1,b=0.
∴f (x )=x 3
﹣3x .
【点评】本题考查了导数和函数极值的问题,属于基础题.
24.【答案】(1)a ≤2)19
3
a <<. 【解析】试题分析:
(1)原问题等价于()0f x '≤对()0,+∞恒成立,即1
2a x x
≤+对()0,+∞恒成立,结合均值不等式的结论可
得a ≤
(2)由题意可知()221
0x ax f x x
-+-'=
=在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的
取值范围是19
3
a <<.
试题解析:
(2)∵函数()f x 在()0,3上既有极大值又有极小值,
∴()221
0x ax f x x
-+-'=
=在()0,3上有两个相异实根,
即2210x ax -+=在()0,3上有两个相异实根,
记()2
21g x x ax =-+,则()()0
03{ 4
0030a
g g ∆><<>>
,得{012 19
3
a a a a -<<<

即19
3
a <<.。

相关文档
最新文档