继电保护测试仪测量不确定度评定报告

合集下载

测量不确定度评估报告

测量不确定度评估报告

测量不确定度评估报告测量不确定度评估报告1.识别测量不确定度的来源在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。

我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。

由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。

2.目标不确定度2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。

2.2 检验科每个测量程序的目标不确定度由各实验室确定。

2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。

根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。

2.4目标不确定度如下:2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。

2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。

3.确立输出量与输入量之间的数学模型若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。

4测量不确定度的计算4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。

计算本室2水平质控品的日间精密度。

计算批间变异系数CV。

=批间u 批间CV4.2 B 类评估:校准品赋值的不确定度评估信息来源于厂商提供的校准品溯源性文件。

继电保护测试仪检验报告

继电保护测试仪检验报告

继电保护测试仪检验报告
DEJB-H全自动继电保护测试仪是鼎升电力早期根据现场继电保护的测试要求以及GB7261-2008,DL/T995- 2006标准支持,研发的一款全自动智能化继电保护校验测试仪。

全自动继电保护测试仪采用单片微机技术,由自动同期数字毫秒表,逻辑控制单元,多功能数显单元,高精度数据采集及处理单元,电流、电压输出单元,继保测试仪具有过载及超量程保护单元部分组成,自动显示打印,测试过程中只需正确接好测试线,便可自动测试,整机精度≤1%是校验继电保护装置理想的测试仪。

技术参数
1.交流电压输出:
0~250V连续可调,最大输出容量600VA,过量程保护260V,误差为±1% 2.交流电流输出:
0~50A,0~100A连续可调,误差为±1%
0~50A时,开路电压5V
0~100A时,开路电压10V。

过载保护动作电流120A
3.直流电压输出:
0~250V连续可调,最大电流2A,过量程保护260V,过载保护动作电流
2.1A±5%。

误差为±1%
4.直流电流输出
0~200mA 0~5 A连续可调,误差为±1%
0~200mA时,开路电压48V,过载保护动作电流230mA
0~5A时,开路电压24V,过载保护动作电流5.2A
5.直流电压固定输出
单独输出110V或220V时,电流可达2.5A,但和交流电压电流,直流电
压同时输出时。

其总容量不能超过600VA
6.数字毫秒表
最大量程:999秒
分辨率:0.1毫秒
精度:0.1%±1个字
以下为继电保护测试仪省级计量测试研究院检验报告。

继电保护测试仪检定方法使用说明书

继电保护测试仪检定方法使用说明书

继电保护测试仪检定方法使用说明书继电爱护测试仪是一种用于继电爱护及平安自动检验的装置,精准牢靠的应答才能有效保障爱护装置的应用性能,而继电爱护测试仪正是验证这一性能的检验装置,下面本文主要依据继电爱护测试仪检定规范介绍其沟通电流输出误差限值要求及校准操作。

一、继电爱护测试仪沟通电流输出误差限值1.输出沟通电流幅值基本误差在检定规范要求的基准工作条件下,继电爱护测试仪输出电流的幅值为0~Imax、频率为50Hz,其基本误差应满意:——I≤0.1IN,基本误差不超过±1mA;——0.1INI≤Imax基本误差不超过±0.2%。

当输出电流幅值在0~Imax范围内,输出频率变化时,其输出电流幅值基本误差应满意表1要求。

表1:误差范围2.输出沟通电流总谐波畸变率在负载0.5Ω的条件下,输出沟通电流1A、5A时,输出沟通电流总谐波畸变率应不大于0.2%。

二、继电爱护测试仪沟通电流输出校准1.沟通电流输出幅值误差沟通电流输出幅值误差的校准接线示意图如图1所示。

图1:沟通电流输出幅值误差的校准接线示意图分别设置被检测试仪50Hz频率下的各相输出沟通电流(沟通电流的输出校准点至少应包含0.2A、0.5A、0.8A、1A、3A、5A的校准点,其他校准点的选取应考虑最大量程点以及与上下量程的连接点和中间点),用校准标准(或沟通电流表)分别测出各相的电流输出数据并记录。

设校准标准的显示数据为IN,机电爱护测试仪沟通电流输出值为Ix。

沟通电流输出值的肯定误差和相对误差的计算见式(1)和式(2)肯定误差表示为 (1)相对误差表示为 (2)式中:Δ——被校机电爱护测试仪输出值肯定误差;γ——被校机电爱护测试仪输出值相对误差;Ix——被校机电爱护测试仪设定输出值,A;IN——校准标准显示值,A。

2.输出沟通电流的频率误差和幅频特性在图1中沟通输出回路接入负载电阻(装置额定输出功率)。

设置恒定的测试仪输出沟通电流为5A,同时带上阻性负载,转变输出频率,使其在(0~1000)Hz范围变化(测试的频率点可选45Hz、50Hz、65Hz、100Hz、450Hz、800Hz、1000Hz),用频率表分别测出实际的频率值并计算出相应误差,并依据在设置的不同频率下所显示出的电流值进行幅频特性测试。

测量不确定度评估报告

测量不确定度评估报告

测量不确定度评估报告1.识别测量不确定度的来源在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。

我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。

由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。

2.目标不确定度2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。

2.2 检验科每个测量程序的目标不确定度由各实验室确定。

2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。

根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。

2.4目标不确定度如下:2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。

2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。

3.确立输出量与输入量之间的数学模型若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。

4测量不确定度的计算4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。

计算本室2水平质控品的日间精密度。

计算批间变异系数CV。

=批间u 批间CV4.2 B 类评估:校准品赋值的不确定度评估信息来源于厂商提供的校准品溯源性文件。

测量不确定度评定报告

测量不确定度评定报告

*******测量不确定度报告一、概述1.1 测试标准:GB/T1.2 测试环境:温度21℃, 相对湿度65%二、建立数字模型x = xi式中: x ---调湿后织物的断裂强力,Nxi----几个试样的平均断裂强力,N三、不确定度的来源3.1不确定度来源图示如下:强力仪数字修约拉断强力(N)纱线均匀度试样宽度偏差样品间差异试样夹持状态经密度纬密度测试的重复性3.2不确定度在测试过程中主要来源:3.2.1 测试的重复性导致的不确定度分量a. 样品间差异:织物的经密度、纬密度及纱线自身均匀度的差异构成了样品间的差异。

b. 试样宽度偏差:标准规定试样宽度为50mm,如最后一根纱线超过半根则留之,未超过半根则不留,这就导致试样宽度不一致,影响试样的断裂强力。

c. 夹持状态不理想:按要求夹口线应与拉伸线垂直,但在实际操作时,由于织物懂得经纬向分布不平直均匀,难以控制到理想状态,不同人员对同样品作测试的结果也会有差异。

3.2.2 数字修约导致的不确定度分量3.2.3 强力仪导致的不确定度分量由于仪器跟踪应力的灵敏度导致自动显示终端的最大示值误差。

四、不确定度的评定4.1 测试的重复性导致的不确定度分量设计方案如下:取同批样本的六个样品,各裁取经向、纬向各3块,长300mm,宽约60mm,再修正到50mm,如最后一根纱线超过半根则留之。

两个不同方向断裂强力的测试结果见表1。

注:u (x ) 表示试验重复性导致的不确定度分量,其计算方法为:u (x ) =nx u )(=3.68 N ,其中:s(x i ) = 2)x - (x i 1-n 1∑=15.61N 4.2 结果数字修约导致的不确定度分量因结果报告应为计算结果的算术平均值,此值大于10N 且小于1000N 。

那么最大可能值的半宽区间a=1N/2=0.5N ,取矩形分布,按JJF1059-1999中5.6评定引入的不确定度分量为:u (修约)=35.0=0.29N4.3 匀速拉伸试验仪导致的不确定度分量拉伸强力仪经校准后,给出强力机最大示值误差的相对不确定度:u rel (示值)=0.3%,k =2当断裂强力为780N 时,u (示值)= 0.3%/2×780 = 1.17 N五、合成不确定度关于断裂强力不确定度的合成不确定度为:u c (y )=()222((仪器)修约)u u x u ++ = 3.87 N六、扩展不确定度取k =2 ,U = k × u c (y )= 2×3.87N=7.7N七、结果报告按GB/T 3923.1-2013和ASTM D5035-2011对织物进行拉伸强力试验: 经向断裂强力为780N ,U =7.7N ,k =2 同理,纬向断裂强力551N ,U =7.6N ,k =2八、编制审核人信息 编制人:日期:审核人:日期:。

继电保护校验及调整报告.doc.deflate

继电保护校验及调整报告.doc.deflate

继电保护校验及调整报告为了我站机组在丰水期能够安全更好的运行,公司安全生产部来我站一起完成了我站的机组继电保护调整及校验工作。

由于我站的继电保护多年来没有校验及调整,很多继电器出现拒动和误动,很多信号灯及光字牌不亮,现于2011年4月11日到4月14日完成了校验调整工作。

在检查过程中发现1#机保护屏的电压继电器1ZJ继电器线圈烧坏,1XJ、5XJ信号继电器烧坏没有信号指示,差动继电器B相触点烧坏。

2#机保护屏的继电保护一切正常只有5XJ过负荷信号继电器和3XJ复合动作信号继电器烧坏没有信号指示。

3#机保护屏的电压继电器及电流继电器的整顿值都不准确,2YJ熔断器监视继电器的触头掉落,3SJ过负荷时限继电器不动作,线圈烧坏。

5XJ信号继电器烧坏没有信号指示。

4#机保护屏的继电保护一切正常,信号继电器3XJ、1XJ信号继电器烧坏,没有信号指示。

1#主变保护屏3XJ、1XJ信号继电器烧坏没有指示。

2#主变保护屏3XJ信号继电器烧坏没有指示。

控制台上的光字牌都没有亮。

以上发现在这些问题在校验及调整时都一一处理。

更换了1#机保护屏的1ZJ继电器,1XJ、5XJ信号继电器,处理了差动继电器B相触点。

更换了2#机保护屏的5XJ、3XJ 信号继电器,3#机保护屏2YJ熔断器监视继电器和3SJ过负荷时限继电器,5XJ信号继电器,4#机3XJ、1XJ信号继电器和1#、2#主变保护屏的3XJ、1XJ。

对1#、3#机电压继电器及电流继电器进行了校核调整,对2#、4#、1#主变、2#主变进行了校核动作都正常。

各机组及两台主变的差动继电器动作都正常。

清理了控制台上的光字牌回路,发现YSK、SXK两个实验开关的保险烧坏,使光字牌不亮,更换后还有1F的水机事故、10KV单相接地、3FMK操作电源消失、35KV单相接地、3F交直流电源消失、4F水机故障,这几个光字牌不亮由于灯座问题还没有恢复。

以上调整校核后的数据如下表。

1#机符号名称型式调整前值调整后值备注YJ 发电机电压继电DY-23C 74V 动作正常1YJ 过电压继电器DY-24C 144V 138V 动作正常2YJ 熔断器监视继电器DY-28C 85V 动作正常1LJ A相电流继电器DL-21C 5.5A 动作正常2LJ B相电流继电器DL-21C 5.1A 动作正常3LJ C相电流继电器DL-21C 5.1A 动作正常4LJ 过负荷继电器DL-21C 4.7A 动作正常5LJ 差动断线继电器DL-21C 0.7A 动作正常2#机符号名称型式调整前值调整后值备注YJ 发电机电压继电器DY-23C 74V 动作正常1YJ 过电压继电器DY-24C 140V 动作正常2YJ 熔断器监视继电器DY-28C 85V 动作正常1LJ A相电流继电器DL-21C 5.0A 动作正常2LJ B相电流继电器DL-21C 5.1A 动作正常3LJ C相电流继电器DL-21C 5.6A 动作正常4LJ 过负荷继电器DL-21C 4.6A 动作正常5LJ 差动断线继电器DL-21C 0.75A 动作正常3#机符号名称型式调整前值调整后值备注YJ 发电机电压继电器DY-23C 150V 75V 动作正常1YJ 过电压继电器DY-24C 150V 137V 动作正常2YJ 熔断器监视继电器DY-28C 150V 85V 动作正常1LJ A相电流继电器DL-21C 4.0A 5.1V 动作正常2LJ B相电流继电器DL-21C 4.5A 5.1V 动作正常3LJ C相电流继电器DL-21C 9.5A 5.1V 动作正常4LJ 过负荷继电器DL-21C 4.7A 动作正常5LJ 差动断线继电器DL-21C 0.7A 动作正常4#机符号名称型式调整前值调整后值备注YJ 发电机电压继电器DY-23C 75V 动作正常1YJ 过电压继电器DY-24C 147V 动作正常2YJ 熔断器监视继电器DY-28C 81V 动作正常1LJ A相电流继电器DL-21C 5.1A 动作正常2LJ B相电流继电器DL-21C 5.0A 动作正常3LJ C相电流继电器DL-21C 5.1A 动作正常4LJ 过负荷继电器DL-21C 4.5A 动作正常5LJ 差动断线继电器DL-21C 0.6A 动作正常1#主变符号名称型式调整前值调整后值备注1LJ 电流继电器DL-21C 5.2A 动作正常2LJ 电流继电器DL-21C 5.1A 动作正常3LJ 电流继电器DL-21C 5.1A 动作正常4LJ 过负荷继电器DL-21C 4.6A 动作正常WSJ 瓦斯继电器动作正常2#主变符号名称型式调整前值调整后值备注1LJ 电流继电器DL-21C 5.1A 动作正常2LJ 电流继电器DL-21C 4.9A 动作正常3LJ 电流继电器DL-21C 5.5A 动作正常4LJ 过负荷继电器DL-21C 4.8A 动作正常WSJ 瓦斯继电器动作正常马鞍山电站2011年4月18日。

测量不确定度评估和报告

测量不确定度评估和报告

CNAS—CL07测量不确定度评估和报告通用要求中国合格评定国家认可委员会二〇〇六年六月测量不确定度评估和报告通用要求1.前言1.1 中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。

因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。

1.2 CNAS在测量不确定度评估和应用政策方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。

2.适用范围1.3 本文件适用于CNAS对校准和检测实验室的认可活动。

同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。

3.引用文件下列文件中的条款通过引用而成为本文件的条款。

以下引用的文件,注明日期的,仅适用引用的版本;未注明日期的,适用引用文件的最新版本(包括任何修订)。

2.1 Guide to the expression of uncertainty in measurement (GUM). BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, lst edition, 1995. 《测量不确定度表示指南》2.2 International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 2nd edition, 1993. 《国际通用计量学基本术语》2.3 JJF1001-1998《通用计量术语和定义》2.4 JJF 1059-1999《测量不确定度评定和表示》2.5 ISO/IEC 17011:2004《合格评定—认可机构通用要求》2.6 CNAS—RL01 《实验室和检查机构认可规则》2.7 CNAS—CL 01《检测和校准实验室能力认可准则》3.术语和定义本文件引用ISO/IEC指南2、ISO/IEC 17000和ISO/IEC 17011中的有关术语并采用下列定义:3.1 [测量]不确定度表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。

电导率仪仪测量的不确定度评估报告

电导率仪仪测量的不确定度评估报告

电导率仪测量的不确定度评估报告1.目的评估水质电导率测量的不确定度2.依据水和废水第四版 实验室电导率仪法3.适用范围适用于饮用水、地面水及工业废水的电导率测定不确定度的评估。

4.方法概要直接用电导率仪测量并读数。

5.数学模型根据水和废水第四版 实验室电导率仪法测量结果为P.由于电导率值直接在测试仪上读出,所以:P=B式中:P---试样溶液的电导率值.B---测试仪器读取的值.4.测试结果为获得测量重复性引起的不确定度U 1,每组分别测量10次,测量结果见表1.表1 重复测量实验结果(μS/cm)5. 不确定度分量的评估5.1 测量重复性相对标准不确定度分量U 1U 1=S/B=4.29×10-25.2电导率仪引入的不确定度分量U 2按不确定度B 类方法评定,由计量检定证书可知:使用的电导率仪示值误差不超出±0.3%,示值误差概率分布为矩形分布,K=3.则:U2=0.3%/3=0.17×10-25.3最小分辨率引入的不确定度分量U 3电导率仪最小分辨率0.1μS/cm ,则:U 3=0.1/23/51.7=0.06×10-26 合成相对不确定度232221)(U U U C U ++==0.043 7、合成标准不确定度U= B ×U(C) =0.043×51.7=2.2μS/cm7扩展不确定度U取包含因子k = 2,得到PH 值的扩展不确定度为:)(c U = KU =2×2.2=4.4μS/cm8测量不确定度报告其中扩展不确定度为)U=4.4μS/cm,是由标准不确定度U=2.2μS/cm乘包含因子k=2(c得到。

按照本方法进行分析测定,被测样品的电导率为:c=51.7±4.4μS/cm,其中扩展不确定度为:)U=4.4μS/cm,是由合成标准不确定度U =2.2μS/cm和包含因子k=2的乘积得到的。

(c2011年 8 月 29 日编制:审批:。

接地线直流电阻测量不确定度的评定报告

接地线直流电阻测量不确定度的评定报告

接地线直流电阻测量不确定度的评定报告1.测量方法参考DL/T976-2005《带电作业工具、装置和设备预防性试验规程》的测试方法,在实验室对110kV接地线(25mm2)的接地线的导体电阻进行检测, 测并评估是否平均每米的电阻值应小于0.79mΩ。

2 数学模型t—试验时的摄氏温度(℃)L—被测导线测试段的长度(m)Rt—仪器测得的导体电阻读数3、测量不确定度来源被测量R的不确定度来源有:(1)电阻测量的测量重复性,采用A类评定方法。

(2)电阻测量最大允差引起的电阻的测量不确定度,采用B类评定方法。

4、标准不确定度的A 类评定直流电阻的测量重复性引入的标准不确定度分量按A类评定测110kV接地线的直流电阻10次,得数据如下:(单位m)表1 测量结果一览表测量次数n 直流电阻1 0.732 0.723 0.734 0.715 0.726 0.707 0.718 0.719 0.7210 0.70采用极差法进行计算,则平均值:相对标准不确定度分量为:5、标准不确定度的B 类评定直流电阻测试仪允许误差引入的标准不确定度分量按B类评定测直流电阻所用的启动电压测试仪根据校准结果,其最大允许误差为:,则半宽采用均匀分布:相对标准不确定度分量为:6、直流电阻的合成标准不确定度根据公式计算如下:7、直流电阻的扩展不确定度根据惯例,取包含因子k=2,8、直流电阻测量结果报告启动电压的测量值和不确定度U为(k=2)9.不确定度报告项目平均值()扩展不确定度()包含因子结果表示启动电压0.714 4.54% 2 0.714±4.54%—完—编写人:审核人:。

继电保护试验工作总结报告

继电保护试验工作总结报告

一、前言为确保电力系统的安全稳定运行,提高电力设备的可靠性,本部门在近期对110kV级和10(6)kV级微机综合继电保护装置进行了全面检测。

现将本次继电保护试验工作总结如下:二、试验目的1. 检测110kV级和10(6)kV级微机综合继电保护装置的定值测试及工作是否正常;2. 发现潜在的安全隐患,提高电力系统的安全稳定性;3. 优化继电保护装置的配置,确保电力设备的可靠运行。

三、试验过程1. 准备阶段:根据试验要求,准备所需设备,包括继电保护测试仪一台、试验负责人及操作人员共3名。

同时,对试验人员进行技术培训,确保试验顺利进行。

2. 试验实施阶段:(1)对110kV系统及与之相关的6或10kV进线的综合保护继电器(线路保护、母联保护、变压器高、低备保护、差动保护、电压保护、接地变保护、备自投保护、常规过流、速断、零序保护)进行保护定值调试;(2)试验人员认真做好调试记录,及时解决调试中出现的问题;(3)试验管理员负责出具调试报告,参与各调试项目的试验人员对调试数据(动作值和时间)与定值单进行核准;(4)对继电保护装置中相关保护功能的定值按照定值单中的计算定值进行整定。

3. 试验总结阶段:对试验过程中发现的问题进行汇总,分析原因,提出改进措施。

四、试验结果1. 继电保护装置的定值测试及工作均符合要求,装置运行正常;2. 发现并消除了部分潜在的安全隐患,提高了电力系统的安全稳定性;3. 优化了继电保护装置的配置,确保了电力设备的可靠运行。

五、存在问题及改进措施1. 存在问题:部分继电保护装置的调试过程中,发现部分保护功能定值与实际运行值存在偏差;2. 改进措施:针对存在问题,对继电保护装置的定值进行重新整定,确保保护功能正常;加强试验人员的技术培训,提高试验准确性。

六、结论本次继电保护试验工作取得了圆满成功,为电力系统的安全稳定运行提供了有力保障。

在今后的工作中,我们将继续加强继电保护试验工作,不断提高电力系统的安全稳定性,为我国电力事业的发展贡献力量。

测量不确定度评定报告

测量不确定度评定报告

测量不确定度评定报告一、引言二、测量方法和装置本次测量使用的方法是直线测量法,采用直尺和游标卡尺进行测量。

直线测量法是一种简单有效的测量方法,在工程和科学领域得到广泛应用。

1.人为误差测量1:30.2cm测量2:30.1cm测量3:30.3cm根据三次测量结果的平均值,得到被测量值为30.2cm。

通过测量结果的离散程度,可评估人为误差的大小。

2.仪器误差仪器误差是由于测量仪器本身的不准确性而引起的。

在使用直尺和游标卡尺进行测量时,需要考虑到仪器的刻度精度和读数精度。

本次测量中,直尺和游标卡尺的刻度间距分别为0.1cm和0.01cm。

根据仪器的刻度间距,可以评估测量结果在刻度内的不确定度。

例如,如果测量结果位于两个刻度之间,不确定度可以评估为刻度间距的一半。

3.环境影响环境因素如温度、湿度等的变化会对测量结果产生一定的影响。

在本次测量中,环境温度保持相对稳定,湿度变化较小,因此可以忽略环境影响对测量结果的不确定度。

四、测量不确定度评定五、灵敏度分析和建议灵敏度分析用于评估测量结果对误差的敏感程度,从而提供改进测量方法和装置的建议。

1.人为误差的影响2.仪器误差的影响根据前述的仪器误差评估,本次测量结果对仪器误差的敏感程度较高。

为了减小仪器误差对测量结果的影响,可以考虑使用更精密的测量仪器,如数字卡尺等,降低仪器误差。

六、结论本次测量的不确定度评定结果为0.1cm。

测量结果对人为误差的敏感程度较低,对仪器误差的敏感程度较高。

改进测量方法和装置可降低仪器误差对测量结果的影响。

继电保护测试仪检验报告

继电保护测试仪检验报告

继电保护测试仪检验报告一、引言继电保护测试仪是电力系统中重要的测试设备之一,用于检验电气设备的保护装置和继电保护装置及其系统的正确性、完整性和可靠性。

本次检验报告对继电保护测试仪进行了详细的测试和评估,并提供了相关数据和结论,旨在确保其性能和功能能够满足预期要求。

二、测试目标本次测试的主要目标是验证继电保护测试仪的测量准确性、测试范围和功能完整性,评估其在实际工作环境中的可靠性和稳定性。

三、测试方法本次测试采用了以下几种测试方法:1.静态测试:测试继电保护测试仪在不同工作模式和参数设置下,采集各项信号的准确度和稳定性。

2.动态测试:测试继电保护测试仪对不同频率、幅值、相位的电信号输入能否准确响应,并迅速稳定在正确数值。

3.耐压测试:测试继电保护测试仪在规定的电压范围内能否正常工作,是否存在漏电等安全隐患。

4.故障模拟测试:测试继电保护测试仪对各种故障类型的保护装置能否准确响应,并能及时切除故障。

四、测试结果经过一系列测试,继电保护测试仪的性能和功能都达到了预期要求。

具体测试结果如下:1.测量准确性:继电保护测试仪对各项信号的测量准确度高,误差范围在可接受的范围内,满足实际测试要求。

2.功能完整性:继电保护测试仪具备多种测试模式和参数设置,能够满足不同继电保护装置的测试需求。

3.反应速度:继电保护测试仪的响应速度迅速,能够在短时间内完成测量和切除故障等操作。

4.安全性:继电保护测试仪通过耐压试验,未发现漏电等安全隐患。

五、测试结论综上所述,经过测试和评估,本次继电保护测试仪对于电气设备保护装置和继电保护装置的测试具有较高的准确性、功能完整性和可靠性。

测试结果显示,继电保护测试仪能够满足实际工作环境中的要求,并且安全可靠。

在日常工作中,使用该测试仪可以提高测试效率,降低测试误差,为电力系统的安全运行提供有效的技术支持。

六、改进建议尽管本次测试结果良好,但仍有一些改进建议:1.进一步提高测量精度,使其在更高要求的测试场景下能够保持准确性。

测量不确定度评定报告

测量不确定度评定报告

测量不确定度评定报告1、评定目的
2、评定依据
3 、测量不确定度评定流程
图一测量不确定度评定总流程4、测量不确定度评定方法
4.1建立数学模型
4.2不确定度来源分析
测量过程中引起不确定度来源,可能来自于:
a、对被测量的定义不完整;
b、复现被测量定义的方法不理想;
c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量;
d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善;
e、对模拟式仪器的读数存在人为偏差(偏移);
f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的
局限性;
g、赋予计量标准的值或标准物质的值不准确;
h、引入的数据和其它参量的不确定度;
i、与测量方法和测量程序有关的近似性和假定性;
j、在表面上完全相同的条件下被测量在重复观测中的变化。

4.3标准不确定度分量评定
4.3.1 A 类评定
4.3.2 标准不确定度的B类评定
4.4合成不确定度U c(y)的计算
4.5扩展不确定度U 的计算
4.6 测量不确定报告
编制人:
批准人:
日期:。

浅析DK-56B电测仪表校验装置的不确定度分析和计算

浅析DK-56B电测仪表校验装置的不确定度分析和计算

浅析DK56B电测仪表校验装置的不确定度分析和计算浅析DK—56B电测仪表校验装置的不确定度分析和计算测量误差是测量值与被测量的真值之间的差。

误差应该是一个确定的值,即其大小和符号都是确定的,通常取其相反数就成为修正值。

当对测量结果作了修正后,仍有随机效应和不确定的系统效应导致的误差存在。

这样在传统的误差评定中不同领域和不同人往往对误差处理方法各有不同,不确定度概念的提出较好的解决了这一问题,不确定度评定的对象就是这些不能修正的各误差分量,其评定的结果是表征被测量所处的范围。

每一个测量结果总存在着不确定度,作为一个测量结果要标明其量值,还要标出测量不确定度才是完整、准确可靠的。

1 DK-56B电测仪表校验装置我公司最新购置DK-56B电测仪表校验装置,为了能够准确的标出其不确定度,我们对该装置进行了不确定度的评定。

该装置采用了现代测试技术,数字波形合成,数字调频,调相和调幅,大规模集成功效等技术,具有功能强、准确度高、稳定性好、操作简单等优点,准确度等级为0.1级。

可检定各种交直流电压表、电流表、单三相有功无功功率表,以及功率因数表、频率表等,完成各类、各级电测仪表的校验与调试工作,在电力系统中起着非常重要的作用。

同样,其测量值也存在误差,同样要用A类及B类不确定度来表述。

2 A类不确定度的分析A类不确定度用统计的方法计算,并用标准差和自由度表征。

对于同一台DK-56B电测仪表校验装置,在同一条件下同一检定人员对同一被试表进行检定时,属于A类不确定度的分量有:电压、频率、温度波动;自然误差随负载功率变化;负载功率因数变化;标准仪表响应时间变化;外磁场影响变化;光电采样;数据量化。

根据规定,A类不确定度各分量可用实验标准方差S表征。

但是在实际工作中,常用的方法是列出上述影响因素,再用贝塞尔公式计算有限次的实验标准差S,公式如下:式中xi—第i次测量值; x—测量值的算术平均值; n—重复测量次数。

电线电缆测量不确定度分析报告

电线电缆测量不确定度分析报告

电线电缆测量不确定度分析一、电线电缆不确定度评定项目有:绝缘厚度、外形尺寸、抗张强度(老化前)、断裂伸长率(老化前)、导体电阻、绝缘电阻。

说明:1、验材料为型号227IEC01(BV)的聚氯乙烯绝缘电线.2、绝缘厚度、外形尺寸的测量为在绝缘层上切取的同一切片,在同一环境条件下测量十次.3、抗张强度、断裂伸长率的测量为在同一根电线上连续截取10段10㎝长的试件.4、体电阻、绝缘电阻测量选用一5m长的试件上测量5次。

二、抗张强度1、建立过程的数学模型:A= F(a)A---绝缘层本身具有的屈服强度a--- WDL-2型微机控制电脑拉力机测量的屈服力值除以测量面积得到的屈服强度设绝缘层本身具有的屈服强度A的测量结果为a=b/S0,A的估计值为a,则可表示为:A= F(a)此式也可认为是数学模型。

b---WDL-2型微机控制电脑拉力机测量的屈服力值S0---绝缘层的原始面积其中,a为10次独立测量的屈服强度平均值,即a=18.8N/mm21、测量不确定度分量主要包括三个部分:1.测量人员在重复性条件下进行重复测量引入的标准不确定度;2.WDL-2型微机控制电脑拉力机测量引入的标准不确定度;3.环境温度误差引起的标准不确定度。

3.1 A类标准不确定度分量评定()()12--=∑n a aa s ii =0.35N/mm 2()()2/11.0mm N na s a s i ==()=a u 10.11N/mm2用相对标准不确定度分量表示为:()%5.01=a U 911=-=n v注:1、试验时,温度为23.1°C ;3.2 B 类不确定度分量评定3.2.1 测量仪制造厂提供的说明书表明,该测量仪的准确度为I 级,意即出厂检定时,最大允许误差在其量程范围内为±1%。

由于没有更多的信息,可估计a 在〔-a --a *1%,-a + -a *1%〕区间内,即在〔18.61N/mm 2,18.99N/mm 2〕范围内都可能出现,且出现的机会在区间内各处均等。

继电保护测试仪出厂检验报告

继电保护测试仪出厂检验报告

JL5005微机继电保护测试仪出厂试验报告
出厂编号:
一、电压输出
4、保护功能
1)输出57.73V,用导线短接输出端口,面板对应故障指示灯亮。

2、准确度
10S
4、功率测量
输出电流接滑线电阻,用万用表交流电压档监测输出端口电压值,同时用示波器监测端口负载波形,取最大电压且波形不畸变时计算功率,计算公式:P=I*U
5、保护功能
1)输出端口开路,面板对应故障指示灯亮。

三、直流输出
1、直流电压输出
进入交流试验程序,选择“自动”输出,用导线短接开入量端口,观察软件是否计时并
五、开关量输出检测
进入交流试验程序,依次选择各开出量并点击软件输出,用万用表二极管档检测开出量端口是否导通。

六、整机输出检测
短接电流输出端口,同时输出电流5A,电压57.73V, 二小时后开主机箱检测温度是否正常。

检验结论:合格
检验员:
扬州金力电气有限公司
年月日。

2015年继电保护装置分析评估报告

2015年继电保护装置分析评估报告

继电保护装置分析评估报告摘要:在社会经济以及电力事业的不断发展的情况下,我国人民的需电量逐渐提升,在供电安全性、可靠性与稳定性方面也提出了更高的管理要求。

然而,电力系统是一个极为复杂的系统,其牵扯的方面较多,任何一个分支系统的破损都会影响到电力系统的正常运转,而其负面影响轻则降低居民用电质量,重则危及到人员生命安全。

电力继电保障技术中能够在极短的时间内对故障元件进行监测与切除,有效解决了运转人员在发现与切断故障元件过程中时间上的限制性,对电力系统的正常运转起着不可忽略的重要促进作用。

基于此,本文就电力系统机电保障可靠性进行分析与研究。

关键词:电力系统;继电保护;可靠性引言现阶段,随着国内市场经济的不断推进,电力工程建设的规模也越来越大,整个电力系统的复杂程度也越来越大,覆盖的整体范围也越来越广,电力系统内部所使用的电力系统设备也越来越高,设备运转的精细度也越来越高。

这在很大程度上就导致电力系统内部继电保障在整个电力系统中的作用也越来越大,人们对于继电保障装置运转的可靠性的管理要求也越来越高。

因此,全面的实现电力系统内部继电保障可靠性的分析,有着较为重要的理论和电力工程实际意义。

一、继电保障的性能管理要求继电保障的主要任务是及时切除故障元件,以及与自动装置(如重合闸、备自投等)配合调整电网运转方式。

但众所周知,电力系统的特点是发、输、供、配、用同时完成,系统具有高度耦合性和复杂性。

因此,继电保障要完成设定任务,除了其接线必须正确之外,还应具备以下性能:(一)选择性。

保障配置一般按主保障、后备保障双重化原则考虑。

所谓保障的选择性,是指当设备故障时应该由该设备的主保障予以切除故障,只有当主保障拒动时,才允许由后备保障切除故障。

否则会造成停电范围扩大化。

(二)可靠性。

继保装置由大量电子器件搭接而成,所谓可靠性就是指这些电子器件集合体执行指令的可靠程度,也就是管理要求不误动、不举动。

该性能是对继保装置的最基本管理要求。

不确定度评定报告_2

不确定度评定报告_2

不确定度评定报告1、测量方法由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。

2、数学模型 数学模型A=A S +δ式中:A —频率计上显示的频率值A S —参考频率标准值;δ—被测与参考频标频率的误差。

3、输入量的标准不确定度3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。

标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为()s A u =a/k =1.2×10-2Hz()=rel s A u 1.2×10-2/107=1.2×10-93.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2)u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。

对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。

由测量列计算得算术平均值 ∑==ni i f n f 11=9999999.6442Hz,标准偏差 ()Hz n ffs ni i00091.0121=--=∑=标准不确定度分量u(δ3)=0.00091/=0.00029Hzu(δ3)rel =2.9×10-114 合成标准不确定度评定 主要标准不确定度汇总表不确定度来源(i x )i a i k ()i u x标准晶振引入的标准不确定度()rel s A u 2×10-3Hz 31.2×10-10 通用计数器引入的标准不确定度分量()1δu2.5×10-2Hz31.5×10-9被测石英晶体振荡器测量重复性()rel u 2δ0.00091Hz 12.9×10-11输入量A S 、δ1、δ2相互独立,所以合成标准不确定度为u c (A)= 922212105.1)()()(-⨯=++δδu u A u S5 扩展不确定度评定 取k=2,则 扩展不确定度为U rel =k ×u c =2×1.5×10-9=3×10-96测量不确定度报告f =f 0(1±3×10-9)Hz ,k=2不确定度评定报告1、测量方法由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档