第十二章 光学--13计算机

合集下载

光学第12章_干涉和干涉系统-2010精简

光学第12章_干涉和干涉系统-2010精简


这个范围大则空间相干性好;范围小则空间相干性差.
右图中光源尺寸一定, 干涉孔径角即确定,孔 径角内的两点,距离愈 近,相干性愈好;角外 的两点不相干。
S1

S1
S2
S 2
三、光源非单色性的影响和时间相干性
光程差ΔL越大,折射光越落 后于反射光。ΔL过大,将超 过列波长度L。这时a、b光将 无法进行相干叠加。
劈尖
不规则表面
利用劈尖的等厚干涉可以测量很小的角度。
如: 今在玻璃劈尖上,垂直入射波长为 5893Å 的钠光, 测得相邻暗条纹间距为 5.0mm,若玻璃的折射率为 1.52,求此劈尖的夹角。
检查立方体
标 准 角 规 标 准 角 规
被检体
被检体
干涉膨胀仪
装置
C:铟钢作成的,热 膨胀极小; M:被检体。 M
相邻条纹的角间距:
n 1 2 2n' 1N h
反比于角间距,中心条纹疏,呈里疏外密分布。 反比于h,厚度越大,条纹越密。
透射光的等倾条纹
可见度降低,与反射互补
三、楔形平板产生的等厚干涉
(一)定域面和定域深度
油膜上的彩色条纹即为厚度很小时的等厚干涉条纹
(二)楔形平板产生的等厚条纹
在双孔后的空间,是相干光波的交叠区,形成干 涉.这种干涉,相干光波来自同一原子的发光,叫做 自相干.
双光束干涉,干涉场中某点的光强,与该点到两 光源的距离有关.因此,光强有稳定的空间分布. 在干涉场中距离双孔不太近,又不太远的区域, 处处有干涉.这种干涉称为不定域干涉.
2. 屏幕上光强分布规律 屏幕上P点光强为:
2 2 2 2

2 A1 A2 A1 A2
2 2
振幅相等:K=1 目视干涉仪:K>0.75 好 K>0.5 满意 K=0.1 可辨认

物理光学13第十三次课球面波干涉和分波面双光束干涉

物理光学13第十三次课球面波干涉和分波面双光束干涉

其中I1(P)和I2(P)分是S1和S2单独在P点产生的强度。
(20 10 ) 是初始位相差,它是常量。
(L2 L1)
(29)
是P点对S1和S2的光程差。
余弦函数的宗量是P点相对于光源点S1和S2的位相差。
7
2、干涉场的分析
y P(x, y, z)
(1)、等强度面与等光程差面
d2
S2
-l/2
一、两束球面波的干涉
内容
1、概述 2、光程和光程差 3、干涉场的分析
(1)、等强度面与等光程差面 (2)、干涉级、极值强度面和局部空间频率 4、二维观察屏面上干涉条纹的性质 (1)、观察屏沿着y轴并垂直于y轴放置 (2)、观察屏沿着x轴并垂直于x轴放置
1
1、概述
同平面波一样,球面波也是最基本的简单光波,而且在 实际中,球面波比平面波更加普遍,因此了解球面波的 干涉也是极其必要的。 两束球面波在空间相遇叠加,如果要产生稳定的干涉现 象,它们也要满足前面讲述的三个基本条件,即在相遇 点波振动方向不垂直,两束球面光波的频率相同,初始 位相差恒定,满足这种条件的球面波称为相干球面波。 我们知道点光源发射球面波,如果两个点光源发射的球 面波叠加时能够产生干涉现象,可以称这两个点光源为 相干点光源。
O
I (P) I1(P) I2(P) 2 I1(P)I2(P) cos2m z
最大强度面与整数 m 相对应, 最小强度面与半整数 m 相对应。
d1
S1
l/2 x
(28)式仍表明干涉场的强度分布近似是光程差Δ或干涉级 m 的周期函数; 但是因为Δ和 m 不再与考察点位置坐标成正比,所以干涉场强度分布不具 有空间周期性。
杨氏条纹的强度分布
x
22

大学物理第十二章波动光学

大学物理第十二章波动光学

[](A)(B)2第12章波动光学、选择题1.如T12-1-1图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 片和n 3,已知n 1 n 2 n 3 .若波长为 入的单色平行光垂直入射到该薄膜上,则从薄膜上、下 两表面反射的光束①与②的光程差是: [](A) 2n ?e (B) 2n ?e 1 2 (C) 2n 2(D) 2n ?e -2n 2径S 1P 垂直穿过一块厚度为t 1 ,折射率为n 1的一种介质; 路径S 2P 垂直穿过一块厚度为t 2的另一介质;其余部分3.在相同的时间内,一束波长为的单色光在空气和在玻璃中[ ](A)传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等2.女口 T12-1-2图所示, S 1、S 2是两个相干光源, 他们到P 点的距离分别为 r 1和r 2 .路可看作真空. 这两条光路的光程差等于: [](A) (「2 匕上)(「nd 1) (B) [r 2 (n 2 1)t 2][「1 (n 2 1)h](C) (「2匕上2)(A n 缶)(D) n 2t 2S 2T12-1-2 图[](A)(B)2(D) 传播的路程不相等,走过的光程不相等4.频率为f的单色光在折射率为n的媒质中的波速为其光振动的相位改变了2 n f ](A)vv,则在此媒质中传播距离为I2 n vf(B) T (C)2 n nlf vlf(D)厂5.波长为的单色光在折射率为n的媒质中由到b点的几何路程为:a点传到b点相位改变了,则光从a点(C) (D) n6.真空中波长为的单色光,在折射率为n的均匀透明媒质中从a点沿某一路径传到b 点.若将此路径的长度记为I, a、b两点的相位差记为,则[](A) 2则合光照在该表面的强度为8. 相干光是指 [](A)振动方向相同、频率相同、相位差恒定的两束光 (B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9.两个独立的白炽光源发出的两条光线 ,各以强度I 照射某一表面•如果这两条光线同时照射此表面,则合光照在该表面的强度为10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [](A)传播方向相同 (B)振幅相同 (C)振动方向相同(D)位置相同n i 和n 2 (n i v n 2)的两片透明介质分别盖住杨氏双缝实验13. 在杨氏双缝实验中,若用白光作光源3 [](A) l , 3 n 2 3 (C) l ,3 n2n33n n (B) l2n , (D) l 3—n , 3n n27. 两束平面平行相干光,每一束都以强度 I 照射某一表面,彼此同相地并合在一起[ ](A) I(B) 21 (C) 41 (D) 2I [](A) I (B) 2I(C) 4I(D) 8I11.用厚度为d 、折射率分别为 中的上下两缝,若入射光的波长为 此时屏上原来的中央明纹 处被第三级明纹所占据 则该媒质的厚度为[](A) 3(B)3 n 2 n 1(C) 22 (D)n 2 n 112. 一束波长为的光线垂直投射到一双缝上,在屏上形成明、暗相间的干涉条纹则下列光程差中对应于最低级次暗纹的是 (B)2(C) (D)T12-1-11 图T12-1-21 图[ ](A)中央明纹是白色的 (C)紫光条纹间距较大干涉条纹的情况为(B)红光条纹较密 (D)干涉条纹为白色T12-1-21 图[](A)缝屏间距离,则条纹间距不变 (C) 入射光强度,则条纹间距不变(B)双缝间距离,则条纹间距变小 (D)入射光波长,则条纹间距不变 20. 在保持入射光波长和缝屏距离不变的情况下 [](A)干涉条纹宽度将变大 (C)干涉条纹宽度将保持不变,将杨氏双缝的缝距减小,则 (B)干涉条纹宽度将变小(D)给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻 璃形成玻璃劈形膜;一个由玻璃中的空气形成空劈形膜•当用相 同的单色光分别垂直照射它们时,从入射光方向观察到干涉条纹 间距较大的是14. 在双缝干涉实验中,屏幕 E 上的P 点处是明条纹•若将缝S 2盖住,并在S ,S 2连线的垂直平面出放一反射镜 M ,如图所示,则此时[](A)P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹T12-1-14图15.在双缝干涉实验中, 入射光的波长为 ,用玻璃纸遮住双缝中的一个缝, 若玻璃纸中光程比相同厚度的空气的光程大 2.5,则屏上原来的明纹处 [](A)仍为明条纹(C)既非明条纹也非暗条纹(B)变为暗条纹(D)无法确定是明纹还是暗纹16.把双缝干涉实验装置放在折射率为 D (D d ),所用单色光在真空中的波长为是: D n D [](A) (B)nddn 的水中,两缝间距离为d,双缝到屏的距离为 ,则屏上干涉条纹中相邻的明纹之间的距离(C)d nD(D)D 2nd17.如T12-1-17图所示,在杨氏双缝实验中,若用一片厚度为 装置中的上面一个缝挡住;再用一片厚度为d 2的透光云母片将 下面一个缝挡住,两云母片的折射率均为 n, d 1>d 2,干涉条纹的变化情况是 [](A)条纹间距减小(B)条纹间距增大 (18. 在杨氏双缝实验中,若用一片能透光的云母片将双缝装 置中的上面一个缝盖住,干涉条纹的变化情况是 [ ](A)条纹间距增大 (B) 整个干涉条纹将向上移动 (C)条纹间距减小(D)整个干涉条纹将向下移动T12-1-18 图19.当单色光垂直照射杨氏双缝时 ,屏上可观察到明暗交替的干涉条纹•若减小d 1的透光云母片将双缝T12-1-17 图[](A) d 1 d o ,d 2 d o 3(B) d 1 d o , d 2 d o 3(C) d 1do2,d2 do(D) d1 do孑d2 do(B) 明纹间距逐渐变小,并向劈棱移动 (C) 明纹间距逐渐变大,并向劈棱移动 (D) 明纹间距逐渐变大,并背向劈棱移动 24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射•若上面的平 玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [](A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移 (C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移25.检验滚珠大小的干涉试装置示意如 T12-1-25(a)图.S 为光源,L 为汇聚透镜,M为半透半反镜.在平晶T i 、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为d o •用 波长为 的单色光垂直照射平晶,在 M 上方观察时观察到等厚条纹如 T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径d 1、C 珠的直径d 2与d 0的关系分别为:[ ](A)玻璃劈形膜(C)两劈形膜干涉条纹间距相同(B)空气劈形膜(D)已知条件不够,难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜 的变化情况为,如果波长逐渐变小,干涉条纹](A)明纹间距逐渐减小 并背离劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中 方向可以察到干涉条纹的变化情况为 若慢慢地减小劈形膜夹角,则从入射光[](A)条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化T12-1-23 图aaaaaaET12-1-25(a)图T12-1-25(b)图26•如T12-1-26(a)图所示,一光学平板玻璃 A 与待测工件B 之间形成空气劈尖, 用波长=500nm(1 nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如 T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部27.设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动 ,当透镜向上平移(即离开玻璃板)时,从入射光方向可观察到干涉条纹的变化情况是 [](A)环纹向边缘扩散,环纹数目不变 (B)环纹向边缘扩散,环纹数目增加 (C)环纹向中心靠拢,环纹数目不变(D)环纹向中心靠拢,环纹数目减少28.牛顿环实验中,透射光的干涉情况是[](A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环(C) 中心亮斑,条纹为内密外疏的同心圆环(D) 中心亮斑, 条纹为内疏外密的同心圆环(平凸透镜的平面始终保29.在牛顿环装置中 ,若对平凸透镜的平面垂直向下施加压力持与玻璃片平行),则牛顿环[](A) 向中心收缩 ,中心时为暗斑,时为明斑,明暗交替变化H 1 H 1(B) 向中心收缩 ,中心处始终为暗斑(C) 向外扩张,中心处始终为暗斑(D)向中心收缩 ,中心处始终为明斑 T12-1-29 图30. 关于光的干涉,下面说法中唯一正确的是[](A)在杨氏双缝干涉图样中,相邻的明条纹与暗条纹间对应的光程差为 一2(B) 在劈形膜的等厚干涉图样中,相邻的明条纹与暗条纹间对应的厚度差为一2(C) 当空气劈形膜的下表面往下平移时,劈形膜上下表面两束反射光的光程差2将增加一2(D) 牛顿干涉圆环属于分波振面法干涉31.根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面[](A) 不平处为凸起纹,最大高度为 500nm(B)不平处为凸起纹, 最大高度为 250nm(C) 不平处为凹槽,最大深度为 500nm 分的切线相切.则工件的上表面缺陷是 (D)不平处为凹槽,最大深度为250nmT12-1-26(a)图T12-1-26(b)图半径R 的关系式d k 工可知,离开环心越远的条纹2R[ ](A)对应的光程差越大,故环越密 (B)对应的光程差越小,故环越密 (C)对应的光程差增加越快,故环越密(D)对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜 放在平玻璃上,则干涉条纹的形状 [ ](A)为内疏外密的圆环(B)为等间距圆环形条纹 (C)为等间距平行直条纹(D) 为以接触线为中心,两侧对称分布,明暗相间,内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的•这是因为: [](A)牛顿环的条纹是环形的(B)劈尖条纹是直线形的 (C)平凸透镜曲面上各点的斜率不等(D)各级条纹对应膜的厚度不等34•如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的 光束发生干涉.若薄膜的厚度为e ,且n i < n 2 > n 3,为入射光在折射率为 n i 的媒质中的波35.用白光垂直照射厚度 折射率为n 1,薄膜下面的媒质折射率为 n 3 •则反射光中可看到的加强光的波长为:37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: ](A)增大劈形膜夹角 (B) (C)换用波长较短的入射光(D)38. 若用波长为的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放长,则两束反射光在相遇点的相位差为: 4 n2 n n 2 [](A)e(B)e n4 n r>24 n(C) e n(D)-ee = 350nm 的薄膜,若膜的折射率 n 2 = 1.4 ,薄膜上面的媒质n 3, 且 n 1 < n 2 <](A) 450nm (C) 690nm(B) 490nm (D) 553.3nmT12-2-35 图n i36. 已知牛顿环两两相邻条纹间的距离不等. 不可行的是如果要使其相等 ,以下所采取的措施中](A)将透镜磨成半圆柱形(C)将透镜磨成三棱柱形(B)将透镜磨成圆锥形 (D)将透镜磨成棱柱形增大棱边长度换用折射率较小的液体入厚度为I 、折射率为n 的透明薄片•放入后,干涉仪两条光路之间的光程差改变量为 [](A) ( n-1) I(B) nl(C) 2 nl(D) 2( n-1)139. 若用波长为 的单色光照射迈克尔逊干涉仪 ,并在迈克尔逊干涉仪的一条光路中放入一厚度为I 、折射率为n 的透明薄片,则可观察到某处的干涉条纹移动的条数为 [ ](A) 4(n 1)-(B)(C)2(n 1)- (D) (n 1)丄40.如图所示,用波长为的单色光照射双缝干涉实验装置,若将一折射率为 n 、劈角为 的透明劈尖b 插入光线2中,则当劈尖b 缓慢向 上移动时(只遮住S 2),屏C 上的干涉条纹 [](A)间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动(D) 间隔不变,向上移动41.根据惠更斯--菲涅耳原理,若已知光在某时刻的波阵面为S,则S 的前方某点P 的光强度取决于波阵面 S 上所有面积元发出的子波各自传到 P 点的[](A)振动振幅之和 (C)光强之和(B)振动振幅之和的平方 (D)振动的相干叠加42.无线电波能绕过建筑物,而可见光波不能绕过建筑物.这是因为 [](A)无线电波是电磁波 (B)光是直线传播的(C)无线电波是球面波(D)光波的波长比无线电波的波长小得多43.光波的衍射现象没有显著,这是由于[](A)光波是电磁波,声波是机械波 (B)光波传播速度比声波大(C)光是有颜色的(D)光的波长比声波小得多a 的单缝上,缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上,若整个实验装置浸入折射率为 n 体中,则在屏上出现的中央明纹宽度为的液 ](A)na2f (C)na(B) (D)na 2nf亠L L J口 I -IT12-1-44 图T12-1-40 图44.波长为的单色光垂直入射在缝宽为45. 在单缝衍射中,若屏上的P 点满足a sin ](A)第二级暗纹 (B) (C)第二级明纹 (D) 46.在夫琅和费单缝衍射实验中,欲使中央亮纹宽度增加,可采取的方法是 [](A)换用长焦距的透镜 (B)换用波长较短的入射光=5/2则该点为第五级暗纹 第五级明纹(C)增大单缝宽度 (D)将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ](A)各级亮条纹亮度相同 (B) 各级暗条纹间距不等 (C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时,中央亮纹两侧为由红到紫的彩色条纹 48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中 心位置不变,各衍射条纹 [ ](A)对应的衍射角变小 (B)对应的衍射角变大 (C)对应的衍射角不变 (D)光强也不变 49. 一束波长为 的平行单色光垂直入射到一单缝 在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第- AB 上,装置如 T12-1-49图所示, 个暗纹所在的位置,则 BC 的长度为 [ ](A) (B)- 23 c (C) (D) 2 250.在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹 [ ](A)宽度变小 (B)宽度变大 (C)宽度不变,且中心强度也不变 (D)宽度不变,但中心强度增大 51.在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很 小.若单缝a 变为原来的 3 -,同时使入射的单色光的波长 2 3变为原来的 -,则屏幕E 上的单缝衍射条纹中央明纹的 4宽度△x 将变为原来的T12-1-51 图[](A) 44 倍 4 2 9 1 (B)-倍 (C) 9 倍 (D)-倍 3 8 2 52. 一单缝夫琅和费衍射实验装置如 T12-1-52图所 示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时, 衍射图样将 [ ](A)向上平移 (B)向下平移 (C)不动(D)消失T12-1-52 图55.在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕 央衍射条纹将 [](A)变宽,同时上移 (B) 变宽,同时下移 (C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽 300 nm 、中心间距为 直照射时,屏幕上最多能观察到的亮条纹数为: [](A) 2 条(B) 3 条57. 白光垂直照射到每厘米有5000条刻痕的光栅上,若在衍射角 =30。

第十二章-光的偏振

第十二章-光的偏振

Is/2 Is/2
不变暗
偏振光 自然光 Is Is/2
I0/2
变暗
3)马吕斯定律 3)马吕斯定律
自然光 Is P1 I /2= I P2 s 0
变暗 Is/2 E//
α
E0
E⊥
的偏振化方向间的夹角不为0, 若P1 P2的偏振化方向间的夹角不为 ,也不 为90度,则出射的光强为多少? 度 则出射的光强为多少? 设自然光通过P 后的振幅为E , 设自然光通过 1后的振幅为 0,则光强 振动分解有: 振动分解有:
tan i0 =
in
2
入射面的振动,变为线偏振光 入射面的振动 变为线偏振光. 变为线偏振光 注意直于
n1 n2
i0
r0
这个特定的角称为 布儒斯特角; 布儒斯特角; 此时折射光仍为 部分偏振光; 部分偏振光; 入射角为起偏振角 时,反射光与折射 光互相垂直。 光互相垂直。
1 I0 4
1 1 2 2 I = ( I0 ) cos α = I0 cos 45 2 2 1 22 1 = I0 ( ) = I0 2 2 4
例:两个偏振片叠加放 在一起,强度为 I 0的自然光垂直入射其上 , 若通过两个偏振片后的 光强为I 0 / 8,则此两偏振片的偏振 化方 向间的夹角(取锐角) 是 ______ ,若在两片之间再插入 一片 偏振片,其偏振化方向 与前后两片的偏振化方 向的夹角(取锐 角)相等,则通过三个 偏振片后的透射光强度 为 _________ 。
1)线偏振光 :光矢量 只限于垂直于传播方向的某 ) 光矢量E只限于垂直于传播方向的某 一确定平面内的光(又称为平面偏振光)。 一确定平面内的光(又称为平面偏振光)。 X Z E Y 表示: 表示: X

高考物理一轮总复习(鲁科版)课件:第十二章实验十三

高考物理一轮总复习(鲁科版)课件:第十二章实验十三

-10所示.在一圆盘上,过其圆心O作两
条互相垂直的直径BC、EF,在半径OA
上,
栏目 导引
第十二章

电磁波
相对论
垂直盘面插下两枚大头针P1、P2并保持 P1、P2位置不变,每次测量时让圆盘的
下半部分竖直进入液体中,而且总使得
液面与直径BC相平,EF作为界面的法线 ,而后在图中右上方区域观察P1、P2的 像,并在圆周上插上大头针P3,使P3正好 挡住P1、P2,同学们通过计算,预先在圆
同学利用插针法确定入射光线、折射光
线后,测得的入射角和折射角都没有受
到影响,因此测得的折射率将不变.
图12-4-9
栏目 导引
第十二章

电磁波
相对论
(2)如图乙所示,乙同学利用插针法确定 入射光线和折射光线后,测得的入射角 不受影响,但测得的折射角比真实值偏
大,因此测得的折射率偏小.
【答案】 (1)不变 (2)偏小

电磁波
相对论
(2)图中P4对应的入射角大于P3所对应的 入射角,所以P4处对应的折射率大. (3)因A、O、K在一条直线上,入射角等
于折射角,所以K处对应的折射率为1.
【答案】 (1)1.73 (2)P4 (3)1
栏目 导引
第十二章

电磁波
相对论
知 能 优 化 演 练
栏目 导引
第十二章

电磁波
3.把长方形的玻璃砖放在白纸上,使它的
一条边跟aa′对齐,并画出玻璃砖的另一
界面bb′.
栏目 导引
第十二章

电磁波
相对论
4.在AO线段上竖直地插上两枚大头针P1 、P2.
5.在玻璃砖的bb′一侧竖直地插上大头针

物理光学第9讲_第十二章 第四节 平板的双光束干涉(干涉条纹的定域、平行平板产生的等倾干涉)_2015-10-14

物理光学第9讲_第十二章 第四节 平板的双光束干涉(干涉条纹的定域、平行平板产生的等倾干涉)_2015-10-14
2
1、等倾干涉
在所有反射光和透射光中,相互平行的光将汇聚在无穷远处,则它 们的干涉也将在无穷远处发生。若在平行平板上面置一凸透镜,如 图所示,在该透镜的焦平面处置一观察屏,则凡是在屏上能够相遇 而进行叠加的光,都是平行射向透镜的,即这些进行干涉的光相对 于透镜的光轴有相同的倾角,所以这种干涉称为“等倾干涉”。
m1 N 1
2

2
m1 q
两式相减有
2n2h1 cos2 N N 1 q
1N 和 2 N 很小, n1 sin 1N n2 sin 2 N
1 cos 2 N
1N n2 n1 2N

2
2N
2 1 n1
2 2
2
2n2 h sin 2 d 2 dm 2
取dm 1, d 2 2

2n2 h sin 2
12
根据折射定律, n1 sin 1 n2 sin 2 ,取微分 n1 cos11 n2 cos 2 2
当1和2很小时, cos1 cos2 1,则有
n’
2 I I1 I 2 2 I1 I 2 cos
5
2、干涉条纹与光源大小的关系 点光源:如图所示,无论点光源处于什么位置,经平行平板的两 个面反射后,具有相等倾角的光在接受屏上形成一个圆环,这些 圆环的中心位于透镜的光轴上。
6
扩展光源:如图所示,两个不同的发光点, 发出球面波,其中凡是具有相同倾角的光, 都汇聚到接受屏上的同一点,它们具有相 同的光程差,故干涉条纹的形态与只有一 个点光源是一样的。可见,等倾条纹的位 置只与形成条纹光束的入射角有关,而与 光源的位置无关。因此,光源的扩大,只 会增加干涉条纹的强度,并不会影响条纹 的分布和可见度。

高考物理一轮总复习考点大全:第十二章核心考点:几何光学

高考物理一轮总复习考点大全:第十二章核心考点:几何光学

2、折射率
光从真空射入某种介质发生折射的时候,入射角的正 弦sin i,与折射角的正弦sin r之比值n叫做这种介质的 折射率。
sin i n sin r
理论研究和实验研究都证明:某种介质的折射率n,等 于光在真空中的速度c跟光在这种介质中的速度v之比。
c n
v
由于光在介质中的传播速度总是小于光在真空中的传 播速度,所以任何介质的折射率n均大于1。
例6、在焦距为10cm的凸透镜主轴上、距光心20cm处有一物点S, 在透镜另一侧得到S的像点S’。试分析下面各种情况的成像问题。
(1)把透镜下半部遮住。
(2)把透镜沿主轴切开,使一块在原主轴上方0.2cm,另一块在原 主轴下方0.2cm。
(3)把透镜中央截去宽度为0.4cm的部分,再将余下的两部分粘合 成一个透镜。
(4)把透镜沿主轴切开,使下半部分沿主轴右移5cm。
分析与解:(1)像是物体(光源或漫反射)射出的光线射向透镜 的所有光线经透镜后的全部折射光线的会聚点。透镜被部分遮挡后, 它的主轴、光心和焦点不会改变。当物距不变时,据成像公式可知, 像点的位置和性质是不会改变的。唯独入射光线减少了。因此,像 的亮度减弱,像的观察范围变小。其光路图如图所示。
以证明凸透镜的焦距
f L2 d2 。 4L
这就是二次成像法测凸透镜的焦距的实验原理。
【典型例题】
例1 如图所示,一个点光源S放在平面镜前, 镜面跟水平方向成30°角,假定光源不动,而 平面镜以速度v沿OS方向向光源平移,求光源S 的像S'的移动速度。
分析:利用物像对称性作出开始时光源S的像S',如图所示。
应用这三条光线中的任意两条,就可以求出发光点S的虚像S’。 物体可以看做是由许许多多的点组成的。物体上每一点都有自己的

工程光学习题参考答案第十二章 光的衍射

工程光学习题参考答案第十二章 光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。

【大学物理】第12光的偏振

【大学物理】第12光的偏振

注意: 这个特定的角称为
布儒斯特角;
n1
i0
n2
r0
此时折射光仍为 部分偏振光;
入射角为起偏振角 时,反射光与折射
光互相垂直,是完全
偏振光。
sin i0 n2 sin r0 n1 又i0 r0 90
tgi0

sin i0 cos i0
sin i0 sin r0

n2 n1
n21
i临介 arcsin
e光出射成为偏振光
1.550 1.658

70
可用于起偏和检偏 (a) S (b)S (c)S
表示两尼科耳棱镜主截面的夹角
0
0 2
2
§12—6,7椭圆偏振光和圆偏振光 偏振光的干涉
1、波片:光轴平行于晶面的双折射晶体的薄片。
2、(1)当偏振光的振动面与波片的光轴成 角 00 , 900入射到厚度为l的波片内分成o、e
P2 A2
P3 A3
(b)
因而
A3

A1
cos
cos(
2
)

A1
cos
sin

1 2
A1 sin
2
所以
I3

1 4
I1
sin2
2
又由于
I1

1 2
I0
最后得
I

1 8
I0
sin
2
2
由此可见,当不断旋转P2时,透过P3的光强将在最强(I0/8)与零 之间作周期性变化。
§12-3反射和折射时的偏振 布儒斯特定律
时a=a/2,所以
0

大学物理上第12章-波动光学-1

大学物理上第12章-波动光学-1


x1

D d
k4

k1
d x1,4 0.2103 7.5103 5107 m 500nm
D k4 k1
1
4 1
x

D d


1 6107 0.2 103
3103 m 3mm
例2. 无线电发射台的工作频率为1500kHz,两根相 同的垂直偶极天线相距400m,并以相同的相位作电 振动。试问:在距离远大于400m的地方,什么方向 可以接受到比较强的无线电信号?
5 4
d
3
暗纹: x 2k 1 D (k 1,2,)
2d
2 1
其中 k 称为条纹的级数
0 -1
屏幕中央(k = 0)为中央明纹
-2
-3
相邻两明纹或暗纹的间距:
-4
-5
x

xk 1
xk

D
d
说明:
条纹位置和波长有关,不同波长的同一级亮条 纹位置不同。因此,如果用白光照射,则屏上 中央出现白色条纹,而两侧则出现彩色条纹。
n2r2 n1r1 k
k 0,1,2, 明纹


n2 r2

n1r1

2k
1
2
k 1,2,3, 暗纹
注意:
薄透镜不引起附加的光
F
程差。
例3. 用薄云母片(n = 1.58)覆盖在杨氏双缝的其 中一条缝上,这时屏上的零级明纹移到原来的第七 级明纹处。如果入射光波长为550 nm,问云母片 的厚度为多少?
点光源 s* 镜子

M1
s1*
1 A
Ca

第十二章 光学 练习答案

第十二章 光学 练习答案

第十二章 光 学练 习 一一. 选择题1. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中( C ) (A) 传播的路程相等,光程相等; (B) 传播的路程相等,光程不相等; (C) 传播的路程不相等,光程相等; (D ) 传播的路程不相等,光程不相等。

2. 设S 1、S 2 是两个相干光源,它们到P 点的距离分别为r 1、r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于( B ) (A) )()(111222t n r t n r +-+; (B)])1([])1([111222t n r t n r -+--+;(C) )()(111222t n r t n r --- ; (D) 1122t n t n -。

3. 在双缝干涉中,两缝间距离为d , 双缝与屏幕之间的距离为D (D >> d),波长为λ的平行单色光垂直照射到双缝上,屏幕上干涉条纹中相邻暗纹之间的距离是( D ) (A) 2λD/d ; (B )λd/D.; (C) dD/λ.; (D) λD/d.。

4..用白光光源进行双缝实验, 若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝, 则( D ) (A) 干涉条纹的宽度将发生改变; (B) 产生红光和蓝光的两套彩色干涉条纹; (C) 干涉条纹的亮度将发生改变; (D) 不产生干涉条纹。

二. 填空题1. 相干光满足的条件是:1)频率相同 ;2)位相差恒定;3)振动方向相同。

2. 在双缝实验中,双缝间距变小,干涉条纹变宽。

3.在双缝实验中,波长变长,干涉条纹变宽。

4. 把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D,两缝间的距离为d(d <<D),入射光在真空中的波长为λ ,则屏上干涉条纹中相邻明纹的间距是dnD λ。

第12章 光的偏振(13年)

第12章 光的偏振(13年)
126

[ (1) Io/ Ie=3;(2) δ=4.5 μm ] (浙江工业大学 2012 年普通物理Ⅱ、2011 年普通物理,15 分; 宁波大学 09 年普通物理,15 分;浙江工业大学 09 年普通物理,15 分) 例 12-21 平面偏振光垂直入射到一个表面和光轴平行的方解石晶片上,光的振动面和晶片的主截 面成 30°角,已知方解石寻常光的主折射率为 1.6584,非寻常光的主折射率为 1.4864,试求:(1) 透 射出来的两束平面偏振光的光强比为多少? (2) 用钠光时,若寻常光与非常光要产生 90°的位相差, 晶片的厚度应为多少?(λ=5893 Ǻ) [ (1)
第十二章 光的偏振
例 12-1 若用实验的方法检验某单色光是自然光、线偏振光、部分偏振光、圆偏振光还是椭圆偏 振光,试问:(1) 要用到什么光学元件? (2) 如何鉴别? [ (1) 要用到一块偏振片和一块 λ/4 波片。 ①利用一块偏振片可将线偏振光区分出来, 但不能区分自 然光和圆偏振光,也不能区分部分偏振光和椭圆偏振光。②利用一块 λ/4 波片可把圆、椭圆偏振光 变为线偏振光,但不能把自然光、部分偏振光变成线偏振光。③把偏振片和 λ/4 波片结合起来,可 完全区分自然光、线偏振光、部分偏振光、圆偏振光和椭圆偏振光。(2) ①令入射光通过偏振片 P, 以光线前进方向为轴转动 P,观察光强度的变化:有消光位置者则为线偏振光;强度无变化则为自 然光或圆偏振光;强度有变化,但无消光的为部分偏振光或椭圆偏振光.②对自然光或圆偏振光, 令光线依次通过 λ/4 波片和偏振片 P,转动偏振片 P,强度无变化的为自然光,有消光者为圆偏振 光.③对于部分偏振光或椭圆偏振光,先转动偏振片 P,将偏振片停在透射光强度最大的位置,在 偏振片前插入 λ/4 波片,使其光轴与 P 的透振方向平行,再转动偏振片,有消光者为椭圆偏振光, 无消光者为部分偏振光.] (四川大学 09、07 年普通物理,10 分;中山大学 08 年光学,8 分; 中科院研究生院 06 普通物理 B,15 分;武汉大学 06 年普通物理,5 分) 例 12-2 怎样用一块偏振片和一块已知光轴方向的 l/4 波片,鉴别自然光、线偏振光、圆偏振光 和椭圆偏振光? 说明检测原理并画出其能量——角度的变化曲线。 (南开大学 09 年大学物理,10 分;北京理工大学 06 年大学物理,18 分) 例 12-3 用什么方法区分 1/2 波片和 1/4 波片? [ 在 1/2 波片或 1/4 波片前后各放一块偏振片 P1、P2,让自然光入射,改变 P2 的透振方向,透射光 有消光者为 1/2 波片,无消光者为 1/4 波片。] (四川大学 05 年普通物理,6 分) 例 12-4 如何利用偏振片和波晶片(1/4 波片、半波片等)将一束自然光转化为圆偏振光?又如何 利用波晶片将一线偏振光的偏振方向旋转 90 度? (暨南大学 2010 年普通物理,7 分) 例 12-5 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45°和 90°角.(1) 强度为 I0 的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏 振状态;(2) 如果将第二个偏振片抽走,情况又如何? [ (1) I1

洛阳理工学院大学物理期末考试题库(光学)

洛阳理工学院大学物理期末考试题库(光学)

第十二章 光 学一、选择题1.单色光从空气射入水中,则:A 波长变短,光速变慢B 波长不变,频率变大C 频率不变,光速不变D 波长不变,频率不变2.下列不属于相干条件的是:A .两列光有相互垂直传播的部分;B .频率相同;C .相位差恒定;D .振动方向相同3.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中 ( )(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,则此时 ( )(A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹.5.一束波长λ的单色光垂直射到空气中的透明薄膜上,薄膜的折射率为n 。

要使反射光得到干涉加强,则薄膜的最小厚度应该为( )(1)2λ (2)4λ (3)n 2λ (4)n 4λ6. 如图1所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉,若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的位相差为( )(A )λπ/n 42e (B )λπ/22e n(C )πλπ+/42e n (D )πλπ-/22e n 7. 在玻璃(折射率3n =1.60)表面镀一层2MgF (折射率2n =1.38)薄膜作为增透膜。

为了使波长为500nm (1nm =-910m )的光从空气(1n =1.00)正入射时尽可能少反射,2MgF 薄膜的最少厚度应是( )(A )78.1nm (B )90.6nm (C )125nm (D )181nm (E )250nm图18.如图2所示,两个直径有微小差别的彼此平行的圆柱体之间的距离为L ,夹在两块平板玻璃的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。

工程光学课后答案(12 13 15章)1

工程光学课后答案(12 13 15章)1

1λ十二 十三 十五第十二章 习题及答案1。

双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少?解:由杨氏双缝干涉公式,亮条纹时:d Dm λα=(m=0, ±1, ±2···)m=10时,nmx 89.511000105891061=⨯⨯⨯=-,nmx 896.511000106.5891062=⨯⨯⨯=- m x x x μ612=-=∆2。

在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一片折射率 1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。

21r r l n =+∆⋅22212⎪⎭⎫⎝⎛∆-+=x d D r 22222⎪⎭⎫⎝⎛∆++=x d D r x d x d x d r r r r ∆⋅=⎪⎭⎫⎝⎛∆--⎪⎭⎫ ⎝⎛∆+=+-222))((221212mm r r d x r r 2211210500512-=⨯≈+⋅∆=-∴ ,mm l mm l 2210724.110)158.1(--⨯=∆∴=∆- 3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276.10=n 。

试求注入气室内气体的折射率。

0008229.10005469.0000276.1301028.6562525)(600=+=⨯⨯=-=-∆-n n n n n l λ4。

垂直入射的平面波通过折射率为n 的玻璃板,透射光经透镜会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面的直线发生光波波长量级的突变d,问d 为多少时焦点光强是玻璃板无突变时光强的一半。

工程光学习题解答 第十二章 光的衍射

工程光学习题解答  第十二章 光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 1 1 2 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1)(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。

问细丝直径是多少解:设直径为a ,则有f d aλ=93632.8100.030.01261.510fa mm d λ--⨯⨯===⨯ 4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2ab =时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。

12第十二章燃烧诊断技术

12第十二章燃烧诊断技术

双曝光全息干涉法:将来自激光器的光束 分成两路光束,他们分别进行扩束和准直 后重新汇聚在全息干板上。其中一束穿过 被测物场,为物光束;另一束为参考光束 。参考光束与物光束相干,在全息干板上 记录下物光全息信息。全息干板经两次曝 光,每一次曝光记录一个物光波。第一次 曝光时物场是均匀的,即没有待测物场; 第二次曝光时物光穿过待测物场。
LIF通过高能量的脉冲激光器激发标志分子 的荧光,应用强度开启CCD相机,通过适 当选择标志分子,可以获得流体定量参数 的二维图形。根据图形得到有关标志分子 浓度的定性测量和随时间变化的扰动,来 研究燃烧过程。
在实际测量时,LIF图像所能感受的燃烧参 数包括温度、组分浓度、速度、压力和密 度。一旦获得这种2D场测量参数,即可计 算其它量。
实时全息干涉法:首先记录一张位相物体 未变化时物光波标准波面的全息图。经显 影、定影处理后,将该全息图准确复位于 光路中的原来位置。然后,用位相物体变 化后的被测试物光与参考光同时照射全息 图,使直接透过全息图的测试物光波与全 息图所再现的原始物光波相互干涉,从而 获得实时全息干涉图。依据该干涉图上条 纹的变化情况确定被测物理量。
激光拉曼散射诊断技术的一个重要特点是 具有很高的空间和时间分辨率。因此,自 发拉曼散射技术目前已广泛用于“清洁” 火焰的燃烧研究中。
C激A光R束S法(测泵量浦原Pu理m为p和:斯当托两克束斯频S率to为keωs激p和光ω束s的)高聚能焦 在一点,入射到被测介质中时,通过分子中的非线 性过程互相作用产生第3束类似于CARS光束的偏振 光一,共其振频 谱率 线为 ,且ωR满。足如非果线ωR性=2光ω学p-ω中s正的好相是位分匹子配的条某件 ,以那对么燃烧ωR组频分率成的分光进会行极鉴大别地。增最强后。,用通这过一对信检号测就光可 谱与已知其温度的理论光谱的比较,就可以得到燃 烧温度。通过与配置的标准浓度的光谱的比较,可 得气体组分的浓度。要执行这些反复迭代的最小二 乘法计算程序,还需要具备相当的计算能力,这就 是CARS法。

第十二章光的波动

第十二章光的波动

双 折o
e
n sin i n0 sin i0
射 现
不遵守折射定律—非常光(e)— ne

主速度、主折射率
沿光轴方向e、
Z o光速度相同 Z

晶 体
ve
vo ve
ne c / ve
负 晶 vo 体
ve 称晶体的e光主速度,相应的折射 ne=c/ve 称晶体的e光主折射率.
(3) 二向色性晶体 对o 光和e 光的吸收有很大差异。
光强极小 2k 1
s 2k 1
2
k 1,2...
(12-13)
例题12-2 杨氏双缝实验中,d=0.45mm, D=1.0m, 用
n=1.5, h=9.0um的薄玻璃盖窄缝S2,接受屏上干涉条纹 将发生什么变化?
x
s (nh r2 h) r1 h(n 1) (r2 r1)
h(n 1) d x D
获得相干光源方法:
分波阵面 法 具有确定相差 的波阵面上的两个次级子光 源是相干的
•• •

分振幅干涉法
I入
I反
I透
I ()Eo2
二、杨氏双缝实验
1 现象
y1
A
cos2
t T
r1
y2
Acos2
t T
r2
1
2
2 (r2 r1)
(12-1)
I I1 I2 2 I1I2 cos
干涉加强 2k r2 r1 k k 0,1,2 (12-2)
垂直入射:
S 2n2d
( )
2
(12-15)
例题12-3 玻璃 n1=1.5, 镀MgF2 n2=1.38,放在 空气中,白 光垂直射到膜的表面,欲使反射光中,对人眼和照相机底片最

第十二章光催化性能评价

第十二章光催化性能评价

第十二章光催化性能评价研究方法本章重点介绍在光催化机理、降解产物分析和性能评价研究中所涉及到的各种表征方法。

光催化机理是物理化学研究所关注的领域,在本章中重点介绍了各种光电化学测量手段在光催化机理研究中的应用,除此外也介绍了光生载流子寿命以及活性物种的研究方法;对于光催化降解产物的研究一直是环境化学所关注的重要问题,在这里介绍了不同分析方法(色谱、质谱、色质联用等)在中间产物分析中的应用;光催化材料性能的表征是评价光催化材料及其制备工艺优劣的关键,不仅在理论研究中获得广泛的关注,而且随着光催化技术的迅速发展和广泛的工业化应用,光催化性能标准测试方法的建立是实现不同光催化材料和光催化材料制备工艺评价的基础。

12.1 光催化机理研究光催化污染物的降解是一个复杂的物理化学过程,涉及到光能吸收、光生电荷分离和界面反应等环节,只有当光激发载流子(电子和空穴)被俘获并与电子给体/受体发生作用才是有效的。

在研究光生电荷产生、迁移及复合相关的机理时,需要多种测试手段的相互辅助。

这些检测技术如果按照检测参数可以分为:(1)光生电荷产生:吸收光谱法;(2)电荷密度与传输过程特性:电子自旋共振(ESR)、光谱电化学法、电化学I-V法、阻抗谱、表面光伏/光电流技术;(3)寿命与复合,产生辐射、声子或者能量传递给其它载流子:载流子辐射度测量、荧光光谱技术、光声/光热测量、表面能谱技术等等。

对于光催化机理的研究是深入认识光催化材料性能及光催化过程的基础,但由于所涉及到的技术手段较多,不同技术涉及到的机理及表征方法各不相同,故在本章中仅介绍文献中常用的技术方法。

12.1.1 紫外-可见漫反射光谱法在光催化研究中,半导体光催化材料高效宽谱的光吸收性能是保证光催化活性的一个必要而非充分的条件,因此对于光催化材料吸收光谱的表征是必不可少的。

半导体的能带结构一般由低能价带和高能导带构成,价带和导带之间存在禁带。

当半导体颗粒吸收足够的光子能量,价带电子被激发越过禁带进入空的导带,而在价带中留下一个空穴,形成电子-空穴对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
退出
二、光程差
例:两相干波源S1 、S2产生相 干波叠加


2 πr2
0 0 光程差: n2 r2 n1r 1
相位差和光程差的关系:
2 πn2 r2
2

2 πr1
1

2 πn1r1


0
(n2 r2 n1r1 )
0 ----真空中的波长
2 π 0
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
例题12-5 为了测量金属细丝的直径,把金属丝夹在 两块平玻璃之间,形成劈尖,如图所示,如用单色光 垂直照射 ,就得到等厚干涉条纹。测出干涉条纹的 间距,就可以算出金属丝的直径。某次的测量结果为 :单色光的波长 =589.3 nm,金属丝与劈间顶点间 的距离L=28.880 mm,30条明纹间的距离为4.295 mm,求金属丝的直径D?
光波中的电场矢量 E 称为光矢量。
E2
E
• 两个同频单色光的叠加:
E1 E10 cos(t 10 ) E2 E20 cos(t 20 )
E E1 E2 E0 cos( t 0 )
2 10 2 20
20 0
10
E1
E0 E E 2E10 E20 cos 20 10
返回
退出
干涉的光强分布:
I I1 I 2 2 I1I 2 cos
I Imax
I max I1 I 2 2 I1I 2
Imin -4p -2p
I min I1 I 2 2 I1I 2

0
I
2p 4p
I 4 I1 cos 2 I max 4 I1
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
返回
退出
夹角变大,条纹变密 条纹向左移动
n 1 1 d 2n2 d (k ) k 0,1, 2, n2 2 n3 玻璃 n3=1.5 (2k 1) d 4n2 氟化镁(MgF2, n2=1.38)为增透膜 增透膜的最小厚度: d 4n2
镀膜时使膜的光学厚度nd为入射波长的1/4或1/4的奇数
倍时,则反射光干涉相消,透射光干涉相长。
2
I1 I 2
-4p -2p
0
2p 4p
返回
退出
四、相干光的获得方法
采用特殊装置获得相干光:把由光源上同一点发出的 光设法“一分为二”,然后再使这两部分叠加起来。 分波阵面法:由于同一波阵面上 各点的振动具有相同的相位,所 以从同一波阵面上取出的两部分 S * 可以作为相干光源(杨氏双缝)。 分振幅法:当一束光投射到两种介 质的分界面上时,一部分反射,一 部分透射,随着光能被分成两部分 或若干部分,光的振幅也同时被分 成几份(薄膜干涉)。
解:原七级明纹 P 点处
r2 r1 7
插入云母后,P点为零级明纹
d S1 S2
r1
P
r2
0
r2 r1 d nd 0
7 d n 1 7 6 d 6.6 10 m n 1
返回
退出
§12-5 薄膜干涉
一、等倾干涉条纹
光经薄膜上下两表面反射后相互叠加 所形成的干涉现象,称为薄膜干涉。—— 分振幅法。 可分成等倾干涉和等厚干涉两类。 光照射到表面平整、厚度均 匀的薄膜上产生的干涉条纹, 称等倾干涉条纹。 半波损失 • 对于两反射光a和b: a
返回
退出
三、物像之间的等光程性
光路中插入薄透镜不会产生附加的光程差。
返回
退出
四、反射光的相位突变和附加光程差
半波损失:光从光疏介质到光密介质的分界面上反射 时,反射光有 p 相位突变,相当于一个附加光程差 。 2 折射光在任何情况下不会有相位突变。
思考:如图所示,比较反射光1,2的附加相位差 和透射光1′,2′的附加相位差.(非常重要) 1
2n2 d (k 1 2 )
1 膜厚, d k 2 2n2
k=0,1,2…….
令k=0得增透膜得最薄厚度:
d min

4n2
100nm
例题12-4 在观察某薄膜(薄膜的折射率 n 1.5 )的反 射光时呈现绿色( ),这时薄膜法线和视线夹角 560nm 为30度,问:⑴薄膜的最薄厚度是多少?⑵ 沿法线方 向观察膜呈什么颜色?(红光:640-780nm;橙黄光: 580-640nm;绿光:490-580nm;蓝靛光:440-490nm; 紫光:400-440nm。)
返回
退出
r2 r1 d sin x d tan d D
一般要求:D>>d, D>>x
D 条纹特点: x d
(1)平行的明暗相间条纹
(2)条纹等间距 (3)中间级次低 I
1 ( 4 ) x d x
M
x-2
x-1
0
x+1
x+2 x
杨氏双缝实验第一次测定了波长这个重要的物理量。
I I1 I 2 2 I1I 2 cos 相干叠加
即两个光源发出的光之间具有确定的相位差,则 把这两个光源称为相干光源,它们所发出的就是 相干光。 相干条件:振动方向相同,频率相同,具有确定的 相位差。
返回
退出
当两束相干光在空间任一点相遇时,它们之间的 相位差 随空间位置不同而连续变化,从而在不同 位置上出现光强的强弱分布,这种现象就是光的干涉 现象。
讨论
k 1, 2,3,
b
a 1. 由于薄膜厚度均匀,光程差由入射
2
k 0,1, 2, 暗纹
r C
n1 n
b
角确定,对于同一级条纹具有相同的倾角,因 此称为等倾干涉条纹。
2.条纹特点: 同心圆环
中心处级次最高
返回
退出
二、增透膜和高反射膜
利用薄膜干涉使反射光减小,这样的 薄膜称为增透膜。 光垂直入射时,若n1 < n2 < n3, 23
第十二章
本章教学目的及要求
光学
1、理解相干光的条件及获得相干光的方法; 2、掌握光程的概念以及光程差和相位差的关系; 3、掌握双缝干涉和薄膜干涉的原理及应用; 4、了解惠更斯-菲涅耳原理及对光的衍射现象的 定性解释;
5、掌握用半波带法来分析单缝夫琅禾费衍射条纹;
6、掌握光栅衍射条纹的规律。
返回
退出
§12-2 光源 单色光 相干光 三、相干光
i D d A
n1
P b
B
n1 n
r C
n( AC CB)
退出
返回
n( AC CB) n1 AD

2
d
n1
P a
i D A r C B
b
AC CB d / cos r
AD AB sin i 2d tan r sin i
解: (1)
2d n n sin i
2 2 1 2

d

d k 2

2
k
2 n2 n12 sin 2 i1

2
2 (1.5) 2 sin 2 30o 560 / (4 1.4) 100nm
(2)
2nd

k 1 时
2
k
2 1.5 100 / (k 1/ 2)
返回
退出
例题12-1 杨氏双缝的间距为0.2 mm,距离屏幕为1m。 (1)若第一到第四明纹距离为7.5 mm,求入射光波长。 (2)若入射光的波长为600nm,求相邻两明纹的间距。
D 解:x k k 0,1, 2, d D x1, 4 x4 x1 k4 k1 d d x1, 4 7 5 10 m D k 4 k1 D 3 x 3 10 m 3mm d
返回
退出
高反射膜
n1 n2 n3
反射光光程差: 2n2 d
23

2
2n2d

2
k
n1 n2 n3
d
玻璃n3=1.5
( 2k 1) n2 d 4
硫化锌(ZnS, n2=2.4)为高反射膜
多层镀膜提高反射比,如13层膜的反射率可达94%。
返回
退出
例题12-3 在棱镜(n1=1.5)表面涂一层增透膜(n2 =1.40),为使增透膜适用于λ=550nm波长的光, 求薄膜厚度的数学表达式?最薄厚度为多少? 解:设光垂直入射增透膜上,根据题意:
l
返回
退出
夹角变小,条纹变宽, 条纹向右移动
结束 退出 返回 返回
夹角变小,条纹变宽, 条纹向右移动
返回
退出
夹角变小,条纹变宽, 条纹向右移动
返回
退出
夹角变小,条纹变宽, 条纹向右移动
返回
退出
夹角变小,条纹变宽, 条纹向右移动
返回
退出
夹角变小,条纹变宽, 条纹向右移动
返回
退出
E10 sin 10 E20 sin 20 0 arctan E10 cos 10 E20 cos 20
相关文档
最新文档