第四章轴系扭振与噪声
船舶轴系扭振产生的原因及对策

• 90 •内燃机与配件船舶轴系扭振产生的原因及对策杨帆(台州理工船舶工程设计有限公司,台州318000)摘要:船舶轴系作为船舶推进系统中重要的构成部分,而轴系产生的扭振则是导致船舶推进系统出现各类事故的重要原因之 一。
本文笔者在分析船舶轴系扭振产生的原因的基础上,就如何削减船舶轴系扭振提出了几点措施,希望为提高船舶运行的安全性尽 微薄之力。
关键词:船舶轴系扭振;原因;削减措施0引言在船舶运行过程中,柴油机轴系扭振已经成为威胁船 舶安全运行的动力装置之一,因此要想提高船舶动力装置 的安全性,首先要找到船舶轴系扭振产生的原因,然后采 取有效措施,从而为装置的安全运行提供保障。
1船舶轴系扭振分类及原因扭振主要指的是所有拥有惯性和弹性的物体,因为受 到外力作用而出现振动的现象。
对船舶来说,同样存在着 轴系扭振的现象,船舶柴油机轴系振动形式主要包含横向 振动、纵向振动、扭转振动三种。
而上述三种振动中,扭转 振动产生的危害最大,扭转振动简称为扭振,船舶轴系扭 振的产生在很大程度上跟其主机有关,当船舶的柴油机发 生间歇性燃烧与喷油、输出的扭矩不均匀时便会产生扭 振;齿轮箱的咬合冲击和误差激励会导致齿轮系统发生误 差,出现扭振。
船舶在不断推进过程中会因为轴系上的部 件安装不正确,存在对中偏差或者材料不均匀等均会引起 船舶轴系在行使过程中出现质量不均匀的情况。
除此之 外,在工作状态下,螺旋桨还会受到环境因素的影响,从而 产生不均匀流畅不均匀激励轴系。
在柴油轴系出现扭振 时,通常情况下不会给船舶带来振动的不适感,这也是轴 系扭振容易被忽视的主要原因,若该扭振无法得到重视, 稍有不慎便可以引发重大安全事故。
另外,当发动机处于 主临界速度运转时,自由端的传动齿轮箱常常会产生出较 大的噪声,此时检查齿轮便可以发现有剥落或者腐蚀等情 况,严重时还可能出现断齿事故[1]。
2削减船舶轴系扭振的措施2.1减小激振力矩由于轴系扭振的动力根源为激振 力矩,而若想降低激振力矩,只需要直接减少扭转的幅度 即可,归纳起来,可以采取以下方法:① 将柴油机更换成推进电机。
船舶柴油机的轴系扭转振动的分析与研究

船舶柴油机的轴系扭转振动的分析与研究【摘要】本文通过一些国内因轴系扭转振动而引起的断轴断桨的事故实例,来分析引起轴系扭转振动的主要原因,分析扭振主要特性,并提取一些减振和防振的基本控制措施。
【关键词】船舶柴油机轴系扭振危害分析措施在现代船舶机械工程中,船舶柴油机轴系扭转振动已经成为一个很普遍的问题,它是引起船舶动力装置故障的一个很常见的原因,国内外因轴系扭转而引起的断轴断桨的事故也屡见不鲜,随着科学水平的提高和航运业的发展,人们越来越重视船舶柴油机组的轴系扭转振动,我国《长江水系钢质船舶建造规范》和《钢质海船入级与建造规范》(简称《钢规》)和也均规定了在设计和制造船舶过程中,必须要向船级社呈报柴油机组的轴系扭转振动测量和计算报告,以此来表明轴系扭转振动的有关测量特性指标均在“规范”的允许范围内。
1 船舶柴油机轴系扭转振动现象简介凡具有弹性与惯性的物体,在外力作用下都能产生振动现象。
它在机械,建筑,电工,土木等工程中非常普遍的存在着。
振动是一种周期性的运动,在许多场合下以谐振的形式出现的,船舶振动按其特点和形式可分为三种,船体振动,机械设备及仪器仪表振动,和轴系振动。
船舶柴油机轴系振动按其形式可分为三种:扭转振动,纵向振动,横向振动。
柴油机扭转振动主要是由气缸内燃气压力周期性变化引起的,它的主要表现是轴系上各质点围绕轴系的旋转方向来回不停的扭摆,各轴段产生不相同的扭角。
纵向振动主要是由螺旋桨周期性的推力所引起的。
横向振动主要是由转抽的不平衡,如螺旋桨的悬重以及伴流不均匀产生的推力不均匀等的力的合成。
船舶由于振动引起的危害不但可以产生噪音,严重影响旅客和船员休息,还会造成仪器和仪表的损害,严重的时候甚至出现船体裂缝断轴断桨等海损事故,直接影响船舶的航行安全。
而在船舶柴油机轴系的三种振动中,产生危害最大的便是扭转振动,因扭转振动而引起的海损事故也最多,因此对扭转振动的研究也最多。
而且当柴油机轴系出现扭转振动时,一般情况下,船上不一定有振动的不适感,因此这种振动也是最容易被忽视的一种振动形式,一旦出现扭转振动被忽视,往往意味着会发生重大的事故。
轴系扭振

电信号扰动下的轴系扭振摘要本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。
首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。
第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。
这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。
最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。
实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。
关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动1.引言转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。
由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。
由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。
当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。
它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。
电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。
对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。
当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。
有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法(TMM)解决频域内的动态问题。
TMM使用了一种匹配过程,即从系统一侧的边界条件开始沿着结构体连续的匹配到系统的另一端。
大型汽轮发电机组轴系扭振

☆可控硅控制的给水泵电动机反馈作用 联邦德国Wilbel Shave火电站的1台770MW机组曾由于可控硅控制的16.8MVA给水 泵电动反馈作用,造成频率为15.75Hz的次同步谐振。 ☆电液调节系统 加拿大安大略省电力公司的1台665MW核电汽轮机组在试运期间因快速电液涡轮 调速系统存在与轴系低阶扭振频率合拍的频率分量,引起调节阀强烈振动,并因此 激发了轴系的扭转振动。 ☆直流输电系统 1972年,美国试验投入第一条可控硅控制的直流输电系统,在送端电厂切除交 流输电线而通过直流输电系统送电时,发生了次同步谐振。其原因是当在直流输电 系统控制其变化时,引起发电机转速及其交流电压相位的变化,结果导致直流系统 中可控硅阀触发角的变化,又改变了直流输电的功率,从而构成了一个闭合系统而 引起次同步谐振。
二、机电系统扰动类型 一方面单机容量不断增大,功率密度亦相应增加,轴系长度加长和轴系截面积相 对下降,整个轴系不可再视为转动刚体,而是由多跨转子组成的弹性质量扭振系统; 另一方面输电网络的大容量化、长距离化、系统结构复杂化、电力负荷多样化以及 新型输电技术的采用,对轴系的影响因素也日趋增多。由于这两方面的原因,易导 致机网耦合,诱发轴系扭振,并造成扭转疲劳损耗;损伤程度取决于轴系本身的扭 振特性、机电扰动性质等因素,轻者可忽略不计,重者可使轴系损坏甚至酿成灾难 性事故。 从汽轮发电机组轴系的外施激励看,引起轴系扭振的原因有两方面:由同步发电 机引入的电气扰动和汽轮机引入的机械扰动。电气扰动包括电气短路故障、自动重 合闸、非同期并网、甩负荷及串联电容补偿、高压直流输电的调节环节和电力系统 稳定器的不适当配置等;机械扰动相对较少,主要包括不适当的进汽方式、调速系 统晃动、快控汽门等。
船舶柴油机振动、噪声及废气排放考试

船舶柴油机振动、噪声及废气排放考试ll第二章船舶振声激励源1.柴油机激励力:①运动部件上的惯性力形成的不平衡力和力矩,其主频率是低谐次的。
②气缸内气体爆发压力产生的侧推力和倾覆力矩,其频率是高谐次的。
2.螺旋桨激励力:①螺旋桨回转时作用在它附近的船体表面上的变动水压力,称为脉动压力。
它是沿船体表面进行积分得到的,又称表面力。
②作用于桨叶上的变动流体力所激起的激励,通过轴系、轴承传给船体,又称轴承力。
3.载荷效应:随着螺旋桨的旋转,桨叶周期性地时而接近该点,时而远离该点。
因此由涡引起该点压力也相应地时大时小周期性地变化,这是产生脉动压力的起因之一;因为涡强度和螺旋桨载荷有关,则称这部分脉动压力为载荷效应。
4.叶厚效应:圆柱体在流场中运动,流场中某一点P处所受压力必将随着圆柱接近和远离该点而发生周期性变化的效应。
5.小结:载荷效应和螺旋桨的负荷有关,即与螺旋桨的推力和扭矩有关;而叶厚效应则与螺旋桨的几何尺寸,主要是螺旋桨叶的厚度有关。
脉动压力的主要频率成为螺旋桨叶频和叶频的整数倍,其大小主要取决于桨叶的几何要素、船体尾部的线型、伴流特性、桨轴转速、功率、螺旋桨叶梢与尾壳板之间的间隙,以及螺旋桨的叶数等。
最主要的影响因素:梢系的大小及螺旋桨的叶片数。
梢系↑,脉动压力↓,梢系到一定大小,脉压减小变化很少。
螺旋桨叶数↑,脉动压力↓。
(表面力、轴承力计算无)6.波浪激励源:①轻载状态时船首底部出水后再入水产生的冲击②满载状态时船首甲板上的冲击③船首部外夹板的外源波浪的冲击。
这种冲击引起的船体瞬态响应主要是二节点衰减振动,与风浪的大小、船舶航速、航向及首吃水有关,称为冲荡。
7.波激振动:在风浪不大的海洋中航行时,船体经常发出持续的垂向二节点振动,形成尾部上层建筑十分剧烈的纵向振动,这种振动是由波浪产生的非冲击准定常激励力引起的,常称为波激振动。
(回转激励力:、轴系激励力:轴系自身的质量偏心、联轴节安装不良、排气压力波、舵)8.过度振动的后果:①使船员和旅客极度不适,容易疲劳和损害健康,使机器和仪表工作失常,寿命缩短,甚至失灵损害②使高压力区的船体结构等出现裂缝或疲劳破坏③引起噪声,影响人员工作和健康以及舰船作战性能和潜藏隐蔽性第三章船舶机械及控制1.船舶机械有害振动的控制措施:防振和减振两种,防振是在船体设计阶段考虑到振动的容许标准而采取降低振动的措施;减振是在船舶使用阶段使营运船舶的振动下降到容许标准。
大型汽轮发电机组轴系扭振研究

大型汽轮发电机组轴系扭振研究在电力工业中,大型汽轮发电机组是核心设备之一,其运行稳定性直接关系到电力系统的安全与稳定。
然而,实际运行中,大型汽轮发电机组轴系常常会出现扭振现象,严重时甚至可能导致设备损坏和系统瘫痪。
本文将围绕大型汽轮发电机组轴系扭振展开研究,分析其产生原因、危害,并探讨解决方案。
某大型发电厂曾遭遇一次严重的轴系扭振事故。
当时,发电机组在正常运行过程中,突然出现剧烈振动,导致轴系部分部件严重受损。
幸运的是,操作人员及时采取措施,避免了事故扩大。
然而,这一事件引起了人们对大型汽轮发电机组轴系扭振的和深入研究。
大型汽轮发电机组轴系扭振是指运行过程中,轴系在扭矩作用下产生的周期性弯曲变形。
产生扭振的原因主要有两个方面:一是由于汽轮机侧和发电机侧转速不匹配,导致轴系承受扭矩;二是由于轴系不平衡,导致轴系在旋转过程中受到周期性变化的力矩作用。
扭振对设备危害极大,轻则导致轴系受损、机组振动加剧,重则引发重大事故,严重影响电力系统的稳定运行。
对于大型汽轮发电机组轴系扭振,其重要性不言而喻。
为解决这一问题,需要从以下几个方面展开研究:优化设计:在设计阶段,应充分考虑轴系扭振问题,优化机组结构,提高轴系稳定性。
例如,合理布置轴承座、采用高刚度材料等措施,以减小扭矩对轴系的影响。
运行监控:在机组运行过程中,加强对轴系振动等参数的实时监控,以及时发现扭振现象。
通过采集和分析数据,对机组运行状态进行全面评估,确保安全稳定运行。
故障诊断与处理:一旦发现大型汽轮发电机组出现扭振故障,需迅速采取措施进行诊断和处理。
根据采集的数据,运用相关算法对扭振原因进行分析,并采取针对性的处理措施,例如调整运行参数、修复损坏部件等。
预防措施:为预防大型汽轮发电机组轴系扭振的发生,需加强对机组的维护和保养。
例如,定期对轴承座进行检查,确保其紧固稳定;加强对齿轮箱等关键部位的润滑维护,以降低磨损和减小扭矩。
大型汽轮发电机组轴系扭振是电力工业中一个重要问题。
第四节 轴系的扭转振动

上一页
下一页
结束
本章目录
一级子目录
二级子目录
返回
上一页
下一页
结束
本章目录
一级子目录
二级子目录
返回
上一页
下一页
结束
本章目录
一级子目录
二级子目录
返回
上一页
下一页
结束
本章目录
一级子目录
二级子目录
返回
上一页
下一页
结束
本章目录
一级子目录
二级子目录
返回上一页下Fra bibliotek页结束
本章目录
一级子目录
二级子目录
返回
•
1=A1(1)sin(e1t+1)+A1(2)sin(e2t+2)
•
2=A2(1)sin(e1t+1)+A2(2)sin(e2t+2)
•
3=A3(1)sin(e1t+1)+A3(2)sin(e2t+2)
e1
e2
1 2
2 12
2 23
1 4
– 柴油机封缸运行时,拆除运动件对扭振的影响最严重。由于
柴油机运转不均匀性显著增加,使原处于次要地位的扭振明
显
加
强
本章目录
一级子目录
二级子目录
返回
上一页
下一页
结束
5.现代船用大型柴油机的扭振特点
• 现代船用大型柴油机发展的显著特点是: – 长行程或超长行程; – 单缸功率大、缸数少
• 现代船用大型柴油机的扭振特点 – 使得柴油机输出扭矩更加不均匀,使激振力矩增加; – 轴系的自振频率降低,易出现由低次简谐力矩激起的 扭振共振; – 柴油机回转不均匀引起螺旋桨推力不均匀,易激发轴
船舶轴系扭振产生的原因及对策

船舶轴系扭振产生的原因及对策摘要:近年以来,随着中国现代化进程的发展,为适应中国海洋事业的快速发展时期,综合确保船舶航行安全的同时,相关工作人员也对船舶轴系扭振成因进行了深入的研究,以期对船舶轴系的扭振特性及规律进行相应的完善与总结,严格按照有关规定处理船舶轴系扭转振动问题,尽量减少轴系扭转振动造成的船舶安全事故。
关键词:船舶轴系,扭振,原因及对策,探讨1前言一般来说,振动定律可以直接使用正弦波来表示轴向运动。
扭转振动是在扭矩变化的作用下所发生的周期性运动。
扭矩振动主要发生在输出和扭矩吸收不均匀的机械装置中,如柴油机运行的某些设备或装置、电机压力机、电机泵等等。
就柴油发动机而言,包括减速齿轮之间的碰撞、齿面的点蚀及断裂、连接螺栓的断裂、橡胶接头的撕裂、引擎零件的加速磨损等。
在运行过程中发生的严重事故,对此方面的研究始终在持续,力度也不再不断加大,积累了大量的经验和数据。
人们一直在探索和寻找一种相对简单的近似计算方法,包括轴系怠速振动固有频率和临界转速的计算方法。
最后,它算是处理实际问题逐渐形成的方法。
2船舶轴系扭转振动的概述主动推进装置的扭转振动问题非常重要,值得去好好深入地研究。
通常情况下,当气缸关闭之后,后续的操作才更安全。
然而,一些辅助振荡器的相对振幅矢量不会减小。
相反,共振应力增大,甚至接近或超过允许的扭转应力。
此外,每个圆柱的分解振幅矢量的相对值也会受到不同程度的影响。
了解气缸轴承拆卸后产生较大冲击应力的推力控制,对于避免单个气缸的拆卸事故具有重要的意义。
在柴油机的实际运行过程中,在电梯试验以及运行试验中,不仅要进行单缸停油试验,而且在柴油机发生紧急故障时,必须要密封气缸进行运行。
此外,最大燃烧压力、排气温度调节等平衡性差异以及各种故障往往导致燃烧不良现象。
因此,在计算转向轴系的振动时,必须考虑这种情况。
在细致完成相关工作之后,还要向船公司提供船舶运行中的计算结果和注意事项,以确保船舶在正常运行和气缸密封运行中的正确操作和管理。
《船舶动力装置》PPT课件

A3 A3
n个质量就有n-1个 振型,n-1个自振 频率。
10
§4-2 推进轴系扭振计算
一、推进轴系的模化 模化原则: 1)以每一曲柄回转平面中心线为单缸运动质量的集中点 2)发动机输出端之后,以具有较大转动惯量部件的中心线作为
质量的集中点 3)配对到于飞轴轮系和的螺转旋动桨惯的量质,量当上轴 ( nnc段较短时可以忽略或把它平均分 4)齿轮传动时,把主、从动齿轮的转动惯量按传动比合并成一
m 1
A A st
2)
m 0
n
3) 1 n
n
m1
此时阻尼对放大系数的
影响最大
4) 2 m 1
n
2 n
1 Ie
增大 I 或 e 可使 n 下降
时共振
n
tg
1
2n
2 n
a 2
2
7
小结: 1)系统自振频率仅与结构有关 n 1/(Ie)
2)强迫振动频率与干扰力矩频率相同, 但由于阻尼存在,共振时,强迫振动的 相位落后于干扰力矩相位/2,并产生动 力放大。
S 1 S 2 U 23 0
I 1 1
I 2 2
2 3 e 23
0
2
3 2 e 23 ( I 11 I 2 2 ) 2 e 23 I ii i1
k 1
k k 1 e k 1,k I ii i1
k 质量振动位移 ( k 1)质量位移 ( k 1, k )轴段变形
a
17
• 经过无因次变换以后,计算方程变为:
•
• 1=1
1,2= 1 1
• 2= 1- 1,2E1,2
两质量均作简谐振动,频率相同,初相位相 等,振幅不同,惯量大的振幅小,惯量小 的振幅大,且振动方向永远相反。
发动机-内燃机轴系扭转振动文献综述

发动机-内燃机轴系扭转振动文献综述内燃机轴系扭转振动内燃机是人类历史上贡献最大也得到最广泛应用的热能动力机械,在路面交通、海洋船舶甚至航空等领域都作为主要动力源,然而随着其向着高速、小型强化、大功率方向发展,随着全世界车辆法规的健全合理化,对振动以及噪声问题的研究显得愈发重要。
作为内燃机的主要零件之一的曲轴,它的结构参数在很大程度上不仅影响着内燃机的整体尺寸和质量,而且也影响着内燃机的可靠性和寿命。
随着内燃机的不断强化,轴系的扭转振动问题也日益突出。
因此在内燃机的设计阶段就应该充分重视扭振问题。
首先应该对其进行计算和分析,必要时采取避振与减振措施,以消除扭振的威胁。
同时有研究表明,曲轴是内燃机的主要噪声源之一,而且曲轴的振动又会传递到机体和其他附件上引起更多的振动和噪声,因此,内燃机及其动力装置轴系的扭转振动是影响安全运行以及噪声控制的重要问题之一。
现代内燃机设计中提出了NVH的概念,通过这一概念来衡量内燃机性能的优劣[2]。
从这一概念可以看出,内燃机的振动和噪声在现代内燃机设计中的重要地位因此研究内燃机曲轴的振动特点对提高曲轴强度,减小并控制内燃机的振动,提高整机的工作可靠性,改善船舶、汽车等交通工具的舒适性都有重要意义。
1内燃机曲轴轴系扭转振动研究的发展历程[7]:内燃机轴系的扭转振动是机械动力学科的一个分支,是内燃机动力学的一部分,在热动力装置发展初期,由于当时技术水平的限制,在相当长的一段时间内,在轴系的强度设计工作中,是把轴系按绝对刚性处理的。
当时认为,轴系中的应力变化完全取决于载荷或受力情况。
但在世纪末,在工业发达国家对内燃机的广泛应用后,由于在动力交通运输部门中所使用的内燃机装置中,各种断轴事故不断发生,这使得工程设计人员认识到,将轴系作为绝对刚体来处理是不合适的,必须作为弹性体进行研究。
从世纪末到世纪初,各种断轴事故的分析报告及有关文章逐渐出现,对于扭转振动的研究也逐渐深入。
内燃机轴系装置之所以能产生扭转振动,其内因是轴系本身不但具有惯性,还具有弹性,由此确定了其固有的自由振动特性。
《轴系的扭转振动》课件

分析轴系扭振的动态特性, 如阻尼比和固有频率的变化 规律。
比较不同实验条件下的轴系 扭振响应,以验证结果的可 靠性和一致性。
结果比较与验证
比较方法
01
比较不同实验条件下的结果,以评估实验 的重复性和可靠性。
03
02
将实验结果与理论模型进行对比,验证模型 的准确性和适用性。
04
验证内容
验证理论模型的预测与实验结果的符合程 度。
智能化与数值模拟
利用智能化技术和数值模拟方法,可实现对轴系 扭转振动更精确、高效的预测和控制。未来研究 可关注智能化技术和数值模拟方法在轴系扭转振 动研究中的应用和发展。
减振技术发展
随着减振技术的不断进步,未来将有更多高效、 可靠的减振方法和装置应用于轴系设计中。研究 可关注减振技术的创新发展及其在轴系设计中的 应用前景。
标准与规范更新
随着轴系扭转振动研究的深入和工程实践的积累 ,相关标准和规范也需要不断更新和完善。未来 研究可关注国际和国内相关标准与规范的动态, 推动轴系扭转振动研究的标准化进程。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
04
பைடு நூலகம்
数据采集器将实时采集的数据传输到计算 机进行后续分析。
实验结果与分析
01
实验结果
02 轴系扭振的位移、速度和加速度随时间变化的曲 线图。
03
不同激振频率和幅值下的轴系扭振响应。
实验结果与分析
• 轴系扭振的阻尼比和固有频率等 参数。
实验结果与分析
结果分析
探讨激振频率和幅值对轴系 扭振的影响。
PART 07
总结与展望
本课程总结
扭振测量与分析

扭振测量和QTV介绍1.引言噪声及振动问题,在旋转部件开发中,是一个必须充分重视的因素。
就车辆而言,旋转机械或旋转部件包括:发动机(引擎),动力传动系, 变速装置, 压缩机和泵等等。
对它们的动力特性, 必须了解得非常透彻, 力图实现宁静、平顺、安全地运转。
通常, 对线振动和角振动的测量和分析, 是分头进行的。
旋转件横向振动的测量方法, 是大家熟悉的,研究得已经比较透彻,为了充分把握结构的动力特性, 通常会实施多通道并行的测量和分析。
而扭振测量则需使用专门的设备, 它们一般并不集成在一总体动力学测试系统内。
2.扭振的“源—传导—接收”模型研究动力学问题的一般方法,是建立所谓“源—传导—接收”模型(图1)。
在某一部位(接收部位)观测到的响应,视为由源和源在结构上沿某途径传导产生的效果。
由于结构的共振或反共振效应,源可能在传导过程中被放大或者被衰减。
此外,它们可能沿多个不同途径,传导至接收部位。
图1 扭振的“源——传导——接收”模型接收部位或响应部位的振动,通常是刚体运动伴随柔体运动的复合现象。
前者一般不产生交变应力,后者则会引起交变应力,并成为某种耐久性问题的根源。
传递途径分析(TPA)涉及到某接收部位对源的干扰,这种干扰经由其可能的传导途径,并依赖于传导途径固有的动力学特性,影响整个结构的响应。
用同样的方法,我们来研究扭转振动。
先是有一个“源”,譬如说,发动机给出的交变输入力矩。
力矩传递过程,牵涉到轴系、齿轮传动系或皮带传动系等的动力特性。
最终表现出来的,是旋转件的转速变化。
如果沿整个轴,各部位的转速变化都是相同的、一致的,那么在严格的意义上,这不能算作是扭振,仅仅只是转速在变罢了(这相当于线振动分析中的刚体模态)。
仅当沿轴不同部位检测到的转速增量有幅值和相位的相对变化时,扭振才确实发生了。
当激励频率接近于扭振谐振频率时,会导致旋转件产生很大的内应力。
如果未设置专门的监测设备,就有可能发生严重的耐久性问题。
第四章轴系扭振与噪声解析

2020/10/25
内燃机设计
9
临界转速(续)
• 虽然不同扭振系统具体振形各不相同,但一 般来说可以断定:由内燃机每一转发火数的 整倍数或半整倍数阶激振转矩引起的共振是 最危险的,称为主共振或强共振。对应的临 界转速称为主(强)临界转速:
n z ,
ne,
z(2i / )
n' z,
ne,
(z 0.5)(2i / )
• 目前,固有振动可精确计算,但强迫扭振还难于计 算。扭振减振的设计主要依靠试验方法。
2020/10/25
内燃机设计
3
第二节 轴系固有扭振频率
• 1、计算模型
• 工程中常用由圆盘 和直轴组成的有限 自由度系统作为曲 轴轴系扭转振动的 计算模型。这种方 法计算方便且足够 精确,如六缸直列 机可简化为8自由度 计算模型。
2020/10/25
内燃机设计
11
扭振减振器(续)
1、硅油减振器:构造简单,但尺寸质量较大。 2、橡胶减振器:比较轻巧,但橡胶力学性能不
易控制。
3、硅油橡胶复合减振器:综合前二者的优点。
2020/10/25
内燃机设计
12
第五节 内燃机的运转噪声及其降低
• 一、概述 内燃机运转噪声可分为三部分:
#内燃机整体在支承上的振动引起的噪声
z=1,2,3,…
2020/10/25
Байду номын сангаас
内燃机设计
10
第四节 扭振减振器
• 在内燃机工作转速范围内,如果出现主或强临界转 速,则一般要用扭振仪测量曲轴共振振幅。如果共 振振幅过大(或扭振附加应力过大,或附加噪声过 大),则要采取措施消减扭振。
• 对于内燃机的扭振,理论上可以考虑提高轴系扭振 固有频率,避开某些危险共振,但一般来说比较困 难,且潜力有限。实用上比较方便的办法是增大振 动系统的阻尼,抑制其振动振幅。在变工况高速内 燃机中应用最广的是阻尼减振器,如硅油减振器、 橡胶减振器和硅油橡胶复合减振器等。它们的结构 如图9-25,减振效果如图9-26。
轴系扭转振动

计算参数
1
自由振动
2
强迫振动
3
转动惯量
4
阻尼计算
5
扭转刚度
自由振动是机械系统中一种简单的振动形式。系统在外力的作用下,物体在离开平衡位置后,不需要外力的 作用,就能自行按其固有频率振动,这种不在外力的作用下的振动称作自由振动。在轴系扭转振动计算中,自由 振动计算占有极重要的位置。通过自由振动计算,可以得到扭振系统的固有频率、振型,从而确定系统的临界转 速,轴段扭振的应力尺标,进而计算扭振共振振幅,共振扭矩,共振应力等特征和特性参数,为轴系扭振评估, 确定扭振测试位置,扭振减振器设计和安装提供依据。自由振动的计算方法有很多,通常采用的方法有雅克比法 (Jacobi)、霍尔茨法(Holzer)、模态分析法、子空间迭代法等。船舶柴油机轴系的阻尼通常是弱阻尼,系统 的转动惯量和轴段弹性常数通常可以求得比较精确的结果,长期实践表明,在自由振动计算是按无阻尼自由振动 处理,一般能满足工程实际需要。
机械振动第四章

第四章两自由度系统的振动当振动系统需要两个独立坐标描述其运动时,称为两自由度振动系统。
两自由度系统是最简单的多自由度系统,因此研究两自由度系统是分析和掌握多自由度系统的基础。
两自由度系统具有两个固有频率,两自由度系统以固有频率进行的振动与单自由度系统不同,它以固有频率进行的振动是指整个系统在运动过程中莫一位移形状,称为固有振型,因此两自由度具有两个与固有频率对应的两个固有振型。
在任意初始条件下的自由振动响应一般由两个固有振型的叠加得到。
受迫简谐振动的频率与激励频率相同。
两自由度系统的振动微分方程一般由两个联立的微分方程组成。
如果恰当地选取坐标,可使两个微分方程解除耦合,这种坐标称为主坐标或固有坐标。
用固有坐标建立的系统振动微分方程为两个独立的单自由度系统的微分方程。
4.1系统的自由振动如图所示的无阻尼两质量-弹簧系统,可沿光滑水平面滑动的两个质量与分别用弹簧与连至定点,并用弹簧相互连接。
三个弹簧的轴线沿同一水平线,质量与只限于沿着该直线进行往复运动。
这样与的任一瞬时的位置只需用坐标与就可以完全确定,因此该系统具有两个自由度。
图两自由度系统的振动取与的静平衡位置为坐标原点。
在振动过程中任一瞬时t,与的位置分别为与,作用于与的重力于光滑水平面的法向反力相平衡,在质量的水平方向作用有弹性恢复力和,质量的水平方向则受到和作用,方向如图所示。
取加速度和力的正方向与坐标正方向一致,根据牛顿运动定律有移项得方程()就是图所示的两自由度系统自由振动的微分方程,为二阶常系数线性齐次常微分方程组。
方程()可以使用矩阵形式来表示,写成由系数矩阵组成的常数矩阵m和k分别称为质量矩阵和刚度矩阵,向量x 称为位移向量。
因此设分别为刚度矩阵k中的元素,因而方程()可以写成方程()为系统自由振动的微分方程。
方程()是齐次的,如果和位方程()的一个解,那么与其相差一个因子的和也将是一个解。
通常感兴趣的是一种特殊形式的解,也就是和同步运动的解。
某船舶轴系故障异响分析

轴系异响是轴系出现故障的标志,轻微异响或导致较大噪声,若不进行处理,则会加剧其它零件的磨损,严重异响不仅会产生较大噪声,甚至影响轴系运转,导致安全事故。
某船为钢制双体船,采用双机双桨、双轴系、左右对称布置。
在进行航行试验时,轴系出现异常噪声。
本文对船舶航行时的轴系异响进行研究,排查致轴系异响故障的原因,对其进行分析,提出轴系噪声解决措施。
一、概述为保证船舶行驶安全及船员的休息,船舶噪声需要按照标准进行控制。
船舶噪声主要包括螺旋桨噪声、船体振动噪声、通风系统噪声、辅助机械噪声、液压冲击噪声、柴油机燃烧噪声、空气动力噪声、排气噪声、激励叶片振动噪声等。
按照途径主要分为三种:空气声,动力或辅助机械设备直接向空气中辐射噪声;结构声,机械的振动能量沿固体结构传播到船体各部位,然后再向外辐射;水下噪声,船体振动或螺旋桨扰动的向水下辐射。
轴系异响属于船舶噪声的一种,包括螺旋桨噪声和船体振动噪声等。
当轴系出现异响,需要及时排查原因,分析其对航行安全的影响,制定解决方案或改进措施。
1、螺旋桨噪声螺旋桨噪声主要包括旋转噪声和空气噪声(当桨叶表面的水分子压力降低到水的汽化压力时,产生气泡,气泡上升后破裂)。
旋转噪声是螺旋桨在不均匀流场中工作引起干扰力和螺旋浆机械不平衡引起的干扰力(轴频)所产生的噪声。
空气噪声具有连续谱的特征,其特性与桨叶形状、面积、叶距分布等因素又换。
在一定转速下,随着螺旋桨叶片旋转产生的涡旋的频率与桨叶固有频率相近时,产生螺旋桨鸣。
二、船体振动噪声船舶轴系在工作过程中,可能产生扭转振动、纵向振动和横向振动三种振动形式。
扭转振动是主机通过轴系传递功率至螺旋桨,造成各轴段间的扭转角度不相等,轴段来回摆动产生的;纵向振动主要是因螺旋桨推力不均匀造成的;横向振动主要是由于转轴不平衡引起的,包括各轴承径向支撑及其基座振动。
对于扭转振动而言,轻则引起较大噪声、加剧其它零件的磨损,重则可使曲轴折断,造成安全事故。
曲轴扭振分析

哈尔滨工业大学本科毕业论文(设计)四缸发动机曲轴扭振分析摘要在发动机工作过程中,曲轴上各曲拐所承受转矩的大小周期性变化的,而曲轴后端的飞轮具有大的惯量,转速可以看成是均匀的,所以各曲拐相对于飞轮就会发生大小和方向作周期性变化的相对扭转振动,产生曲轴轴系的扭转振动。
曲轴的扭转振动时,扭转变形的幅度大大超过正常允许值,轻则产生很大的噪声,是磨损加剧,重则使曲轴断裂。
因此在设计内燃机时,必须对轴系的扭振特性进行分析,以确定其临界转速、振型、振幅、扭转应力,以及据是否需要采取减振措施进而设计减振器。
本文中首先用pro/E软件对所要分析的曲轴进行建模,用其模型分析功能求取曲轴当量转动惯量,用其Mechanica模块求取曲轴的当量刚度;用矩阵法和霍尔茨法计算曲轴的自由振动,确定曲轴的固有频率和振型;通过对曲轴激振力矩的简谐分析,确定曲轴的单缸转矩振幅;通过对轴系强迫振动计算,确定曲轴的临界转速、共振时的幅值以及曲轴的扭振应力;判别扭振应力的大小是否超过允许应力,如果扭振应力接近或超过允许零件允许值,则对曲轴采取减振措施,设计合适的减振器。
关键词:曲轴;扭振;扭振减振器I哈尔滨工业大学本科毕业论文(设计)AbstractIn the process of engine working,crank torque of the crankshaft is periodically changing,while the flywheel is approximately in uniform rotation because of the big moment of inertia of the flywheel.Therefor,the crank have a relative motion compared to the flywheel.,then,the torsional vibration of the crankshaft occurs.When the deformation amplitude of the crankshaft considerably more than the normal value,the engine will produce noising noise,and the abrasion increased,worse more,the crankshaft may crack even broken.Therefore, in the design of the internal combustion engine,the shafting torsional vibration characteristics are analyzed to determine its critical speed, mode, amplitude, torsional stress, as well as designing torsional vibration damper.Firstly, model the crankshaft to be analyzed with pro / E software,then,we can get the equivalent inertia of the crankshaft and the equivalent stiffness;Secondly,calculate the free vibration of the crankshaft using matrix method and Holtz method,and determine the natural frequencies and mode shapes;Thirdly,determine the amplitude of the single-cylinder crankshaft torque,through analyzing the exciting moment of the crankshaft;Then,determine the critical speed of the crankshaft, crankshaft torsional vibration amplitude and stress by calculating the forced vibration of the crankshaft;Finally,judge whether the size of awkward vibration stress exceeds the allowable stress.If the torsional stress close to or exceeds the allowable value of the crankshaft parts,damping measures must be take to consideration and design the suitable torsional vibration damper.Keywords: crankshaft, torsional vibration, torsional vibration damperII哈尔滨工业大学本科毕业论文(设计)目录摘要 (I)Abstract ........................................................ I I 第1章绪论. (3)1.1 课题研究的目的和意义 (3)1.2 国内外研究现状 (3)1.3 本课题的研究内容及技术方案 (4)1.4 本文的主要研究内容 (5)第2章曲轴当量扭振系统的组成与简化 (6)2.1 当量系统的组成与简化 (6)2.2 当量转动惯量的计算 (7)2.3 当量刚度的计算 (10)2.4 本章小结 (15)第3章轴系自由振动的计算 (16)3.1 霍尔茨法计算系统的自由振动 (16)3.2 固有频率和振型的计算 (19)3.3 本章小结 (21)第4章曲轴系统的激发力矩 (22)4.1 作用在发动机上的单缸转矩 (22)4.2 多拐曲轴上第k阶力矩谐量的相位关系 (24)4.3 本章小结 (25)第5章轴系强迫振动与共振的计算 (26)5.1 临界转速 (26)5.2 曲轴系统的共振计算 (27)5.2.1 轴系共振计算 (27)5.2.2 共振振幅计算 (29)5.2.3 曲轴扭振应力计算 (30)5.3 本章小结 (31)第6章扭转振动的消减措施 (32)6.1 扭转振动的消减措施 (32)6.2 减振器的设计 (33)6.3 装减振器后扭振当量系统振动计算 (35)1哈尔滨工业大学本科毕业论文(设计)6.3.1 装减速器后轴系自由振动计算 (35)6.3.2 装减振器后轴系强迫振动与共振计算 (37)6.4 本章小结 (37)结论 (39)致谢 (40)参考文献 (41)附录 (42)2哈尔滨工业大学本科毕业论文(设计)第1章绪论1.1课题研究的目的和意义曲轴的功用是承受连杆传来的离心力,并由此造成绕曲轴本身轴线的力矩,并对外输出转矩.在发动机工作中,曲轴受到旋转质量的离心力、周期性变化的气压力和往复惯性力的共同作用,使曲轴承受弯曲和扭转载荷。
汽轮发电机组轴系扭振及其抑制措施

汽轮发电机组轴系扭振及其抑制措施【摘要】随着超高压大电网和大功率机组的投产运行,汽轮机单机容量不断增大,功率密度相应增加,轴系长度相对加长,轴系截面积相对下降,导致在发生机电扰动时,汽轮机驱动转矩与发电机电磁制动转矩之间失去平衡,汽轮发电机组轴系扭振问题越来越严重。
本文在对汽轮发电机组轴系扭振的基本形式进行具体分析的基础上,剖析轴系扭振的危害性,探讨对汽轮发电机组轴系扭振的抑制措施。
【关键词】汽轮发电机组;轴系扭振;分析;抑制措施汽轮发电机组轴系扭振是指因发电机电磁力矩和机械力矩存在周期性差异产生的轴系扭转振动,这是大型汽轮发电机组运行中经常遇到的问题。
汽轮发电机组轴系扭振不仅会对大轴寿命产生影响,严重时还可能在轴系的某些截面或联轴节处引发过大的交变扭应力,造成轴系的疲劳累积性或冲击性损坏。
分析汽轮发电机组轴系扭振的基本形式及危害,探讨相应的抑制措施是保证机组安全运行的重要基础。
1 汽轮发电机组轴系扭振的基本形式引起汽轮发电机组轴系扭振的原因来自电气扰动与机械扰动两方面,不同类型的机电系统扰动对机组轴系扭振有着不同的影响,所形成的轴系扭振可以分为以下三种基本形式。
1.1 次同步机电共振次同步共振是电网在低于系统同步的一个或几个频率下与汽轮发电机进行能量交换时汽轮发电机机电系统的一种自激振荡状态。
如果以电网的电气振荡频率为f1,电网的同步频率为f2,轴系的某阶扭振固有频率为f3;当f3=f2-f1时,电气系统就会呈现负阻尼振荡状态,轴系频率f3所对应的主振型振幅将被逐渐放大,轻则损伤转子,重则造成毁机的恶性事故。
因这种负阻尼振荡频率低于系统的同步频率故称次同步共振。
1.2 超同步机电共振在某些状态下,电网三相负荷会出现各种不平衡或不对称短路等情况,导致发电机定子绕组中不仅存在正序电流,还出现负序电流。
而负序电流在发电机气隙中将产生频率为fm的负序旋转磁场。
由于这一负序旋转磁场与转子旋转的正序旋转磁场反相,两旋转磁场之间存在180°的相位差,且相对频率为fm-(fm)=2fm,结果就会有频率为2fm的交变扭矩作用到机组轴系上。
内燃机构造与设计--5-4扭振

实际发动机曲轴系统扭振的激振力矩主要是输出的单缸扭矩M,M是一个周期函 数,而周期函数是由无限个简谐分量组成,每一个简谐分量都可能引起共 振,所以曲轴系统的扭振可能有很多共振工况。当其中某一阶谐量的频率与 曲轴的固有频率相等时,则曲轴就将与此简谐激振力矩发生共振,振幅大大 增加。发生共振时,曲轴一方面在平均扭矩的作用下正常旋转,另一方面按 某一主振型反复扭振。
4.1 有关扭转振动的一些基本概念
4.1.2 单自由度扭摆的自由振动
4.1.2.1 无阻尼自由振动
4.发动机轴系的扭转振动
单自由度扭摆——由一根有弹性无质量(转动惯量)的扭杆和一个有
质量无弹性的圆盘组成。
扭摆的状态只用一个坐标——圆盘偏离其
平衡位置的角位移θ即可充分地表示出来。
圆盘的转动惯量为I。 扭杆的抗扭刚度为k=GJp/l。
危害:扭振会使机件中产生附加应变和应力,磨损增大,严重时曲轴、齿 轮的齿等零件会断裂,机械噪音增大,发动机平衡性恶化使机体振动加剧
等不良后果。
4.1 有关扭转振动的一些基本概念
• •
4.发动机轴系的扭转振动
产生的原因:
内因:曲轴系统是一个多质量的弹性体,具有一定的惯性、弹性。 外因:在曲轴系统上作用着一个大小、方向都周期性变化的激振力矩。
4.2 发动机轴系的扭振分析及减振措施
弹性参数的换算——扭转刚度k或柔度e
4.发动机轴系的扭转振动
轴段的扭转刚度:作用在直轴段两端的扭矩与扭转角度的比值。
l k M G / dx 0 J ( x) Δφ p
G——材料的剪切弹性模数,Jp(x)——x截面处的极惯性矩,l——轴段的自由扭 转长度。 轴段的柔度:轴段在单位力矩作用下的扭转变形。 e Δ φ 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-3-26
内燃机设计
9
临界转速(续)
• 虽然不同扭振系统具体振形各不相同,但一 般来说可以断定:由内燃机每一转发火数的 整倍数或半整倍数阶激振转矩引起的共振是 最危险的,称为主共振或强共振。对应的临 界转速称为主(强)临界转速:
n z , ne , z (2i / )
n
' z ,
2015-3-26
内燃机设计
3
第二节 轴系固有扭振频率
• • 1、计算模型 工程中常用由圆盘 和直轴组成的有限 自由度系统作为曲 轴轴系扭转振动的 计算模型。这种方 法计算方便且足够 精确,如六缸直列 机可简化为8自由度 计算模型。
2015-3-26
内燃机设计
4
2、三自由度固有频率计算结果
• 通过求解可解出两个固有频率ωeI、ωeII,对应有第 一主振形和第二主振形。 • 第一主振形上有一个始终不振动的点(节点),又 称为一节点振形。 • 第二主振形上有二个始终不振动的点(节点),又称 为二节点振形。
• 对于四冲程机,作用在每一曲拐上的单拐转矩T是 曲轴转角的周期函数,且可以展开为由频率递增而 幅值一般递减的一系列简谐量构成的无穷收敛级数 (傅立叶级数):
T Tm
k 0.5
Tk Tm
k 0.5
a T k sin(kt k )
Tka k 式中,Tm为单拐平均转矩;Tk为k阶激发转矩;为 阶转矩幅值;δk为k阶转矩初相角; k=0.5,1,1.5,2,2.5…为简谐转矩阶数。理论上临界转 速有无限多个:nkm=nem/k 。式中,nkm为由k阶激振 转矩引起轴系第m主振形共振的临界转速;nem为轴 系第m主振形固有振动数。
2015-3-26
内燃机设计
7
临界转速(续)
• 但是所有临界转速中,只有少数几个具有实 际意义。首先,只在内燃机工作转速范围内 的临界转速才是需要研究的;其次,因为激 振转矩k阶谐量幅值随阶数k的增大而减小, 所以高阶谐量引起的共振是不太危险的。对 于常用的高速内燃机来说,有实际意义的只 是第一主振形,只有少数情况下要研究第二 主振形。即: • nkI=neI/k • nkII=neII/k
2015-3-26
内燃机设计
5
三自由度固有频率计算结果
• 三自由度轴系为上述两个主振形的合成。振 动周期分别为: TI=2π/ωeI TII=2π/ωeII • 每分钟固有振动数(min-1)分别为: neI=60/ TI≈9.55ωeI neII=9.55ωeII
2015-3-26
内燃机设计
6
第三节 临界转速
2015-3-26Βιβλιοθήκη •内燃机设计2
概述
• 外转矩停止作用后系统的扭转振动,称为固有扭振 或自由扭振。固有扭振频率称为固有频率。各元件 振幅的相对比值称为振形,它们取决于扭振系统各 元件的质量和弹性及其在系统中的分布。强迫扭振 频率与固有频率相同时,扭振振幅剧增,这种状态 称为共振。发生共振的曲轴转速称为临界转速。由 于曲轴有多个扭振自由度,因而有相应多个固有频 率。另外,轴系的激振转矩可分解出无限多个激振 频率,所以临界转速有很多个。但只有引起强烈共 振的主临界转速值得考虑。 • 目前,固有振动可精确计算,但强迫扭振还难于计 算。扭振减振的设计主要依靠试验方法。
ne , ( z 0.5)(2i / )
内燃机设计
z=1,2,3,…
10
2015-3-26
第四节 扭振减振器
• 在内燃机工作转速范围内,如果出现主或强临界转 速,则一般要用扭振仪测量曲轴共振振幅。如果共 振振幅过大(或扭振附加应力过大,或附加噪声过 大),则要采取措施消减扭振。 • 对于内燃机的扭振,理论上可以考虑提高轴系扭振 固有频率,避开某些危险共振,但一般来说比较困 难,且潜力有限。实用上比较方便的办法是增大振 动系统的阻尼,抑制其振动振幅。在变工况高速内 燃机中应用最广的是阻尼减振器,如硅油减振器、 橡胶减振器和硅油橡胶复合减振器等。它们的结构 如图9-25,减振效果如图9-26。
2015-3-26
内燃机设计
15
三、隔声降噪
• 1、附属件的频率响 应极值不应与机体的 响应极值重合 2、机体采用对称结 构 3、气缸盖螺栓与主 轴承螺栓在一条直线 上,让整个机体与气 缸盖始终处于受压状 态
2015-3-26
• •
内燃机设计
16
隔声降噪(续)
• 4、在机体下端加装 一个下机座,或加 一个梯子形的加强 板 • 5、保证气缸工作表 面变形最小(气缸、 活塞间隙为最小)
第四章 曲轴系统扭振与噪声
• 第一节 轴系扭转振动概述
• 第二节 轴系固有振动频率
• 第三节 临界转速 • 第四节 扭振减振器 • 第五节 内燃机的运转噪声及其降低
2015-3-26
内燃机设计
1
第一节 轴系扭转振动概述
• 每个曲拐上都作用着大小、方向都周期性变化 的切向力(Ft)和径向力(Fn)。因此,曲轴 产生周期变化的扭转和弯曲变形。于是,曲轴 会产生振动。其中使曲轴轴系各个轴段互相扭 转的振动称为扭转振动。曲轴也存在弯曲振动。 但由于曲轴大都为全支承,跨度小,弯曲刚度 大,弯曲振动的固有频率很高,在工作转速范 围内一般不会产生共振。 扭转振动则不同,曲轴很长,展开长度更长, 扭转刚度较小,转动惯量又较大,所以扭振频 率较低,在工作转速范围内易发生强烈共振。
2015-3-26
内燃机设计
13
二、噪声源分析
• • •
• • • 1、燃烧 减小迟燃期 优化喷油规律 采用增压技术 2、活塞拍击 减小活塞组质量 减小活塞与气缸的配合间隙 偏置活塞销
2015-3-26
内燃机设计
14
噪声源分析(续)
• • • • • • • • 3、气门凸轮机构 采用多气门结构 采用顶置凸轮轴 合理设计凸轮外形 采用液压间隙调整器 4、其它噪声源 定时齿轮设计 采用高效扭振减振器 采用自动控制转速的风扇 等等
2015-3-26
内燃机设计
8
临界转速(续)
• 应该考虑到,说明共振危险程度,决定于作 用在各曲拐上的激振转矩对轴系所做之功。 K阶激振扭矩激发扭振所作的功为:
WT Tk d i T i sin( k ) cos( i )d
0 a k 0 2 2
如相位差δk-εi=900,则达最大值;如δk-εi=0, 则功为零。
2015-3-26
内燃机设计
17
隔声降噪(续)
• 6、尽量采用双层结构机体 • 7、壳体零件(油底壳、齿轮室盖和气缸盖 罩等)可采用悬浮连接。
2015-3-26
内燃机设计
18
图9-25
2015-3-26
内燃机设计
19
图 9-26
2015-3-26
内燃机设计
20
2015-3-26
内燃机设计
11
扭振减振器(续)
1、硅油减振器:构造简单,但尺寸质量较大。 2、橡胶减振器:比较轻巧,但橡胶力学性能不 易控制。 3、硅油橡胶复合减振器:综合前二者的优点。
2015-3-26
内燃机设计
12
第五节 内燃机的运转噪声及其降低
• 一、概述 内燃机运转噪声可分为三部分: #内燃机整体在支承上的振动引起的噪声 #进、排气系统的气体动力噪声 #内燃机本身的机械噪声 • 内燃机本身产生的机械噪声是问题的焦 点。内燃机的噪声生成系统由产生激振力 的噪声源、传递激振力的机械结构和声辐 射表面等构成。