Enhanced vortex damping by eddy currents in superconductor-semiconduc tor hybrids
促进湍流程度的方法

促进湍流程度的方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 增加流速,通过增加流体的流速,可以增加湍流的程度。
这可以通过增加管道直径、提高压力或使用更强大的泵来实现。
沃尔沃D12-715船用柴油机说明书

Excellent Performance and Cruising RangeThe D12-715 marine diesel engine is spe-c ial l y designed and developed for in s tal -la t ions in fast planing craft fea t ur i ng the lat e st advanced diesel technology. Excellent performance is assured with a rich torque curve matched to the high pow e r output for quick out of the hole ac-c el e r a t ion and high top and cruising speed. Low fuel consumption for long cruising range and low emission levels is assured with:–Electronic Unit Injectors–4-valve technology–Electronically controlled injection tim i ng –High pressure 8-hole injector nozzles–EDC governingThis technology combined optimizesen g ine performance and effi ciency, en s ures effi cient combustion by injecting the right quan t i t y of fuel at the right time, which min-i m iz e s quantity of unburned fuel, re d uc i ng fuel consumption and exhaust emis s ion lev-e ls. The Volvo Penta D12-715 fuel system is designed to give full output regardless of fuel temperature.This technology, in combination with the high power output, gives the boat a wid e r operating range in combination with higher speed.High qualityThe D12-715 is built in the world’s most high l y automated diesel engine factory line with a totally robotic machining and as-s em b ly line with computer controlled audit checks, which ensures the highest quality level.The D12-715 is a further development of the well-proven Volvo Penta in-line six en-g ine concept which ensures high re l i a bil i t y and long term durability.Operation and comfort Electronic remote controls, push button twin engine synchronization and changeof active station ensures easy and smooth op e r a t ion and maneuvering.The electrical control levers are op e r a t e d more smoothly and precisely, requiring much less force.and main t e n ance points contributes tothe ease of ser v ice of the engine.Worldwide service supportin more than 100 countriesThe Volvo Penta parts and servicedeal e r network is a truly internationalop e r a t ion with authorized service deal-e rs around the world. These servicecenters offer Gen u i ne Volvo Penta partsas well as skilled per s on n el to en s ure thebest pos s i b le ser v ice. Con t in u o us andthor o ugh product and ser v ice train i ngen s ures that Vol v o Pen t a prod u cts arewell sup p ort e d.D12-715 – a true marineengine from a true marineengine companyThe D12-715 is a true marine engine asit is developed by a true marine com-p a n y with the best there is to be foundin ma r ine experience and know-how,and built and assembled with the bestpro d uc t ion method there is to be foundin the world.The D12-715 delivers excellent per-f or m ance and cruising range, high re li -abil i t y and durability, in combination withthe high e st level of quality.Automatic twin engine synchronizationre d uc e s noise and vibration levels, andin c reas e s service life of engine.This in combination with the well-bal-a nced D12-715 in-line six cylinder enginewith powerfully dimensioned crankshaftbear i ngs and vibration damper on cam-s haft ensures smooth, vibration-free op-e r a t ion with low noise levels.Low exhaust emissionlevelsThe D12-715 advanced diesel technologygreatly contributes to more effi cient com-b us t ion with higher power and reducednox i ous exhaust emissions.The D12-715 is certifi ed according toIMO.Easy installationThe D12-715 gives a time saving and re-l i a ble installation, as it is a complete de l iv -ered compact and tailor-made propulsionsys t em from one single supplier.Plug-in water-protected harnesses andconnectors, compact dimensions and theEDC system ensures an easy, simple andtime-saving installation.Ease of service andmaintenanceThe EDC system features a self-di a g -nos t ic facility. Easily accessible service* Power rating – see Technical DataD12-715Technical DataEngine designation.......................................D12-715 No. of cylinders and confi guration.............in-line 6 Method of operation.....................................4-stroke,direct-injected, turbocharged diesel engine with aftercooler Bore, mm (in.)............................................131 (5.16) Stroke, mm (in.).........................................150 (5.91) Displacement, l (in3)...........................12.13 (740.2) Compression ratio...........................................16.5:1 Dry weight, kg (lb).................................1400 (3086) Dry weight with reverse gearZF 325A-EB, kg (lb).............................1570 (3461) Crankshaft power,kW (hp) @ 2300 rpm ................................526 (715) Max. torque,Nm (lbf.ft) @ 1600 rpm.......................2925 (2159) Recommended fuel toconform to.........................ASTM-D975 1-D & 2-D, ..............................................EN 590 or JIS KK 2204 Specifi c fuel consumption,g/kWh (lb/hph) @ 2300 rpm................228 (0.369) T echnical data according to ISO 3046 Fuel Stop Power andISO 8665. Fuel with a lower calorifi c value of 42700 kJ/kg and density of 840 g/liter at 15 °C (60 °F). Merchant fuel may differ from this spec ific a t ion which will infl uence engine power output and fuel con s ump t ion.Rating: 5The engine is certifi ed according to IMO.Technical description:Engine and block—Cylinder block and cylinder head made ofcast-iron—One piece cylinder head—Replaceable wet cylinder liners and valve seats/guides—Drop forged crankshaft with induction hard-e ned bearing surfaces and fi llets with sev e n main bearings —Four valve per cylinder layout with over-h ead camshaft—Each cylinder features cross-fl ow in l et andexhaust ducts—Gallery oil-cooled forged aluminum pis t ons—Three piston ringsLubrication system—Integrated oil cooler in cylinder block—Twin full fl ow oil fi lter of spin-on type andby-pass fi lterFuel system—Six Electronic Unit Injectors, one per cyl-i n d er, vertically positioned at the center inbetween the four valves—Gear-driven fuel pump, driven by tim i nggear—Electronically controlled central pro c ess i ngsystem (EDC – Electronic Die s el Con t rol)—Electronically controlled injection tim i ng—8-hole high pressure injector noz z les—Single fi ne fuel fi lter of spin-on type, withwater separatorTurbocharger—Freshwater-cooled turbo chargerCooling system—Freshwater-cooled charge air cooler—Gear-driven coolant pumps—Tubular heat exchanger or single-cir c uitkeel coolingElectrical system—24V electrical system, 24V/60A al t er n a t orReverse gear—ZF 325A-EB, elec t ri c al l y shiftedOptional equipmentContact your Volvo Penta representative.Not all models, standard equipment and accessories are avail-a ble in all countries. All spec ific a t ions are sub j ect to changewithout notice.The engine illustrated may not be entirely identical to pro-d uc t ion standard engines.3-23©23ABVolvoPenta.AB Volvo PentaSE-405 08 Göteborg, SwedenDimensions D12-715 with ZF 325A-EB Not for installationFuel consumptionRpmPower1.Crankshaft pow errpmTorqueRpm。
BSIM450_Enhancement

Xuemei (Jane) Xi, Mohan Dunga, Ali M. Niknejad, Chenming Hu
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley JaneXi@
June 24, 2005
Gate Current Vbs Dependence
1.0E-04 1.0E-05 1.0E-06 Log_Ig[A]
Log_Ig[A]
Ig-Vg(Vb=-1.0V) Original BSIM4 model
1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-10 1.0E-11
n n
Deep well doping alters Vth of devices near the mask edge: Vth(SC) CMC well-proximity effect model is able to capture the distance effect
UC Berkeley - 8
[
(
)(
)]
IGCMOD=1 IGCMOD=2
n
V gse − VTH 0 V aux = NIGC ⋅ v t ⋅ log 1 + exp NIGC ⋅ v t
Implementing full BSIM4 Vth model into Igc enables the accurate prediction of Igc Vbs dependence.
211144891_一次东北冷涡过程暴雨及强对流天气分析

农业灾害研究 2023,13(3)一次东北冷涡过程暴雨及强对流天气分析崔 悦,王健博辽源市气象局,吉林辽源 136200摘要 利用高空、地面等常规气象资料和多普勒雷达资料,对2022年6月4—7日影响吉林省辽源市的东北冷涡暴雨过程进行诊断,结果表明:此次冷涡降水主要发生在冷涡的发展与成熟阶段,类似于中间涡暴雨形势特征。
冷涡降水具有日变化特征,午后极易发生强对流天气。
暖锋的发展为短时强降水提供了初始扰动。
干空气下摆侵入,增强不稳定层结,促使风雹天气发生。
VIL值的跃增和减小与冰雹的出现和消散相对应。
VIL高值不能说明大冰雹是否出现,还应与VIL高值维持时间相联系,维持时间越短,越不利于大冰雹的产生,这对冰雹直径的预报具有一定的指示意义。
关键词 东北冷涡;暴雨;强对流;雷达回波;VIL值中图分类号:P458.1+21.1 文献标识码:B 文章编号:2095–3305(2023)03–0117-03东北冷涡(以下简称冷涡)是造成东北地区低温冷害、持续阴雨洪涝、突发性强对流天气的重要天气系统,常引发暴雨、雷电、风雹和短时强降水等灾害性天气。
我国东北地区22.4%的暴雨和53%的风雹都是在冷涡背景下产生的。
连续几天在同一个地区产生暴雨是东北冷涡最显著的特点,也可产生伴随强对流的短时强降水。
由于东北冷涡具有多变性,导致难以预报东北冷涡天气系统影响下的降水过程和强对流天气,所以众多气象工作者针对东北冷涡的气候特点和降水特征,围绕东北冷涡背景下的强对流天气预报等开展了诸多研究。
郑秀雅[1]利用1956—1989年观测资料,分析了东北冷涡气候特点和降水特征。
黄秀娟[2]分析发现,500 hPa位势场上,整个欧亚地区在40°N附近是否存在明显的西风急流是后期有无东北冷涡形成的关键。
何晗[3]对冷涡背景下短时强降水的统计表明,降水主要集中在冷涡中心东南部和西南部。
杨晓宇[4]通过分析雷达产品特征,提出了东北冷涡背景下短时强降水临近预警指标。
托福阅读第三篇tpo75R -3原文+译文+题目+答案+背景知识

托福阅读第三篇tpo75R-3原文+译文+题目+答案+背景知识原文 (1)译文 (4)题目 (7)答案 (13)背景知识 (14)原文Seismic Waves①Seismic waves-energy waves produced by earthquakes-permit scientists to determine the location,thickness,and properties of Earth's internal zones.They are generated when rock masses are suddenly disturbed,such as when they break or rupture.Vibrations spread out in all directions from the source of the disturbance, traveling at different speeds through parts of Earth's crust and interior that differ in chemical composition and physical properties.The principal categories of these waves are primary,secondary,and surface. All three types of waves are recorded on an instrument called a seismograph.②Primary waves,or P-waves,are the speediest of the three kinds of waves and therefore the first to arrive at a seismograph station after there has been an earthquake.They travel through the upper crust of Earth at speeds of4to5kilometers per second,but near the base of the crust they speed along at6or7kilometers per second.In these primary waves,pulses of energy are transmitted as a succession of compressions and expansions that parallel the direction of propagation of the wave itself.Thus,a given segment of rock set in motion during an earthquake is driven into its neighbor and bounces back.The neighbor strikes the next particle and rebounds and subsequent particles continue the motion.Vibrational energy is an accordion-like push-pull movement that can be transmitted through solids,liquids and gases.Of course,the speed of Pwave transmission will differ in materials of different density and elastic properties.③Secondary waves,or S-waves,travel1to2kilometers per second slower than do P-waves.Unlike the movement of P-waves,rock vibration in secondary waves is at right angles to the direction of propagation of the energy.This type of wave is easily demonstrated by tying a length of rope to a hook and then shaking the free end.A series of undulations will develop in the rope and move toward the hook-thatis,in the direction of propagation.Any given particle along the rope, however,will move up and down in a direction perpendicular to the direction of propagation.It is because of their more complex motion that S-waves travel more slowly than Pwaves.They are the second group of oscillations to arrive at a seismograph station.Unlike Pwaves, secondary waves will not pass through liquids or gases.④Both P-and S-waves are sometimes also termed body waves because they are able to penetrate deep into the interior or body of our planet.Body waves travel faster in rocks of greater elasticity,and their speeds therefore increase steadily as they move downward into more elastic zones of Earth's interior and then decrease as they begin to make their ascent toward Earth's surface.The change in velocity that occurs as body waves invade rocks of different elasticity results in a bending or refraction of the wave.The many small refractions cause the body waves to assume a curved travel path through Earth.⑤Not only are body waves subjected to refraction,but they may also be partially reflected off the surface of a dense rock layer in much the same way as light is reflected off a polished surface.Many factorsinfluence the behavior of body waves.An increase in the temperature of rocks through which body waves are traveling will cause a decrease in velocity,whereas an increase in confining pressure will cause a corresponding increase in wave velocity.In a fluid where no rigidity exists,S-waves cannot propagate and P-waves are markedly slowed.⑥Surface waves are large-motion waves that travel through the outer crust of Earth.Their pattern of movement resembles that of waves caused when a pebble is tossed into the center of a pond.They develop whenever P-or S-waves disturb the surface of Earth as they emerge from the interior.Surface waves are the last to arrive at a seismograph station.They are usually the primary cause of the destruction that can result from earthquakes affecting densely populated areas.This destruction results because surface waves are channeled through the thin outer region of Earth,and their energy is less rapidly scattered into the large volumes of rock traversed by body waves.译文地震波①地震波是由地震产生的能量波,它们使科学家能够确定地球内部区域的位置、厚度和性质。
富水软弱围岩隧道全断面帷幕注浆变形机理及控制研究

河南科技Henan Science and Technology交通与土木工程总第873期第2期2024年1月收稿日期:2023-12-15作者简介:王荣飞(1965—),男,本科,高级工程师,研究方向:结构设计。
富水软弱围岩隧道全断面帷幕注浆变形机理及控制研究王荣飞(镇江市规划勘测设计集团有限公司,江苏镇江212004)摘要:【目的】为进一步揭示富水软弱围岩隧道全断面帷幕注浆浆液扩散规律以及地层加固、防渗止水原理。
【方法】以莞惠城际GZH-4标暗挖隧道穿越人工湖底全风化岩层为工程背景,通过现场取样及数值计算分析,对全断面帷幕注浆隧道的掌子面变形、岩层取芯率、地层水平收敛及地表沉降等进行探讨,深入分析隧道帷幕注浆浆液扩散规律及地层加固、防渗止水原理。
【结果】结果表明:注浆浆脉构成的浆脉骨架可与周围岩体相黏接形成结石体,能有效提高岩体强度及地层抗渗透性能;高压注浆导致掌子面易于鼓胀或开裂,精准控制注浆初始条件和超前预测,可有效避免这一现象的发生;隧道的全断面帷幕注浆可增强岩体自承载能力,能有效抑制隧道的水平净空收敛变形;全断面帷幕注浆对富水软弱地层隧道开挖时的地表沉降有很好的抑制作用。
【结论】研究成果揭示了富水软弱围岩隧道全断面帷幕注浆的变形机理,并提出了相应的控制方法,可为类似地质环境下岩体注浆提供理论支撑与技术指导。
关键词:富水软弱围岩;隧道全断面帷幕注浆;加固地层;防渗止水中图分类号:TU94+1文献标志码:A文章编号:1003-5168(2024)02-0052-07DOI :10.19968/ki.hnkj.1003-5168.2024.02.010The Deformation Mechanism and Control of Full-Section CurtainGrouting in Tunnels with Rich Water and Weak Surrounding RocksWANG Rongfei(Zhenjiang Planning Survey and Design Group Co.,Ltd.,Zhenjiang 212004,China)Abstract:[Purposes ]In order to further elucidate the diffusion law of grouting fluid and the mechanismof ground reinforcement and water stopping in the full section curtain of a tunnel with rich water andweak surrounding rock.[Methods ]Taking the GZH-4mined tunnel crossing the artificial lake bottomfully weathered rock layer in the Guan-Hui intercity as the background,the deformation of the tunnel face,the rate of core recovery,the horizontal convergence of the strata,and the surface subsidence were studied through on-site sample and numerical calculation analysis.In-depth analyses were done of the stratum reinforcement,water sealing,and the grouting slurry´s diffusion law.The corresponding preven⁃tive measures were proposed.[Findings ]The results show that the grouting veins´framework could unite with the nearby rock to form a stone body,which significantly increased the strength and permeability of the formation.High-pressure grouting caused the tunnel face to swell or crack.This phenomenon could be effectively avoided by precisely managing the initial grouting conditions and forecasting in advance.The full-section grouting of the tunnel could enhance the self-bearing capacity of the rock mass and ef⁃fectively suppress the horizontal clearance convergence of the tunnel.[Conclusions ]The results of thisstudy reveal the deformation mechanism of full-section curtain grouting in tunnels with rich water and weak surrounding rocks and propose corresponding control methods that can provide theoretical support and techni⁃cal guidance for rock mass grouting in similar geological environments.Keywords:water-rich and weakly fractured rock mass;full-section curtain grouting of the tunnel; strengthening the formation;impermeability performance0引言由于富水软弱破碎岩体的不稳定性,其在地下工程尤其是隧道工程的施工中具有极大的工程风险隐患。
基于节段模型试验的悬索桥涡振抑振措施

基于节段模型试验的悬索桥涡振抑振措施孙延国;廖海黎;李明水【摘要】In order to investigate the vortex-induced vibration performance of long-span suspension bridges and propose effective mitigation measures, a long-span suspension bridge with steel-box girder was taken as an engineering example. By a section model wind tunnel test with a scale of 1 :20, the effects of railings, maintenance rail and guide vane on the vortex-induced vibration performance of main girder at a low damping were investigated, and the mitigation measure of setting guide vane inside the maintenance rail was applied in bridge engineering. In addition, the mechanism of the vortex-induced vibration was discussed based on the test phenomenon. The research results show that the vortex-induced vibration can be effectively mitigated by the above measure, and the mitigation measure makes the aerodynamic shape of the main girder be more reasonable. Furthermore, the structure for this measure is relatively simple to be convenient for engineering application.%为研究大跨度悬索桥涡激振动性能,并提出有效的涡振抑振措施,以某大跨度钢箱梁悬索桥为工程背景,通过1∶20大尺度节段模型风洞试验,在低阻尼下研究了人行道栏杆、检修轨道、导流板对主梁涡激振动性能的影响;通过在检修轨道内侧设置导流板抑制主梁的涡激振动,并基于试验现象探讨了涡激振动发生的机理.研究表明,在检修轨道内侧设置导流板抑制主梁涡激振动的措施使桥梁断面的气动外形更合理,抑振效果好,且结构形式简单,便于工程应用.【期刊名称】《西南交通大学学报》【年(卷),期】2012(047)002【总页数】7页(P218-223,264)【关键词】风洞试验;抑振措施;导流板;涡激振动【作者】孙延国;廖海黎;李明水【作者单位】西南交通大学风工程试验研究中心,四川成都610031;西南交通大学风工程试验研究中心,四川成都610031;西南交通大学风工程试验研究中心,四川成都610031【正文语种】中文【中图分类】U441.3大跨度悬索桥桥梁质量轻、阻尼小,当气流流经主梁断面时,周期性交替脱落的旋涡会引起桥梁结构产生涡激振动(涡振)现象[1].涡激振动虽然不具有很强的破坏性,但其产生的风速较低,长时间振动将会造成结构疲劳,并严重影响行车的舒适性.日本东京湾道桥[1-2]、巴西 Rio-Niterói桥[3]、丹麦 Great Belt East桥[4]、英国 Kossock 斜拉桥[1]等均出现过明显的主梁涡激共振.目前,抑制涡激振动的措施可以分为构造措施和气动措施[5].构造措施一般包括增大结构刚性、增加结构质量或阻尼(TMD)等.气动措施能从本质上减小涡激的作用,一般包括在主梁断面上设置风嘴、导流板、抑流板等.鲜荣、孟小亮等研究了改变检查车轨道位置对主梁涡激振动性能的影响[6-7];Larsen、廖海黎等研究了设置导流板对主梁涡激振动性能的影响[8-10].由于不同主梁的断面形状差异较大,气动措施因桥而异,在一座桥上抑振效果显著的抑振措施对另一座桥梁可能并不有效[11],需要通过风洞试验研究相应的气动抑振措施.Larose和Larsen等发现,同样的导流板,在不同雷诺数下进行涡激振动试验时,试验现象大不相同[12-13].另外,常规尺度(1∶50~1∶100)节段模型风洞试验雷诺数较低,雷诺数效应和主梁细节模拟不精细,往往导致试验结果与实际情况出入较大,从而导致对实桥抗风性能的误判[14-15].采用大尺度主梁节段模型(通常为1∶15~1∶20)进行风洞试验,可以更精确地模拟主梁细节,试验时风速比约为1,其雷诺数与实桥的差别仅是由缩尺比引起的,较常规尺度节段模型提高了20~30倍,试验结果更接近实际.本文以某大跨度悬索桥钢箱梁1∶20大尺度节段模型为例,在西南交通大学XNJD-3风洞中进行涡激振动试验,在低阻尼下研究了风攻角、检修轨道、导流板对涡激振动性能的影响,研究了多种方案的抑振措施,并基于试验现象讨论了涡激振动发生的机理.研究表明,在检修轨道内侧设置单导流板能大大改善主梁的涡激振动性能.1 节段模型试验参数某大跨度双塔单跨悬索桥跨径为409 m+1 418 m+364 m.节段模型试验采用的缩尺比为1∶20.为使抑振措施安全可靠,同时使涡激振动现象更明显,便于优化抑振措施,试验采用了较低的阻尼比.图1为主梁断面,图2为风洞中的节段模型,表1为节段模型的主要试验参数.图1 主梁断面(单位:cm)Fig.1 Cross section of main girder(unit:cm)图2 风洞中的节段模型Fig.2 A large-scale section model in a wind tunnel 表1 节段模型试验参数Tab.1 Main test parameters of the section model/%一阶对称竖弯 0.116 2.734 27 900 69.75 ——振型频率/Hz 等效质量/(kg·m-1)等效质量惯性矩/(kg·m)实桥模型实桥模型实桥模型阻尼比0.20一阶对称扭转 0.266 4.687 ——4 168 300 26.05 0.212 风洞试验结果节段模型风洞试验结果见图3.图3 涡激振动响应Fig.3 The responses of vortex-induced vibration试验发现,成桥状态、风攻角为-5°~+4°时均没有产生涡激振动现象,+5°时发现了2次明显的竖向和扭转涡激振动;施工状态未发生明显的涡激振动.试验结果表明,涡激振动的锁定风速较低,振幅最大的竖向及扭转涡振锁定风速分别为4.5和8.0 m/s,低风速下来流为大攻角的可能性较大.鉴于此,还研究了来流风攻角为+6°的情况.Larsen等借鉴飞机机翼研究理论对流线型桥梁断面进行研究[9],发现当箱梁斜腹板的倾斜角度大于16°时,由于气流在箱梁尾部产生交替脱落的旋涡,容易激发涡激振动.当倾斜角度小于16°时,气流经过主梁后仍附着在斜腹板上,从而抑制了旋涡的产生.本文研究对象的斜腹板倾角为15°,当风攻角为0°时,成桥及施工状态下主梁均未产生涡激振动,结果与Larsen的研究结论吻合.当风攻角为+5°时,成桥状态下主梁产生了明显的竖向及扭转涡激振动,而施工状态下未产生任何振动.这表明,由于桥面上的栏杆或箱梁底部的检修轨道使原本附着在梁体表面的气流产生了分离,形成旋涡并在尾部周期性脱落,从而导致主梁的涡激振动.鉴于此,设计了几种极限方案(图4)进行风洞试验,并与成桥及施工状态的结果进行比较,试图寻找引起涡激振动的原因.图4 主梁试验断面示意Fig.4 Test cross sections of the main girder从图3的试验结果可知,去掉人行道栏杆会使竖向振幅明显减小,而对扭转振幅影响不大;去掉检修轨道会使竖向及扭转振动消失;去掉检修轨道和人行道栏杆(施工状态),也会使涡激振动完全消失.由此可知,引起主梁涡激振动的主要原因是位于底板的检修轨道.因此,涡振抑振措施主要针对检修轨道进行研究.3 抑振措施3.1 检修轨道位于底板由于引起该桥涡激振动的主要原因是检修轨道,希望通过改变检修轨道在底板的位置能使涡激振动响应消失或使其减弱,具体措施见表2.从图5可知(方案后括号内的数字为风攻角,下同):当风攻角为+6°、检修轨道位于2.4 m处时,主梁竖向和扭转均产生了明显的涡激振动,改变检修轨道距底板的高度对涡振振幅的影响很小;检修轨道位于3.2 m处时,竖向涡振不明显,扭转涡振振幅依然较大;检修轨道位于4.0 m处、风攻角为+5°时产生了明显的涡激振动,但竖向振幅减小,扭转振幅仍然较大;检修轨道位于4.8 m处、风攻角为+5°和+6°时,主梁均未产生明显的涡激振动.对此方案的其他风攻角进行检验,-5°~+6°均未产生明显的涡激振动现象.由此可知,检修轨道向主梁中部移动有利于抑制涡激振动.但方案5的检修轨道过于靠近底板中部,致使检修车两侧悬臂过长,对检修车的稳定性和检修维护的安全性有影响,因此方案5不能作为该桥梁的抑振措施.图5 涡激振动响应(检修轨道位于底板)Fig.5 The responses of vortex-induced vibration when maintenance rail is under bottom panel表2 涡振抑振措施Tab.2 Migration measures of vortex-induced vibration 抑振措施图示方案检修轨道位于底板?方案1:B=2.4 m,H=15 cm方案2:B=2.4 m,H=18 cm方案3:B=3.2 m,H=15 cm方案4:B=4.0 m,H=18 cm方案5:B=4.8 m,H=18 cm检修轨道位于斜腹板?方案6:B=2.0 m,H=25 cm方案7:B=2.4 m,H=25 cm方案8:B=3.2 m,H=25 cm方案9:B=3.2 m,H=13 cm检修轨道两侧安装窄导流板方案10:B=0.8 m,L=0.5 m,β =39°方案11:B=1.5 m,L=0.6 m,β =39°方案12:B=2.1 m,L=0.7 m,β=39°?检修轨道两侧安装宽导流板?方案13:B=1.5 m,D1=D2=28.0 cm,L=1.00 m方案14:B=2.4 m,D1=D2=26.5 cm,,L=1.00 m方案15:B=3.2 m,D1=D2=26.5 cm,L=1.00 m方案 16:B=2.4 m,D1=19.0 cm,D2=34.0 cm,L=1.00 m方案 17:B=2.4 m,D1=19.0 cm,D2=34.0 cm,L =1.14 m检修轨道单侧安装导流板方案18:图中实线部分尺寸同方案16方案19:图中虚线部分尺寸同方案163.2 检修轨道位于斜腹板为了减小检修轨道对气流的影响,将其布置在主梁斜腹板,期望气流经过主梁时不会在尾部形成周期性脱落的旋涡,具体方案见表2.从图6可见,将检修轨道布置在主梁斜腹板上时,对主梁涡激振动的影响很小.气流经过底板尾部时,受检修轨道的影响,气流仍然会在此处分离,产生涡脱.因此,该方案不能抑制主梁的涡激振动.图6 涡激振动响应(检修轨道位于斜腹板)Fig.6 The responses of vortex-induced vibration when the maintenance rail is on oblique web3.3 检修轨道两侧安装窄导流板主跨为1 088 m的大跨度斜拉桥——苏通大桥采用的抑振措施是在检修轨道两侧设置导流板.借鉴该抑振措施,设计了几种方案:在检修轨道两侧对称布置宽度为0.5 m的窄导流板,导流板与底板的夹角β=39°,而检修轨道和导流板在底板的位置不同(表2).从图7可见,在检修轨道两侧布置导流板对主梁涡激振动影响很大.当风攻角为+5°、采用方案10时主梁的竖向振幅明显减小,对扭转影响较小;采用方案11时主梁的竖向振幅几乎消失,扭转振幅大大减小;采用方案12时主梁的竖向及扭转涡振完全消失.对方案12在风攻角为+6°的情况下进行检验,结果主梁的竖向及扭转涡振振幅均很大.因此,方案12仍不能满足抑振要求.图7 涡激振动响应(检修轨道两侧安装窄导流板)Fig.7 The responses of vortex-induced vibration when narrow guide wanes are on both sides of the maintenance rail3.4 检修轨道两侧安装宽导流板在上述基础上继续优化,主要是增大导流板宽度,改变导流板与检修轨道的间距(表2).需要指出的是,考虑到检修车安装方便的需要,方案16和方案17中导流板与检修轨道采取不对称布置,其中方案17的导流板直接延长至主梁底板.图8 涡激振动响应(检修轨道两侧安装宽导流板)Fig.8 The responses of vortex-induced vibration when wide guide wanes are on both sides of the maintenance rail从图8可见,采用方案13,当风攻角为+5°时便产生了较大的涡激振动,而采用方案14~17均未产生明显的涡激振动;风攻角为+6°时,采用方案14~17均使主梁的竖向涡振振幅明显减小,扭转振动消失.可见,方案14~17的抑振效果均较好,但方案16更便于检修设备的安装与维护.对方案16在其他风攻角下进行检验,结果在风攻角为-5°~+5°的条件下主梁均未产生明显的涡激振动现象.由此可见,在检修轨道两侧布置导流板对涡激振动的影响很大,抑振效果与导流板的宽度以及在底板的位置关系很大.3.5 检修轨道单侧安装导流板Larsen、Savage等通过梁体测压试验及数值模拟发现,箱梁的涡激振动是由于箱梁尾部旋涡的周期性形成与脱落引起的[9,13].根据本文研究的桥梁断面可以假设,由于检修轨道的存在,使流经主梁的气流在此发生了分离,且在尾部形成了旋涡.安装导流板后,气流会被检修轨道内侧的导流板引离断面,从而抑制了旋涡的产生,或者将旋涡引导至不影响主梁的区域,从而使涡激振动消失,而检修轨道外侧的导流板对气流的影响有限.为了验证这一假设,在方案16的基础上去掉了检修轨道外侧的导流板,期望仍然没有涡激振动产生.将导流板改为单侧布置——方案18为外侧布置,方案19为内侧布置(见表2),对2种方案分别进行风洞试验,结果见图9.从试验结果可见,只在外侧布置导流板时,风攻角为+5°时主梁便产生了明显的竖向及扭转涡激振动,扭转振动尤为剧烈,扭转振幅甚至大于原方案的振幅;若在检修轨道内侧布置导流板,当风攻角+5°和+6°时主梁均未产生明显的涡激振动.对方案19在其他风攻角下进行检验,结果风攻角为-5°~+6°的条件下均未产生明显的涡激振动,抑振效果明显.在检修轨道内侧安装导流板后,气流会被导流板引离主梁断面,从而抑制了旋涡的产生,或者将旋涡引导至不影响主梁的区域,从而使涡激振动消失.而检修轨道外侧布置的导流板主要影响主梁断面上游的气流,对断面尾部气流的影响有限,因此没有起到很好的抑振作用.图9 涡激振动响应(检修轨道单侧安装导流板)Fig.9 The responses of vortex-induced vibration when guide wane is on one side of the maintenance rail 4 结论通过对某大跨度悬索桥1∶20的大尺度节段模型涡振抑振措施的风洞试验,得到以下结论:(1)大跨度桥梁主梁一般为流线型箱梁断面,在一定程度上会使涡激振动现象减弱甚至消失.但由于桥梁的附属设施(栏杆、检修轨道等)及风攻角等因素的存在,仍会导致涡激振动.对本文中研究的流线型箱梁断面,检修轨道和风攻角是影响主梁涡激振动的主要因素.(2)改变检修轨道在斜腹板及底板的位置对涡激振动性能的影响有限,在检修轨道两侧布置导流板可以改善主梁的涡激振动性能,改善程度与导流板的尺寸及倾角密切相关.在检修轨道内侧布置导流板能将主梁底板的气流引离尾部,从而抑制主梁的涡激振动.该抑振措施使主梁断面的气动外形更合理,制振效果好,且结构形式简单,便于工程应用.在检修轨道外侧布置导流板对主梁涡激振动的影响十分有限.需要说明的是,结论(2)是基于试验现象的一种推断,确切的抑振机理可通过粒子成像测速技术(PIV)或数值模拟方法进行研究,目前这方面的工作正在进行中.【相关文献】[1]陈政清.桥梁风工程[M].北京:人民交通出版社,2005:129-136.[2] FUJINO Y.Wind-induced vibration and control of Tran-Tokyo Bay crossing bridge [J].Journal of Structure and Engineering,2002,128(8):1012-1025.[3] ABTTISTA R C,PFEIL M S.Reduction of vortexinduced oscillations of Rio-Niterói bridge by dynamic control devices[J].Journal of Wind Engineering and Industrial Aerodynamics,2000,84(3):273-288.[4] SCHEWE G,LARSEN A.Reynolds number effects in the flow around a bluff bridge deck cross section[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,74/75/76:829-838.[5]刘健新.桥梁对风反应中的涡激振动及制振[J].中国公路学报,1995,8(2):74-79.LIU Jianxin.Vortex induced vibration and its control in responses of bridge to wind [J]. China Journal of Highway and Transport,1995,8(2):74-79.[6]鲜荣,廖海黎,李明水.大比例主梁节段模型涡激振动风洞试验分析[J].实验流体力学,2009,23(4):15-20.XIAN Rong,LIAO Haili,LI Mingshui.Analysis of vortex induced vibration of large-scale section model of girder in wind tunnel[J].Journal of Experiments in Fluid Mechanics,2009,23(4):15-20.[7]孟小亮,朱乐东,丁顺全.检修车轨道位置对半封闭分离箱桥梁断面涡振性能的影响[C]∥第十四届全国结构风工程学术会议论文集.北京:中国土木工程学会桥梁与结构工程分会风工程委员会,2009:157-162.[8] LARSEN A,ESDAHL S,ANDERSEN J E.Storebaelt suspension bridge vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,88(2/3):283-296.[9] LARSEN A.Aerodynamic stability and vortex shedding excitation of suspension bridges[C]∥ The 4th International Conference on Advances in Wind andStructures(AWAS'08).Jeju,Korea:Wind Engineering Institute of Korea,2008:115-128.[10]廖海黎,王骑,李明水.嘉绍大桥分体式钢箱梁涡激振动特性风洞试验研究[C]∥第十四届全国结构风工程学术会议论文集.北京:中国土木工程学会桥梁与结构工程分会风工程委员会,2009:61-66.[11] SARWAR M W,ISHIHARA T.Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures[J].Journal of Wind Engineering and Industrial Aerodynamics,2010,98(12):701-711.[12] LAROSE G L,AUTEUIL A.On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges[J].Journal of Wind Engineering and Industrial Aerodynamics,2006,94(5):365-376.[13] LARSEN A,SAVAGE M,LAFRENIÈREB A.Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers[J].Journal of Wind Engineering and Industrial Aerodynamics, 2008,96(6/7):934-944.[14]鲜荣,廖海黎.不同尺度扁平箱梁节段模型涡激振动风洞试验[J].桥梁建设,2010(2):9-13.XIAN Rong,LIAO Haili.Wind tunnel test for vortex induced vibration of different geometry scale sectional models of flat box girder[J]. Bridge Construction,2010(2):9-13.[15]张伟,魏志刚,杨詠昕,等.基于高低雷诺数试验的分离双箱涡振性能对比[J].同济大学学报,2008,36(1):6-11.ZHANG Wei,WEI Zhigang,YANG Yongxin,et al.Comparison and analysis of vortex induced vibration for twin-box bridge sections based on experiments in different Reynolds numbers[J]. Journal of Tongji University,2008,36(1):6-11.。
Vortex Mixer F202A0173 产品说明书

Instruction ManualManuale di istruzioniManu el d’instructionsManual de instruccionesBedienungsanleitung指导手册CLASSIC Vortex MixerF202A0173General Information / Informazioni Generali / Informations Générales / Información General / Allgemeine Hinweise / 一般信息Before using the unit, please read the following instruction manual carefully.Prima dell’utilizzo dello strumento si raccomanda di leggere attentamente il seguente manuale operativo.Avant d’utiliser l’instrument, il est recommandé de lire a ttentivement le présent manuel d’instructions.Antes de utilizar el instrumento, le recomendamos que lea con atención el siguiente manual de funcionamiento.Bitte lesen Sie vor Inbetriebnahme des Geräts diese Bedienungsanleitung sorgfältig durch在使用本装置之前,请仔细阅读以下使用说明书。
Do not dispose of this equipment as urban waste, in accordance with EEC directive 2002/96/CE.Non smaltire l’apparecchiatura come rifiuto urbano, secondo quanto previsto dalla Direttiva 2002/96/CE.Ne pas recycler l’appareil comme déchet solide urbain, conformément à la Directive 2002/96/CE.No tirar el aparato en los desechos urbanos, como exige la Directiva 2002/96/CE.Dieses Gerät unterliegt der Richtlinie 2002/96/EG und darf nicht mit dem normalen Hausmüll entsorgt werden.根据EEC指令2002/96/CE,请不要将本设备作为城市垃圾处理。
固态声学超材料和使用其聚焦声音的方法

固态声学超材料和使用其聚焦声音的方法
固态声学超材料是一种由人工排列的微结构组成的材料,具有特殊的声学性质,可以控制声波的传播和传感特性。
它与传统的声学材料相比,具有更广泛的应用潜力。
固态声学超材料的基本单位通常由具有不同的声学特性的微结构组成,例如孔洞、柱状结构或薄膜。
这些微结构的几何排列可以精确地调节声波的传播速度、传播方向和传播模式。
利用固态声学超材料聚焦声音的方法主要有以下几种:
1. 平板透镜方法:通过在超材料表面上设计特定的微结构,可以实现声波的聚焦效果,类似于光学透镜。
声波经过超材料透镜时,会受到透镜结构的作用,从而在透镜的聚焦点处形成集中的声场。
2. 薄膜反射方法:固态声学超材料薄膜可以通过精确设计,将声波反射到一定的聚焦区域。
通过调节薄膜的厚度和微结构的几何形状,可以实现对声场的聚焦和定向控制。
3. 基于共振的方法:固态声学超材料可以通过调节其结构参数和材料特性,实现声波在特定频率下的共振效应。
这种共振现象可以用于声波的聚焦和放大。
4. 控制声波传播路径的方法:固态声学超材料的微结构可以根据需要来设计,使声波只沿着特定路径传播,并将其聚焦到所需的区域。
这种方法可以实现声波的定向传播和聚焦。
综上所述,固态声学超材料可以通过透镜、薄膜反射、共振和控制传播路径等方法来实现声音的聚焦效果,为声学应用提供了新的可能性。
增强壁面处理(Enhanced

增强壁⾯处理(Enhanced wall treatment)
在湍流近壁⾯处理中,增强壁⾯处理(enhanced wall treatment)是two-layer求解低雷诺数模型与增强壁⾯函数两者的结合,如果近壁⾯处的⽹格⾜够密,y-plus等于1,则增强壁⾯处理采⽤two-layer模型进⾏求解ε⽅程;当第⼀层⽹格布置在湍流区时,采⽤增强壁⾯函数将壁⾯物理量与湍流区物理量连接起来。
two-layer模型:
该模型将近壁⾯区域分成两部分,⽤下列公式区分,当该Rey 数⼤于200时,采⽤原来的湍流模型k-ε⽅程求解,但是当该值⼩于200时,k⽅程求解保持不变,但是耗散率⽅程ε中的湍流粘度有所改变。
注意:
1、该增强壁⾯处理存在于所有的ε湍流⽅程中,除了Quadratic RSM模型中。
2、存在于所有的w湍流⽅程中
3、增强壁⾯处理对于y*>15(增强壁⾯函数作⽤)和y*<2(two-layer模型作⽤)计算效果相⼀致,计算中间的⽹格会出现问题,因此建议采⽤增强壁⾯处理时应保证Y-plus<2或者>15.
y*指的是⽹格质⼼距壁⾯的⽆量纲距离。
科普教育出版社 九年级上册单词 背诵版

1U1 Topic12take place3volunteer4bell5Africa6disable7shut8ever9rope10narrow11various12report13keep in touch with14relative15telegram16rapidly17since18reform19reform and opening-up 20satisfy21medical22cellphone=mobile phone 23fax24machine25rapid26progress27make progress28already29succeed in30pleased31leisure32hide33hide and seek34chess35radio36spare37recent38abroad39U1 Topic240yet41probably42cinema43department store44nearby45population46billion47increase48reach50policy51Russia52measure53social54supply55natural56worse57so far58government59take measure to do sth 60thanks to sb/sth61paragraph62opportunity63newborn64percent65offer66surround67discourage68local69capital70huge71market72transportation73excellent74U1 Topic375as a matter of fact76block77artist78millions of79visitor80industry81chemistry82term83program84homeless85manage86treatment87immediately88secretary89helper90club91engineer92wound93basic94human95value96period98homelessness99earn100drug101mental102on purpose103whatever104effect105steal106suppose107phrase108according to109context110laborer111cruel112project113aid114primary115contribution116make a contribu to 117encourage118moral119development120respect121importance122continue123college124Review of unit 1 125indeed126method127teenager128hardly129plenty130plenty of131sunshine132sunbathe133beach134volleyball135culture136surf137U2 Topic1138bee139butterfly140mess141shame142several143pour144waste146destroy147cut down148pollute149goodness150breath151pain152produce153chest154awful155bear156editor157breathe158soil159harmful160be harmful to161deaf162print163hearing164loss165recently166disturb167do harm to168uncomfortable169unpleasant170sort171environmental172including173onto174sentence175coal176create177blood178high blood pressure 179planet180U2 topic2181sand182sandstorm183change into184desert185human186although187reduce188completely189user190none191rubbish192here and there193spit194wild195nobody196untidy197worst198rude199behavior200situation201punish202perhaps203everybody204nowhere205take away206oxygen207hole208ozone layer209radiation210directly211carbon dioxide 212form213blanket214escape215rise216the greenhot effect 217refer to218shortage219avoid220resource221discover222reuse223thirsty224nearly225law226U2 Topic3227protection228organization229recycle230plastic231can232nod233agreement234disagreement235hurry236give up237battery238ought to239shut off240electricity241distance242cloth243action244after all245acid rain246nuclear247biogas248technology249straw250renewable251shortage252process253require254electric255best-known256maglev train257German258per259wheel260efficient261guide262path263steel264wave265deep266source267run out268worldwide269sunlight270steam271remove272replace273dry274insect275bite276planter277Review of units 278colleague279motorbike280gasoline281anybody282examine283marry284weight285media286package287product288excessive289goods290seriously291video292allow293quality294historical295lifestyle296difference297U3 Topic1 298cartoon299character300widely301throughout302from now on 303foreigner304film-maker 305garage306be pleased with 307pack308on business 309tonight310Spanish311be similar to 312communicate 313conversation 314interpreter315explain316impossible317twin318divide319divide..into. 320dig321lay322mother tongue 323root324trader325native326speaker327foreign328base329European330kingdom331tourism332Britain333powerful334leading335position336U3 Topic2337see..off 为..338stranger339thumb340ask for a ride 341minibus342give sb. a.ride 343get on344flight345guidebook346whenever347board348bow349silence350hip351praise352research353do some research 354secret355puzzled356victory357misunderstanding 358typical359differently360negative361consider362honest363positive364at times365ancient366magical367creature368emperor369compare..to.. 370courage371underline372mistake373make mistakes 374peacock375pride376wisdom377British378kowtow379expression380spelling381elevator382pronunciation383cent384cookbook386U3 Topici3387accent388oral389dare390sleepy391final392real393retell394indirect395granddaughter396pronounce397dialog398composition399copy400notebook401diary402keep a diary403tape404aloud405object406textbook407ability408take a breath409toothpaste410preview411translate412discussion413exactly414honor415as long as416stick to (doing) to417chant418achieve419easily420download421actually422effective423imitate424Review of unit3 companyn 425bored426concentrate427pull428fold429mention430U4 Topic1431rocket432metal434spaceship 435lock436laptop437digital438bulb439airplane440hard-wearing 441Korea442invention443list444crayon445thought446brainstorm 447evaluate448detailed449redesign450balloon451gun452robot453keyboard454explorer455mark456system457man-made 458U4 Topic2 459display460screen461alien462outer space 463describe464astronaut465admire466master467dancer468realize469universe470solar system 471Roman472god473diameter474storm475gravity476weigh477generally478journey479limit480excitement481launch482beyond483U4 Topic3484prove485lunar486legend487significance488independently489spacewalk490electronic491spacesuit492telescope493entertainment494doubt495no doubt496tiny497inside498normally499brain500cancel501workplace502connect503for instance504besides505servant506certain507for certain508on one's own509warn510might model511housework512Review of unit 43163 513waitress514magazine515rooster516wife517chick518paint519struggle520palace521the Summer Palace522tower523prison524prisoner525vocabulary526a bunch of发生, 进行n.志愿者n.钟声; 钟, 铃n.非洲adj.残疾的, 残废的v.关闭, 关上adv.在任何时候, 从来n.绳子, 绳索adj.狭窄的adj.,各种各样的n.&v.通讯; 交流与.. 保持联系n.亲属, 亲戚n.电报; 电文adv.快速地, 迅速地prep.&conj.自.. 从; 既然n.改革, 改良改革开放v.使满足, 使满意adj.医学的, 医疗的移动电话n.传真, 传真机n.机器, 机械adj.迅速的, 快速的n.&v. 进步; 进展取得进步adv.已经, 早已成功地做了..adj.高兴的n.空闲, 空暇v.躲藏; 遮挡; 隐瞒捉迷藏n.国际象棋n.收音机adj.空闲的, 空余的adj.近来的, 最近的adv.在国外; 到国外adv.仍, 还adv.很可能, 大概n.电影院百货公司adj.&adv. 附近; 在附近n.人口, 人数num.十亿v.&n.(使) 增大, 增加; 增大v.实现; 达到; 够得着; 到达adv. 幸运地n.政策, 方针n. 俄罗斯n. 措施, 方法adj. 社会的; 社交的v.&n.提供; 供应量, 补给adj. 天然的; 天生的adj.&adv. 更差的; 更差到目前为止n. 政府, 内阁采取措施做..幸亏, 由于n. 段落n. 机会, 时机adj. 新生的, 初生的n. 百分之..v. 提供v. 围绕, 环绕v. 阻止; 使灰心adj. 当地的, 本地的n. 首都, 资本adj. 巨大的, 极多的n. 集市, 市场n. 运输adj. 优秀的, 杰出的事实上, 其实n. 街道; 块n. 艺术家, 画家of 大量的, 数以百万计n. 游客, 来访者, 参观者n. 行业, 工业n. 化学, 化学物质n. 学期; 词语, 措辞n. 计划, 方案, 节目adj. 无家的v. 完成; 能解决(问题)n. 治疗; 待遇adv.&conj. 立刻; 一.. 就n. 秘书n. 帮手, 助手n. 俱乐部n. 工程师n.&v. 伤口; 伤害adj. 基本的, 基础的adj.&n. 人的; 人v.&n. 重视, 珍视; 价值n. 一段时间, 时期n. 收容所; 遮蔽物n. 无家可归v. 挣钱; 赢得n.毒品; 药物, 药adj. 精神健康的; 思想的故意pron.无论什么; 任何事物n.影响, 结果; 效果v.偷, 窃取v.帮助, 支持, 援助n.短语, 词组据.. 所说, 据.. 所报道n. 上下文; 语境; 背景n. 劳工, 工人adj. 残酷的, 冷酷的n. 项目, 方案v.&n. 援助; 帮助adj. 小学教育的; 主要的; 最初的n. 贡献; 捐款为.. 做贡献v. 鼓励adj. 道德(上) 的n. 发展, 开发v. 尊敬, 尊重n. 重要性v. 持续, 继续做n.(美) 大学,(英) 学院adv. 真正地; 实际上n. 方法, 办法n. 青少年adv. 几乎不pron.&n. 大量, 众多; 充足of 大量的n. 阳光v. 晒太阳, 日光浴n. 海滩, 海滨n. 排球adj. 文化的v. 上网, 浏览n. 蜜蜂n. 蝴蝶; 蝶泳n. 肮脏, 脏乱; 困境n. 羞耻, 羞愧det.&pron. 几个, 数个v. 倒出, 倾泻; 不断流出v.&adj. 废弃的, 无用的; 浪费n. 村民v. 摧毁, 破坏砍倒v. 污染n. 天啊v. 呼吸n. 疼痛, 痛苦v. 生产, 制造n. 胸部, 胸膛adj. 很坏的, 极讨厌的v. 承受, 忍受n. 主编, 编辑n. 一次吸入的空气n. 土壤, 土地adj. 有害的对.. 有害adj. 聋的v. 印刷n. 听力, 听觉n. 丧失; 损失; 丢失adv. 不久前, 最近v. 打扰, 扰乱伤害, 损害adj. 使人不舒服的adj. 令人不快的n.&v. 种类, 品种; 整理, 把.. 分类adj. 环境的prep. 包括.. 在内prep. 向, 朝n. 句子; 审判, 判决n. 煤; 煤块v.创造n. 血高血压n. 行星n. 沙n. 沙尘暴转换成, 变成n.&v. 沙漠; 舍弃n. 人conj. 虽然, 尽管, 既使v. 减少, 减轻adv. 彻底地; 完整地n. 使用者, 用户pron. 没有一个; 毫无n. 垃圾; 废物在各处; 到处v. 吐, 唾adj. 野生的pron.&n. 没有人; 小人物adj. 不整洁的, 凌乱的adj. 最差的, 最糟的adj. 无理的, 粗鲁的n. 行为, 举止n. 状况; 形势; 局面v. 惩罚adv. 可能, 大概pron. 人人, 每个人adv. 无处; 哪里都不拿走n. 氧气n. 洞, 坑臭氧层n. 放射, 放射物adv. 直接地二氧化碳v.&n.(使) 出现; 总类; 形式n. 毛毯, 毯子v. 渗出; 逃跑; 逃出v. 上升; 起床; 逃脱温室效应提起, 涉及, 有关n. 不足; 缺少; 短缺v. 防止, 避免n. 资源, 财力v. 发现, 找到v. 再次使用; 重复使用adj. 缺水的;(渴) 的adv. 几乎, 将近n. 法律, 法令; 定律n. 保护, 防卫n. 组织, 机构, 团体n. 回收利用, 再利用adj. 塑料的n.(美) 罐子, 罐头v. 点头n. 同意, 一致, 协议n. 分歧, 争论赶快, 快点放弃n. 电池应该关掉, 关闭n. 电, 电能n. 距离n. 织物, 布料n. 行为; 行动毕竟酸雨adj. 原子核的; 核动力的n. 沼气n. 技术n. 禾秆, 稻草adj. 可更新的, 可再生的n. 不利因素; 障碍n.&v. 步骤, 过程, 加工, 处理v. 需要, 要求adj. 用电的; 电动的最知名的磁悬浮列车n. 德国人; 德语prep. 每, 每一n. 轮; 轮子adj. 效率高的, 有能力的n. 向导, 导游; 指南, 手册n. 道路, 途径n. 钢铁n.&v. 挥手; 海浪adj.&adv. 深的, 厚的; 深深地n. 来源, 出处; 源头耗尽, 用完adv. 全世界; 世界各地n. 阳光n. 水蒸气, 蒸汽v. 去除, 使消失, 移开v. 替代, 取代adj.&v. 干燥的, 雨少的; 擦干n. 昆虫v. 咬; 叮n. 种植园主n. 同事, 同僚n. 摩托车n. 汽油pron. 任何人, 无论谁v. 检查, 调查v. 嫁, 结婚n. 重量, 分量n. 传播媒介, 传播工具n.&v. 一包, 一袋; 将.. 包装好n. 产品, 制品adj. 过度的, 过分的n. 商品, 货品adv. 严重地; 严肃地n. 录像带; 录像v. 允许n. 质量; 品质adj. 历史的n. 生活方式n. 差别; 差异n. 漫画n. 角色; 汉字, 字体; 品格adv. 普遍地; 广范地prep. 遍及, 贯穿nowon 从今往后, 从现在开始n. 外国人电影制作人n. 停车库, 车库对.. 感到高兴满意v.&n. 把.. 打包; 包, 捆; 一群出差adv. 在今晚n.&adj. 西班牙语; 西班牙的与.. 相似v. 交流, 沟通n. 对话, 谈话n. 口译译员v. 解释, 说明adj. 不可能的adj.&n. 双胞胎之一的; 双胞胎之一v. 划分把.. 分成v. 掘, 凿, 挖v. 放置, 安放 , 搁母语n. 起源, 根源, 根, 词根n. 商人, 买卖人adj. 出生地的, 当地的n. 讲(某种语言) 的人, 发言人adj. 外国的n.&v. 根据; 根基; 总部; 以.. 为基础adj. 欧洲的n. 王国, 管辖范围; 领域n. 旅游业, 观光n. 英国, 不列颠adj. 强大的, 有权势的, 有影响力的adj. 最重要的, 最成功的n. 位置, 方位送行; 送别n. 陌生人n. 拇指搭乘, 搭车n. 小型公共汽车, 中巴让.. 搭便车上车n. 航班飞机; 空中航行n. 旅游手册conj. 无论何时, 在任何时候v. 上(交通工具); 住宿v. 点头, 鞠躬n.&v. 沉默; 使安静n. 臀部, 髋v.&n. 表扬, 赞扬n. 研究, 调查做调查n. 秘密adj. 困惑的n. 胜利n. 误会, 误解adj. 典型的adv. 不同地, 有差异地adj. 负面的, 消极的v. 认为, 以为; 考虑到adj. 诚实的, 坦率的adj. 正面的, 乐观的有时, 间或adj. 古代的, 古老的adj. 奇妙的, 有魔力的n. 生物; 动物n. 皇帝把.. 比作n. 勇气, 谋略v. 在.. 画线n.&v. 错误; 误解犯错误n. 雄孔雀n. 骄傲, 自豪n. 智慧, 精明adj. 英国的, 英国人的v. 磕头; 唯命是从n. 词语; 表达; 表情n. 拼写n. 电梯n. 发音n. 分n. 烹饪书adv. 完全地, 整个地n. 口音, 腔调adj. 口头的v. 敢于adj.瞌睡的adj. 最终的, 最后的adj. 真实的, 真正的v. 复述adj. 间接的, 附带的n. 外孙女v. 发音n. 对白, 对话n. 作文, 作曲; 构成v. 抄写; 复印n. 笔记本n. 日记写日记n. 磁带, 录影带adv. 大声地n. 物品, 东西; 目标n. 教科书, 课本n. 能力, 才能吸一口气n.牙膏v. 预习, 预告v. 翻译n. 讨论, 谈论, 商讨adv. 精确地, 确切地n.&v. 尊敬只要坚持做..n. 重复唱的歌词, 圣歌v. 达到, 成功adv. 容易地, 轻易地v. 下载adv. 的确, 事实上adj. 有效的v. 模仿, 仿效adj. 厌倦的, 烦闷的n. 集中(精力), 聚精会神v. 拉; 拽; 扯; 拖v. 折叠, 包v. 提到n. 火箭n.金属n. 卫星n. 太空飞船n.&v. 锁; 上锁n. 笔记本电脑adj. 数码的, 数字的n. 电灯泡n. 飞机adj.耐磨的n. 韩国, 朝鲜n. 发明, 创造v.&n. 列清单; 目录, 名单n. 彩色铅笔n. 想法, 看法, 主意v. 集思广益, 动脑筋v. 估值, 评价, 评估adj. 详细的v. 重新设计n. 气球, 热气球n. 枪, 炮n. 机器人n. 键盘n. 探险家n.&v. 标记; 做标记n. 体系, 方法, 制度adj 人造的v. 显示, 显露, 展示n. 屏幕n.&adj. 外星人; 外星的外层空间v. 描述, 形容, 把.. 称为n. 宇航员v. 钦佩, 羡慕v.&n. 掌握, 精通n. 舞蹈演员v. 意识到n. 宇宙太阳系adj. 古罗马的n. 上帝, 神n. 直径n. 风暴n. 重力, 引力v.重, 有.. 重adv. 一般地n.(长途) 旅行v.&n. 限制, 限定n. 激动, 令人激动的事v. 发射, 发起, 发行prep. 超出, 除.. 外v. 证明, 证实probe 月球探测器n. 传说, 传奇故事n. 重要性, 意义adv. 独立地n. 太空漫步adj. 电子的n. 航天服n. 望远镜n. 娱乐, 招待n.&v. 怀疑毫无疑问adj. 极小的, 微小的prep.&adv. 在.. 内; 在里面adv. 通常, 正常情况下n. 脑, 智力v. 取消, 撤销, 废止n. 工作场所v. 连接例如adv.&prep. 而且; 除.. 之外n. 仆人, 佣人adj. 确定的, 无疑的肯定, 确定独自, 单独v. 警告, 告诫v. 可以, 可能n. 家务n. 女服务员n. 杂志n. 公鸡n. 妻子n. 小鸡n.&v. 油漆; 在.. 刷油漆v. 奋斗; 努力; 争取n. 王宫, 宫殿颐和园n. 塔n. 监狱n. 囚犯, 俘虏n. 词汇; 词汇量一束; 一串。
爱打羽毛球的好处英语作文

Playing badminton is a fantastic way to engage in physical activity and enjoy numerous health benefits.Here are some of the advantages of this sport:1.Improves Cardiovascular Health:Badminton is an aerobic exercise that helps to strengthen the heart and improve the circulation of blood throughout the body.2.Enhances Flexibility:The sport requires players to move in various directions, stretching and bending,which improves overall flexibility and range of motion.3.Builds Strength:The repetitive movements involved in badminton,such as swinging the racket and jumping,help to build muscle strength,particularly in the arms,legs,and core.4.Boosts Coordination:The quick reflexes and precise movements needed in badminton enhance handeye coordination and body awareness.5.Reduces Stress:Engaging in physical activities like badminton can release endorphins, which are natural mood lifters that help to reduce stress and anxiety.6.Promotes Social Interaction:Badminton is often played in doubles,encouraging teamwork and social interaction with fellow players.7.Improves Balance:The need to move quickly and maintain body control during the game helps to improve balance and stability.8.Burns Calories:Badminton can be an effective way to burn calories and contribute to weight management.9.Develops Agility:The sport requires players to be quick on their feet,which helps to develop agility and quick thinking.10.Encourages a Healthy Lifestyle:Regular participation in badminton can be part of a broader commitment to a healthy and active lifestyle.11.Accessible to All Ages:Badminton can be enjoyed by people of all ages,making it an inclusive sport for families and communities.12.Cognitive Benefits:The strategic thinking required in badminton can help to improve cognitive function and problemsolving skills.13.Low Impact:Compared to some other sports,badminton is relatively low impact, reducing the risk of injuries associated with highimpact activities.14.Fun and Enjoyable:Above all,badminton is a fun and enjoyable sport that can be played casually or competitively,making it an attractive option for those looking to stay active.By incorporating badminton into your routine,you can experience these benefits and enjoy the games unique combination of speed,skill,and strategy.。
剪切流下海洋立管涡激振动的三维数值模拟

剪切流下海洋立管涡激振动的三维数值模拟罗冬冬;朱仁庆【摘要】对1根长为9.68 m的三维海洋立管涡激振动现象进行流固耦合模拟,立管的长径比为482,来流为剪切流.通过在立管长度方向上施加一固定的顶部预紧力,来更好地控制立管变形.三维粘性、不可压缩流体场采用非稳态的N-S方程和k-ω湍流模型进行三维CFD数值模拟,固体场采用基于三维实体单元的有限元方法进行模拟,通过一种新的方法System Coupling实现流-固耦合交界面的数据交换.模拟结果与均匀流模拟结果相似,反映了多模态的振动特性,说明这种方法有一定的可行性.立管脱落呈现多种涡结构模式,稳定后呈“2S”.立管出现大的非对称弯曲变形现象,介于1阶模态和2阶模态之间转换,最终锁定在2阶模态.【期刊名称】《舰船科学技术》【年(卷),期】2015(037)002【总页数】5页(P82-86)【关键词】立管;涡激振动;系统耦合;剪切流【作者】罗冬冬;朱仁庆【作者单位】江苏科技大学舰舶与海洋工程学院,江苏镇江212003;江苏科技大学舰舶与海洋工程学院,江苏镇江212003【正文语种】中文【中图分类】U661近年来,由于地球人口急剧增加和能源的不断消耗,各国能源危机越发明显。
同时伴随陆上石油资源的日益枯竭,使得世界油气的开发重点逐步向海洋转移,尤其是深海区域。
海洋立管在深海海洋平台中应用最为广泛,是连接海底的资源与海上作业平台的关键设备,但也是薄弱易损的构件之一。
一旦采油立管在涡激振动作用下发生断裂,带来的不仅仅是经济上的巨大损失,严重的是将会造成巨大的环境污染。
总而言之,目前对海洋立管进行VIV问题的研究已成为国内外的热点之一。
经过数十年来对涡激振动的研究,学者们虽然还未完全把握涡激振动的机理,但取得了许多阶段性的成果,构成了当今涡激振动研究的基石。
无论是实验研究还是数值模拟,大多数的研究主要针对在均匀来流情况下的涡激振动,如张建侨[7]研究质量比对柔性细长立管涡激振动的影响。
SITRANS FM TRANSMAG 2 电磁流量计传感器 SITRANS FM MAG 911

SITRANS FM (electromagnetic)OverviewAC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 withSITRANS FM MAG 911/E SITRANS FM (electromagnetic) AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/ESITRANS FM TRANSMAG 2 with the SITRANS FM MAG 911/E sensor is an AC pulsed alternating field magnetic flowmeter where the magnetic field strength is much higher than conventional DC pulsed magnetic flowmeters.•Wide range of sizes DN 15 to DN 1000 (½" to 40")•Broad range of liner and electrode materials for extreme process medias•Fully welded construction provides a ruggedness that suits the toughest applications and environments.•Automatic reading of SmartPLUG for easy commissioning •Simple menu operation with two-line display •Comprehensive self-diagnostic with self-monitoring and internal simulationThe main applications of the SITRANS FM transmitter TRANSMAG 2 can be found in the following sectors:•Pulp and Paper industry•Mining industryThe patented pulse alternating field technology is ideal for difficult applications like:•High concentrated paper stock > 3 %•Heavy mining slurries up to 70 % solid concentration •Mining slurries with magnetic particles•Low conductive medias ≥1 μS/cm•Available for remote mounting•PROFIBUS PA (profile 2.0) / HART communication•Analog output and digital outputs for pulses, device status, limits,flow direction, frequency outputThe flow measuring principle is based on Faraday’s law of electromagnetic induction according to which the sensor converts the flowinto an electrical voltage proportional to the velocity of the flow.The TRANSMAG 2 is a microprocessor-based transmitter with abuilt-in alphanumeric display in several languages. The transmittersevaluate the signals from the associated electromagnetic sensorsand also fulfill the task of a power supply unit which provides themagnet coils with a constant current.The magnetic flux density in the sensor is additionally monitored byreference coils.Further information on connection, mode of operation and installation can be found in the data sheets for the sensors.Displays and keypadsOperation of the transmitter can be carried out using:•Keypad and display unit•HART communicator•PC/laptop and SIMATIC PDM software via HART communication•PC/laptop and SIMATIC PDM software using PROFIBUS PA communicationHART communicationPROFIBUS PA communicationFlow Measurement© Siemens AG 2023Flow MeasurementSITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/EFlow MeasurementSITRANS FM (electromagnetic) AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/E1)20 °C (68 °F), max. 19.6 bar (285 psi) for steel flanges and max. 15.9 bar (231 psi) for stainless seel flanges2)20 °C (68 °F), max. 51.1 bar (741 psi) for steel flanges and max. 41.4 bar (600 psi) for stainless seel flangesFlow MeasurementSITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/EFlow MeasurementSITRANS FM (electromagnetic) AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/EAccessoriesSpare partsFlow MeasurementSITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/EFlow MeasurementSITRANS FM (electromagnetic) AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/EFlow MeasurementSITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/ESensor cables between sensor and transmitterSufficient shielding must be provided, as well as fixed routing of the signal cables (electrode and coil cable).Signal cables must be routed free of vibration, and protected against strong magnetic and stray fields. In case of doubt, the sensor cables must be routed in grounded steel conduit. The cable length between the sensor and transmitter must not exceed 100 m (328 ft).Flow MeasurementSITRANS FM (electromagnetic) AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/EProtection ringFlow MeasurementSITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/EGrounding ringImportant:The rings must be ordered together with the sensor. Gaskets are not included. In case of replacement please include the sensor MLFB code on the order.Classification according to pressure equipment directive (PED 2014/68/EU)SITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/E3/153Notes on pressure equipment directiveThe devices are designed for liquids of danger group "Gases of fluid group 1". The categories differ according to the version, and are listed in the table below.Siemens FI 01 · 2023Flow MeasurementSITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/E3/154SITRANS FM transmitter TRANSMAG 2 with wall-mounting bracket, dimensions in mm (inch)SITRANS FM transmitter TRANSMAG 2 with special wall-mounting bracket, dimensions in mm (inch)SITRANS FM flow sensor MAG 911/E, compact version, dimensions in mm (inches)Siemens FI 01 · 2023Flow MeasurementSITRANS FM (electromagnetic)AC powered alternating field flowmeters / SITRANS FM TRANSMAG 2 with SITRANS FM MAG 911/E3/155Built-in length MAG 911/E1)Tolerance for built-in lenght: L + 0.0 mm/-4.0 mm (-0.00/-0.157 inches). With protection rings for > DN 25 +6.0 mm, > DN 200 +10.0 mm (> 1" +0.236 inches,> 8" +0.394 inches)Siemens FI 01 · 2023Flow Measurement。
促进湍流程度的方法

促进湍流程度的方法Promoting turbulence intensity in a fluid flow is essential for various applications such as mixing, heat transfer, and combustion. One of the most common methods to increase turbulence is by introducing obstacles or roughness elements into the flow stream. These obstacles disrupt the flow and create vortices, leading to increased turbulence levels. However, the design and placement of these obstacles are crucial in determining their effectiveness in promoting turbulence.引入障碍物或粗糙元素是增加流体流动湍流强度的常见方法之一。
这些障碍物扰乱了流动并产生了涡流,从而使湍流水平增加。
然而,这些障碍物的设计和放置对于确定它们在促进湍流方面的有效性至关重要。
Another way to enhance turbulence intensity is by using rotating devices or impellers in the flow. These devices impart kinetic energy to the fluid, generating turbulence through the rotation of blades or paddles. The speed and pitch of the impeller blades play a significant role in creating turbulence, and careful design is needed to optimize their performance.另一种增强湍流强度的方法是在流动中使用旋转设备或叶轮。
氟啶胺在小白菜中的残留行为及膳食摄入风险评估

中国瓜菜2023,36(4):96-100收稿日期:2022-08-04,修回日期:2023-01-04基金项目:山西省重点研发计划项目“城郊高效农业关键技术研究与示范”(201903D211011)作者简介:李春勇,男,助理研究员,研究方向为农药残留与检测。
E-mail :182****************通信作者:秦曙,女,研究员,研究方向为农药环境化学和农产品质量安全。
E-mail :****************氟啶胺(Fluazinam )是一种2,6-二硝基苯胺类广谱杀菌剂,内吸活性低,残效长[1],对马铃薯晚疫病、番茄早疫病、辣椒炭疽病、大白菜根肿病等有较好的防治效果[2-4]。
虽然氟啶胺已在水稻、大白菜、辣椒、马铃薯等作物上登记[5],但因缺乏小白菜在良好农业规范(GAP )条件下进行的规范残留试验数据,无法进行膳食暴露评估,氟啶胺在小白菜中的最大残留限量(MRL )值尚未制定。
国内外关于氟啶胺的研究主要集中在检测方法、残留行为、膳食风险评估、加工对残留量的影响等方面。
目前已报道的检测方法主要有氟啶胺在马铃薯[6-8]、人参[9]中的QuEChERS 前处理-超高效液相色谱三重四级杆串联质谱法,Li 等[10]建立了测定6种蔬菜(卷心菜、黄瓜、番茄、白菜、菠菜和西葫芦)和4种水果(苹果、葡萄、柑橘、草莓)中氟啶胺的QuEChERS-液相色谱串联质谱法,李玉霞[11]、龚会琴等[12]利用高效液相法对氟啶胺进行了分离和定量分析。
马俊[13]、刘亚娟等[14]报道了植物源性食品及氟啶胺在小白菜中的残留行为及膳食摄入风险评估李春勇,吕莹,金静,王伟荣,王霞,秦曙(山西农业大学山西功能农产品检验检测中心太原030031)摘要:为了建立一种由超高效液相色谱-串联质谱(UPLC-MS/MS )检测小白菜中氟啶胺的分析方法,并对小白菜中的残留量进行膳食风险评估。
样品经乙腈提取,NaCl 盐析、无水MgSO 4、N-丙基乙二胺(PSA )和石墨化碳黑(GCB )净化,超高效液相色谱-串联质谱检测。
OffshoreWindTurbineHydrodynamics:海上风机的流体力学

Offshore Wind Turbine Hydrodynamics Modeling in SIMPACKAs the offshore wind energy sector expands, so too does the demand for advanced simulation environments that are able to accurately model these com-plex systems. The latest trend is floating offshore wind turbines which can be installed in deep water and hold great economic potential. To accurately simu-late offshore wind turbines, the S tutt-gart Chair of Wind Energy(SWE) at the Universityof S tuttgart has ex-tended S IMPACK with a coupling to the hydrodynamicpackage HydroDyn developedby NREL. A Morison force element and dynamic MBS mooring system model were also introduced. By taking advan-tage of these hydrodynamic extensions plus existing advanced drivetrain and aerodynamic submodels, a full dynamic coupled simulation of fixed-bottom and floating offshore wind turbines is pos-sible with SIMPACK.HYDRODYNAMICS FOR OFFSHORE WIND TURBINESOffshore wind turbine support structure types include:• monopile (gravity-based and suction bucket foundations for shallow sites)• jacket and tripod structures for depths up to 50 m• floating structures for deeper locations In general, hydrodynamic and hydrostatic loads on offshore structures subject to waves and currents are an effect of the inte-grated pressure distribution on the wetted surface. In offshore terminology, the various load contributions are separated into:• buoyancy force (hydrostatic restoring)• radiation force:a. inertia force from added massb. viscous damping force • wave excitation force:a. diffraction (incident-wave scattering)b. Froude-Kriloff (undisturbed pressure field forces)• sea current force and • nonlinear higher order forces (slow, mean drift and sum-fre-quency forces).Some substructures for wind turbines consist of slender axisymmetric cylindricalωd dsfluidI s /2zxu kr syxyu tvu k = u t + ωd I s /2ωdWAMIT8 | SIMPACK News | July 2013elements. This enables the use of the simple and efficient semi-empirical Morison Equa-tion which is valid if the flow acceleration can be assumed uniform at the location of the cylinder thus simplifying the diffraction problem. This requires that the diameter of the cylinder D be much smaller than the wavelength L — typically D/L values of less than 0.15–0.2. It is also assumed that rela-tive motions are small so that viscous drag dominates the damping; radiation damping can be neglected; and that off-diagonal added-mass terms are negligible, as in the case of axisymmetric structures. Since the equation contains empirical coefficients for added mass, inertia and drag (which de-pend on the Keulegan-Carpenter number, Reynolds number and surface roughness), careful attention to these is required to obtain viable results.For structures with larger diameters and larger motions—typically tripods or float-ing structures—effects from hydrodynamic radiation and diffraction (not considered by Morison’s Equation) become important. For such structures, linear hydrodynamicFig 1: Calculation of Morison forces on mooring line segmenttheory is currently most commonly used. It is based on potential theory, and includes effects from linear hydrostatic restoring, added mass and damping contributions from linear wave radiation (including free-surface memory effects), and incident wave excitation from linear diffraction. Typically, nonlinear viscous drag contributions areFig 2: HydroDyn calculation procedure and interface to SIMPACK (image source: NREL)Mooring-System3 DOF3 DOF2 DOF1 DOF3 DOF3 DOF3 DOF2 DOF1 DOF3 DOF3 DOF3 DOF2 DOF1 DOF3 DOFy α, β, γy α, β, γy α, β, γα, γ, y α, γ, y α, γx, y, zα, γ, y α, γ, y x, y, zα, γ, y α, γ, y x, y, zα, γα, γ0 DOF6 DOFanchorseabed rigid BodyJointfairlead spar buoy3 DOFc t ,d t c r , d ru y φx φzd sc s SIMPACK News | July 2013 | 9added from Morison’s equation. However, nonlinear steep and/or breaking waves, vortex-induced vibrations, second-order effects of mean-drift, slow-drift and sum-frequency excitation, and any other higher order effects, are neglected within Hydro-Dyn. To overcome this limitation, a coupling between SIMPACK and the Computational Fluid Dynamics (CFD) tool ANSYS CFX is currently being developed at SWE (Beyer, Arnold & Cheng, 2013). The incorporation of second-order hydrodynamic effects is planned for future releases of HydroDyn.To enable modeling of offshore wind tur-bines in SIMPACK, the two hydrodynamic Fig 3: Topology of dynamic nonlinear MBS mooring system Fig 4: Topology of floating offshore wind turbinemodeling methodologies described have been implemented. Currently, most other commercial codes only ap-ply Morison’s equation and are, therefore, limited to afore-mentioned slender structures where radia-tion damping and off-diagonal added-mass terms are negligible.MORISON FORCE ELEMENT For cylindrical fixed-bottom structures and mooring systems, a SIMorison user Force Element was implemented at SWE into SIMPACK 9. It uses the relative formula-tion of the Morison equation according to Östergaard and Schellin, and also includesan option to directly account for buoyancyif the body is always completely submerged. Due to the relative simplicity of the Morison Equation, the user only needs to supplyvalues for the two empirical coefficients: inertia C m and drag C D . A Reynolds depen-dency of these coefficients can be added.Water density, kinematic viscosity, effective cylindrical diameter (to determine the cross sectional area) and length of the body where the Force Element is applied also need to be defined. The desired discretiza-tion of a mooring system can be achieved by using multiple Morison Force Elementsalong cylindrical structures with differentdiameters and lengths (Fig. 1).Since the Morison equation in its relativeformulation features an added mass term depending on the relative fluid acceleration, the routine requires the structure to accelerate at eachtime step. In MBS, the acceleration is usually not solvedduring integration, thus making the imple-mentation of Morison’s Equation complex. Here, SIMPACK’s ability to use algebraic states (q-states) is utilized, "anticipating" acceleration results of the Right-Hand Side, i.e., making them available before they areactually calculated.“For cylindrical fixed-bottom structures and mooring systems, a SIMorison user Force Element was implementedat SWE into SIMPACK 9.”10 | SIMPACK News | July 2013The wave generator can generate either periodic waves or random irregular Airy waves with user-defined significant wave height and peak spectral period based on a defined wave spectrum (the JONSWAP and Pierson-Moskovitz spectra are predefined). Kinematic stretching (Vertical, Extrapolation,Wheeler) is also implemented to provide predictions of wave kinematics above the mean water level; an option used only for Morison calculations since it is inconsistent with linear hydrodynamic theory.The Morison Equa-tion implementa-tion of HydroDyn is equivalent to the previously described Morison Force Element. It accounts for the current fraction of wetted surface dependent on instantaneous wave elevation. Currently, it is applicable for monopile structures, and the upcoming HydroDyn version 2 (already avail-able in an alpha version) will then be able to simulate multi-member fixed-bottom and floating substructures such as jackets or semi-submersibles with the Morison Equation.The third feature of HydroDyn is its linear hydrodynamic model. It computes loading contributions from:• linear hydrostatic restoring• nonlinear viscous drag contributions from Morison’s Equation• added mass and damping contributions from linear wave radiation (including free-surface memory effects)• incident wave excitation from linear diffraction The linear hydrodynamic option in Hydro-Dyn requires the user to enter frequency-dependent hydrodynamic vectors and matrices. These must be pre-calculated by external offshore panel-based codes such as WAMIT ® or ANSYS ® AQWA TM , which solve the linearized radiation and diffrac-tion problems in the frequency domain. Full details of HydroDyn’s theory are given in J onkman (J onkman, 2007). The upcoming HydroDyn version 2 release will also feature the possibility of Morison elements with linear hydrodynamics which can be used to model the hydrodynamic forces on the main pontoons of a semi-submersible with linear theory and on the braces with Morison’s.The fourth module within HydroDyn pro-vides a quasi-static mooring line model to efficiently calculate mooring line loads on floating platforms. At SWE, a dynamic nonlinear mooring line model has been developed within SIMPACK to overcome the drawbacks of the quasi-static approach (Fig. 3, 4). More details on this MBS moor-ing line model are given by Matha (Matha, Fechter, Kühn, Cheng, 2011).The original input file for HydroDyn has been modified for usage in SIMPACK and allows the user to define the incoming waves, to select between the Morison and linear hydrodynamic module, and define the properties of the mooring system.VALIDATION WITH OC3 & OC4The SIMHydro coupling was first validatedwith results from phase four of the IEA Annex 23 Offshore Code Comparison Col-laboration (OC3) project (Fig. 5), and is cur-rently used in phase two of the follow-upOC4 project. Exemplary results from OC4 load cases 1.3, representing free decaytests where the semi-submersible platform(Fig. 6) is released at an initial displacementin still water without wind loads, are shownin Fig. 7 and Fig. 8.The presented platform surge and pitch displacement show very good agreementbetween SIMPACK and other participants applying linear hydrodynamic theory like FAST (NREL) and DeepLinesWT (Principia). Compared to codes using Morison’s equa-tion for modeling the hydrodynamics — likeHAWC2 (DTU) and Bladed (GH) — distinct At SWE, the SIMorison Force Element is primarily used and validated by modeling the hydrodynamic loads on mooring lines. The regular or irregular Airy wave kinematics used by this element are computed by the SIMHydro element which is described next.SIMHYDRO — COUPLING TO NREL’S HYDRODYN The SIMHydro Force Element couples NREL’s HydroDyn module with SIMPACK (Fig. 2). HydroDyn was developed by J ason onkman at NREL (J onkman, 2007) and has since been used to model monopiles and various floating structures. The current release of Hy-droDyn offers four important features: • a wave generator for periodic and regu-lar/irregular Airy waves (J ONSWAP, PM spectra) including stretching • the Morison equation module for hydro-dynamic load calculation • a linear hydrodynamics module for load calculation on non-slender (floating) bodies • a quasi-static mooring line module for mooring system load calculation of float-ing platforms Fig 5: OC3 spar-buoy floating wind turbine model with MBS mooring system“At SWE, a dynamic nonlinear mooring line model has been developed within SIMPACK to overcome the drawbacks of the quasi-static approach.”HAWC2BladedDeepLinesWT FAST SIMPACKP l a t f o r m p i t c h [º]0 50 100 150 200 250 3001086420-2-4-6-8-10Simulation time [s]HAWC2BladedDeepLinesWT FAST SIMPACKP l a t f o r m s u r g e [m ]0 100 200 300 400 500 6002520151050-5-10-15-20-25Simulation time [s]SIMPACK News | July 2013 | 11differences in load and motion predictions are evident depending on the load case. This is due to the differences in the semi-empiric approach of a Morison-only formulation. USAGE OF SIMPACK OFFSHORE SWE uses SIMPACK to model offshore floating wind turbines in the European research projects OFFWINDTECH, Innwind,AFOSP and FLOATGEN. The latter is cur-rently the largest EU-funded offshore wind energy research project and will deploy two multi-MW floating wind turbine systems in Mediterranean waters over 40 m deep. With this project, the SWE will have the opportu-nity to compare the SIMPACK floating wind turbine model with measured scale and full-scale prototype data, analyze the differ-ences, validate the predictions and improve the models where required.SUMMARYThe implementation of SIMorison and SIMHydro Force Elements makes it possible to simulate fixed-bottom and floating wind turbines with SIMPACK. The coupling is vali-dated by OC3 and OC4. SIMPACK offshore wind turbine models have already been successfully applied in a number of research projects, and show excellent potential for future applications.REFERENCESBeyer, F., Arnold, M., Cheng, P. W. (2013). Analysis of Floating O ffshore Wind Turbine Hy-drodynamics using coupled CFD and Multibody Methods. ISOPE. Anchorage, USA.Jonkman, J. (2007). Dynamics Modeling and Loads Analysis of an O ffshore Floating Wind Turbine. NREL/TP-500-41958. Golden, US-CO :National Renewable Energy Laboratory.Matha, D., Fechter, U., Kühn, M., Cheng, P. W.(2011). Non-linear Multi-Body Mooring System Model for Floating O ffshore Wind Turbines.University of Stuttgart, OFFSHORE 2011, Amster-dam, Netherlands.Fig 6: OC4 semi-submersible floating wind turbine with quasi-static mooring system (only nodes displayed)Fig 7: OC4 LC 1.3a: Platform translation in surge direction Fig 8: OC4 LC 1.3c: Platform rotation in pitch direction。
DA10 实时天气预报数据获取系统说明书

Key benefits Improve forecast modeling and data assimilation Quickly get extensive research-grade data in near real-time in all weather conditions, suitable for NWP modeling with common data formats for easy integration. DA10 doubles as a super ceilometer with ultrapure profiles.Establish or enhance operational networks Improve geographical data coverage to enhance your forecasting capabilities, and create a new or integrate in your existing observation network with affordable pricing. DA10 easily goes from box to operation in one hour, running autonomously with no operator or consumables.Stay focused with secure, always-on operation Industry-leading, integrated software security keeps your instrument and data intact so you can focus on what is important to you. Save time with the rugged, calibration-free design that is built to last with little to no maintenance.Work with proven technology developed by the industry experts Built on more than 85 years of fact-based observation, DA10 features patented transmitter technology and has been proven in customer field campaigns from tropical to arctic conditions. Individual factory verification ensures top performance, while Vaisala expertise keeps youcovered with 24/7 global support.While globally coordinated upper-air observations provide an overallpicture of humidity patterns, DA10 continuously measures water vapor inthe boundary layer, in any location, under any conditions. DA10 unlocksaccess to extensive, research-grade data suitable for NWP modeling thathas not been readily available before, and doubles as a super ceilometerwith ultrapure profiles.When combined with weather and climate modelling, meteorologicalservices gain access to highly accurate and reliable local observations,vital for issuing early warning alerts for local communities in advance ofdangerous weather conditions, like thunderstorms and flash flooding.Measuring water vapor in the atmosphere has always been a manual, time-consuming and expensive process, led by the observation community. Until now. The revolutionary Vaisala DA10 differential absorption lidar (DIAL) is the industry’s first atmospheric profiler with continuous and autonomous water vapor monitoring within the boundary layer, providing meteorologists and forecasters with 24/7 monitoring of atmospheric humidity for improved severe weather warnings.DIAL Atmospheric Profiler DA10Enhanced severe weather forecasting and climate modeling withadvanced, real-time water vapor profilesProduct Spotlight• Water vapor profiling up to 4 km• Uncertainty data is included for easy data assimilation• Attenuated backscatter profiling up to 18 km• NetCDF data format is plug-and-play for modeling, and compatible with third-party visualization tools • Comprehensive system security down to the user level plus remote firmware upgrades fortifies data management and data sources• Single lens technology minimizes multiple scattering for improved detection in harsh conditions, while excellent overlap ensures low altitude detection (below 200 m)• Optimized near and far range optics provide excellent full-range measurement profiles• Superior signal-to-noise ratio ensures high level of detail in profiles• Clouds and sky condition reporting - DA10 works as super ceilometer and includes ceilometer functions Trusted weather observations for a sustainable future/meteorologyDIAL in smarter, faster, continuous humidity profilingWhy Vaisala?Expertise and innovationYour communities rely on you to provide the most reliable and accurate weather information to ensure a better and safer daily life. We are here to help you realize that.As the day-to-day impacts from climate change and extreme weather events continue to grow, Vaisala is innovating and equipping meteorology professionals to better understand, forecast, and explain the phenomena. Backed by 85 years of proven weather measurement expertise, meteorologists in more than 170 countries trust Vaisala solutions to help them make informed decisions.Performance and support you can count onYou’re covered if questions arise with 24/7 global support—now and in the future—plus project capabilities and training so you can get the most from your system. With decades of experience providing the best technologies and the finest support, Vaisala’s philosophy of partnership is unmatched in the industry.Scan the code formore information Ref. B212719EN-B ©Vaisala 2023This material is subject to copyright protection, with all copyrightsretained by Vaisala and its individual partners. All rights reserved.Any logos and/or product names are trademarks of Vaisala or itsindividual partners. The reproduction, transfer, distribution orstorage of information contained in this brochure in any formwithout the prior written consent of Vaisala is strictly prohibited.All specifications — technical included — are subject to change without notice.。
海洋立管涡激振动的基本理论、研究方法、影响因素及抑振方式的研究综述

第38卷第2期2024年3月山东理工大学学报(自然科学版)Journal of Shandong University of Technology(Natural Science Edition)Vol.38No.2Mar.2024收稿日期:20230210基金项目:山东省自然科学基金项目(ZR2020ME269);山东省海洋工程重点实验室开放基金项目(KLOE202005);山东省重点研发计划项目(2019GHY112076)第一作者:王春光,男,cgwang@;通信作者:郑润,男,408463461@文章编号:1672-6197(2024)02-0001-07海洋立管涡激振动的基本理论㊁研究方法㊁影响因素及抑振方式的研究综述王春光1,2,郑润1,李明蕾1,何文涛2,3(1.山东理工大学建筑工程与空间信息学院山东淄博255049;2.山东省海洋工程重点实验室,山东青岛266100;3.中国海洋大学工程学院,山东青岛266100)摘要:海洋立管是海洋油气开发平台的重要组成部分,而涡激振动研究是保障其正常工作的重要研究领域㊂本文从海洋立管涡激振动的基本理论㊁海洋立管涡激振动研究方法的发展㊁影响涡激振动的相关因素㊁涡激振动的监测和抑制方法四个方面对海洋立管涡激振动的相关研究进行综述㊂由前人工作可知,海洋立管涡激振动研究经历了试验研究㊁理论模型分析㊁计算流体力学方法的应用等多个阶段,而顶张力㊁洋流㊁波浪㊁支承条件㊁长细比㊁材料以及内流等均显著影响其涡激振动特征㊂为保障海洋立管在涡激振动情况下的正常工作,其抑振研究经历了由被动抑振到主动抑振,再到利用先进监测及预测手段采取特定抑振方式及时介入的发展过程㊂在将来,海洋立管监测控制系统必将发展为一个利用信息采集及处理平台,结合主动控制技术,实现海洋立管工作状态监测㊁故障发现以及主动控制的集中化㊁智能化系统㊂关键词:海洋立管;涡激振动;影响因素;涡激振动抑制中图分类号:P756.2文献标志码:AThe basic theory ,research methods ,affecting factors and suppression approaches of the vortex-induced vibration of marine risers :A reivewWANG Chunguang 1,2,ZHENG Run 1,LI Minglei 1,HE Wentao 2,3(1.School of Architectural Engineering and Spatial Information,Shandong University of Technology,Zibo 255049,China;2.Shandong Provincial Key Laboratory of Ocean Engineering,Qingdao 266100,China;3.College of Engineering,Ocean University of China,Qingdao 266100,China)Abstract :Marine riser is an important part of offshore oil and gas exploitation platform,and the research of vortex-induced vibration is an important research field to ensure its working situation.This paper re-views the related research of marine riser vortex-induced vibration in four aspects:the basic theory of ma-rine riser vortex-induced vibration,the history of research methods for marine riser vortex-induced vibra-tion,the relevant factors affecting vortex-induced vibration,and the monitoring and suppression methods of vortex-induced vibration.The researches on vortex-induced vibration of offshore risers have gone through stages such as experimental research,theoretical model analysis,application of computationalfluid dynamics methods.The top tension,ocean current,wave,support conditions,slenderness ratio,material and internal flow significantly affect its vortex-induced vibration characteristics.In order to㊀ensure the normal work of the riser under the condition of vortex-induced vibration,its vibration suppres-sion researches have developed from passive vibration suppression to active vibration suppression,and then to the use of advanced monitoring and prediction methods to take specialized vibration suppression methods on time.In the future,the marine riser monitoring and control system is foreseen to evolve into a centralized and intelligent system that uses information acquisition and processing system and combines active control technology to realize the monitoring of the working status,fault detection and active control for the marine risers.Keywords :marine riser;vortex induced vibration;influence factor;vortex-induced vibration suppression ㊀㊀自2021年以来,国际原油价格出现大幅上涨[1]㊂新冠疫情作为笼罩在全球经济发展上面的乌云开始散去,但经济复苏基础依然薄弱㊂被称为 工业血液 的石油是发展工业的重要动力,也是发展经济的重要资源㊂目前,陆地上的石油资源短缺的问题日益严重,据估算,地球上未被开采的海上石油储量的90%是在超过1000m 水深的海底地层下[2],而中国海岸线绵延辽阔,深海面积十分广阔,海上油气资源丰富,通过加快海洋油㊁气开发,中国必将逐步摆脱油气资源对外依赖㊂中国海洋石油勘探开发从沿海一隅到沿海集群作业,油气开发作业水深从100m 到如今的超3000m,海洋装备从最初的1艘钻井船发展到现在的61座钻井平台,实现了每年的海上原油产量从95000t 到48640000t 的跨越㊂特别是十八大以来,深水钻井平台 海洋石油982 ㊁海上移动式试采平台 海洋石油162 (图1)相继试验成功㊂中国的海洋油气勘探与开发进入了一个快速发展期,我们也提出了 走向深蓝 的战略口号,促进了海洋资源开发相关领域的研究㊂图1㊀ 海洋石油162 号无论采用何种海洋资源开采平台,海洋立管均是不可或缺的结构物,而80%的深水油气事故与立管的疲劳损伤相关㊂立管的疲劳损伤主要是由外部环境与立管相互作用而产生的涡激振动所引起[3-4],因此在海洋工程领域,开展了大量的复杂海况下海洋立管涡激振动影响因素及抑振方式的研究㊂1㊀海洋立管涡激振动的基本理论海洋立管作为海洋油气开发从海底将油气输送到海面平台的重要通道,是海洋油气开发的重要组成构件㊂海洋立管在洋流作用下,在立管两侧尾流区发生交替泄涡,漩涡的生成和泄放相关联,立管受到横流向及顺流向的脉动水压力作用后将引发振动㊂在海流引发交替泄涡导致立管振动的同时,立管振动反过来又会影响海流的尾流结构,进而改变立管上的脉动水压力分布,这便是海洋立管的涡激振动现象(VIV)㊂涡激振动将导致立管疲劳破坏,不仅影响工程进展,而且可能产生严重的环境灾害,因此受到各国学者的广泛重视㊂海洋立管的涡激振动源于Von Kármán 发现的涡街效应[5],其受力原理和数值模拟如图2及图3所示㊂图2㊀立管在涡街作用下受力示意图图3㊀数值模拟卡门涡街[6]2山东理工大学学报(自然科学版)2024年㊀对圆柱体绕流,交替脱落的单个漩涡的脱落频率f与绕流流体的速度v成正比,与立管直径d成反比,即得公式(1)[7]:f=Sr(v/d),(1)式中Sr是斯特劳哈尔数㊂斯特劳哈尔数主要与雷诺数有关㊂雷诺数的物理意义是惯性力与黏性力的比值㊂Re=ρVLˑVLμˑVL =ρL3㊃(V2/L)μ(V/L)㊃L2=ma(惯性力)τA(粘性力),(2)通过公式(2)的变形就可以直观的得出雷诺数Re 的物理意义,雷诺数越小液体粘滞力影响大于惯性的影响,雷诺数越大液体惯性影响大于黏滞力的影响㊂当雷诺数数值达到300~3ˑ105时,斯特劳哈尔数数值近似于常数值(0.21);当雷诺数数值达到3ˑ105~3ˑ106时,有规律的漩涡脱落现象便不再存在;当雷诺数数值大于3ˑ106时,卡门涡街又会出现,这时斯特劳哈尔数约为0.27[8](图4)㊂图4㊀不同雷诺数液体绕柱流动状态当涡激振动的频率与物体的固有频率相接近,就会引起共振,甚至使物体损坏㊂除了雷诺数会影响涡激振动的出现外,圆柱体的质量比也会影响相同来流下涡激振动的振幅大小[9-10],影响涡激振动对立管损伤的程度㊂当来流冲击立管圆柱体产生涡激振动后,会使立管在顺流向和横流向两个方向因为受力而产生震动,这两个方向上的力的大小可利用公式(3)[11]计算:F x=12C dρDU2,F y=12C lρDU2,(3)式中:F x㊁F y分别为立管受到的阻力和升力,D为圆柱直径,ρ为流体密度,C d㊁C l分别为阻力系数和升力系数,U为流体速度㊂由此可见,相关研究需记录涡激振动作用下立管顺流向㊁横流向两个方向上的相关数据(图5)㊂图5㊀双向受力监测2㊀海洋立管涡激振动研究方法的发展自卡门涡街现象被发现以来,海洋立管的涡激振动研究经历了从实验研究㊁理论模型分析㊁计算流体力学方法的应用等多个阶段㊂首先Feng通过圆柱体风洞试验验证了横向振动为主要振动的涡激振动的存在,Ferguson等[12]通过使用声学液位压力传感器的原始设计,发现了圆柱体漩涡激发振荡的表面和尾流现象㊂自此之后以海洋立管为代表的圆柱体的涡激振动特征研究不断通过水槽(水池)模型试验得以完成[5,7]㊂实验研究之外,各国学者还提出了经验模型以求解立管的涡激振动问题㊂首先,Hartlen等[8]开创性地建立了尾流振子模型的数学表达式;随后,各国学者通过数十年的努力和研究对尾流振子模型不断地进行改进和发展㊂Skop 等[11,13]对此尾流振子模型进行扩展,将其应用到柔性细长柱体的涡激振动研究中㊂Kim等[14]以及Facchinetti等[15]则对此进行了进一步的修正和改进㊂而郭海燕等[16]则考虑了立管内流对立管涡激振动的影响㊂近年来,随着计算和存储技术的发展,越来越多的人开始转向利用计算流体动力学(CFD)技术解决VIV问题㊂通常CFD模型可以分为四类:离散涡方法(DVM),雷诺平均N-S方程(RANS)方法,大涡模拟(LES)方法以及N-S方程直接模拟(DNS)方法㊂3㊀影响涡激振动的相关因素在海洋油气开发过程中,海洋立管从海底输送到海面的混合体成分包括油㊁气㊁水以及沙石等等,是复杂的混合物,在超长立管管道内输送由于内外3第2期㊀㊀㊀㊀㊀王春光,等:海洋立管涡激振动的基本理论㊁研究方法㊁影响因素及抑振方式的研究综述流耦合作用下造成明显的周期性和压力波动特性的不稳定现象,以至于引起立管的振动[17-18]㊂为研究立管涡激振动的影响,考虑多因素影响的预测模型[3]以及考虑海洋环境参数的涡激振动特征研究[19]是必不可少的㊂图6展示了海洋立管配置情况,由此可见,海洋立管系统复杂多变,需考虑的设计参数及环境因素多样㊂图6㊀水下海洋立管配置[20]现在关于海洋立管的涡激振动研究正从之前的单因素研究发展到现如今的多因素研究㊂使海洋立管产生涡激振动的主要原因包括立管本身的材料特性㊁洋流流速㊁顶部张力㊁边界条件以及波浪等㊂葛士权等[21]通过利用ANSYS 软件进行了多因素影响下的海洋立管涡激振动的三维计算流体动力学模拟(图7)㊂大长细比是实际工程中很明显的一个特点,Wang 等[22]针对大长细比立管模型在洋流作用下的涡激振动响应进行了实验研究㊂关于顶张力对立管在涡激振动中频率的影响方面,Yang [23]通过实验得出预张力的增加,组合激励下的顶部张紧提升管(TTR)的不稳定性会被抑制,但抑制效果的提升与预张力增加不成比例㊂李文华等[24]将立管简化为典型的Euler-Bernoulli 弹性梁模型,根据传递矩阵理论得出表观重力和立管内外侧压力差引起的海洋立管轴向拉力的变化可影响立管本身固有频率的结论㊂张永波等[25]研究了顶张力对立管涡激振动的影响㊂柳军等[26]通过实验得出结论,在均匀流速条件下,立管的振动频率在顺流向条件下是横流向条件下的两倍,因此两个方向的影响相差不大,应该同时考虑两个方向的影响㊂殷布泽等[27]通过总结过往的海洋立管涡激振动实验提出要更加注重波浪对于海洋立管涡激振动的影响㊂李莹等[28]针对边界条件进行研究,对立杆端部应用铰接固接两种边界支座进行研究,发现其他参数相同时,两端铰接时立管的震动幅度大于立管两端固接时的震动幅度,Gao 等[29]通过数值分析的方式研究得出在一定范围内立管长细比(L /D)越小,不同边界条件下的VIV 位移差异越大㊂巫志文等[30]的研究中考虑建立随机波浪和涡流激励联合作用下海洋立管动力响应的数学分析模型,通过此模型进行随机波浪对立管涡激振动的影响进行研究㊂Wang 等[31]进行了多因素实验,研究了立管材料㊁流速㊁顶张力和边界条件几个因素综合对立杆涡激振动的影响,但是并没有结合波浪的影响(表1)㊂图7㊀数值模拟海洋立管变形情况[21]表1㊀Wang 等进行多因素实验的工况[31]4山东理工大学学报(自然科学版)2024年㊀㊀㊀通过结合新的实验方法[32],崔阳阳等[33]进行了多参数耦合作用下的海洋立管涡激振动实验,并基于灰色理论[34]实现了影响因素重要性排序,但该实验并没有考虑周期性波浪对于海洋立管涡激振动的影响㊂4㊀涡激振动的监测和抑制方法为抑制海洋立管由涡激振动引起的疲劳损伤,学者们在涡激振动抑制方面展开了广泛的研究㊂Rodriguez [35]通过改变物体形状和尾翼形状设计进行实验,探究形状对涡激振动的影响,但此实验的实验对象与环境模拟与海洋立管相差很大(图8)㊂图8㊀Rodriguez 实验试件与实验效果[35]Owen 等[36]进行了圆形柱体在不同雷诺数范围的涡激振动实验,并发现施加质量块后涡激振动可减少47%㊂娄敏等[37]通过实验发现在锁振状态下,通过敲击立管打破流体与结构之间的耦合关系可以达到抑制涡激振动的效果㊂王海青等[38]提出了在立管外部构造三种不同形状来达到抑制涡激振动的效果并进行了实验㊂Gao 等[29]分析模拟得出对于具有小长径比的圆柱体,不同边界条件下的VIV 位移存在明显差异㊂吴仕鹏等[39]通过在立管外添加螺旋板来研究其对于涡激振动的抑制效果,结果表明在高雷诺数来流情况下该装置能大幅降低立管疲劳风险㊂娄敏等[40]采用仙人掌形状截面的立管,通过数值分析得出在约化速度4~8范围能降低横顺两方向的振动幅值㊂李子丰等[41]采用羽翼状外包进行实验研究,发现加装该结构能有效减少圆柱后涡旋的产生㊂翟云贺等[42]提出一种双组双螺旋的装置,实验表明在当来流为对称流时,双组双螺旋装置能有效抑制涡激振动㊂沙勇等[43]通过实验对螺旋列板的几何参数对于涡激振动影响进行研究,为以后的相关研究提供了宝贵数据(图9)㊂齐娟娟等[44]提出了一种口型截面的三螺头螺旋导板,并进行了风洞试验,实验得出该装置对于大质量阻尼比圆柱有较好的抑制涡激振动的效果(图10)㊂睢娟等[45]利用外包毛绒进行风洞试验,得出绒毛长度增加,抑制效果越好的结论㊂王伟等[46]提出一种安装旋翼的方案,通过数值模拟得出随着旋翼旋转速度增加立管振幅减小㊂周阳等[47]利用带螺旋侧板的立管模型进行试验,结果表明该装置能够扰乱尾流涡旋,抑制涡激振动㊂图9㊀含有保温层的立管螺旋列板的横截面[43]图10㊀试验模型安装及螺旋导板模型结构示意图[44]除了通过改变立管外包形状进行被动抑制,近些年也有学者提出通过主动对立管施加作用来进行主动抑制㊂Yang 等[23]通过实验得出通过增加顶张力可以对涡激振动进行抑制,但抑制效果与力的增加成非线性关系㊂Wang 等[48]利用雷诺数为100的合成射流进行涡激振动的抑制㊂Chen 等[49]提出利用吸流法进行涡激振动的抑制㊂赵瑞等[50]提出通过施加端部激励来进行涡激振动的抑制,实验结果表明,频率比较小时,轴向力激励能降低涡激振动位移㊂Zhang 等[51]针对具有顶部张力的柔性船舶立管系统控制立管振动进行研究,实验表明在适当的参数选择下系统具有良好性能㊂随着信息技术的发展,将计算机信息技术与实际工程结合成为近年学者们研究的方向,Wong 等[52]提出可以利用神经网5第2期㊀㊀㊀㊀㊀王春光,等:海洋立管涡激振动的基本理论㊁研究方法㊁影响因素及抑振方式的研究综述络结合使用Matlab 中的LHS 技术预测TTR 短期涡激振动疲劳损伤的简化方法㊂高喜峰等[53]提出要利用BP 神经网络预报柔性立管涡激振动横流向及顺流向位移和频率响应,随后Yu 等[54]以及Yan 等[55]利用了基于自适应神经网络的边界控制方法,以预测振动风险,从而及时采取对应抑振措施(图11)㊂图11㊀BP 神经网络结构5㊀结束语开发海洋油气资源已经成为中国缓解油气对外依赖的重要途径,而海洋立管作为海洋资源开发平台中不可或缺的重要组成部分,其涡激振动导致的疲劳破坏是重点研究和关注的领域㊂本文从海洋立管涡激振动的基本理论㊁海洋立管涡激振动研究方法的发展㊁影响涡激振动的相关因素㊁涡激振动的监测和抑制方法四个方面对海洋立管涡激振动的相关研究进行综述,由综述可知:1)海洋立管的涡激振动研究方法经历了试验现象研究到理论与经验公式创建再到借助高性能计算机的计算流体力学研究的发展;同时,可以发现影响海洋立管涡激振动特征的因素包括顶部张力㊁海洋洋流(流速㊁流向等)㊁波浪特征(波高㊁周期等)㊁支承条件㊁立管长细比㊁立管材料以及内流的影响等㊂2)对于海洋立管涡激振动特征的研究正由单因素研究向多因素耦合研究发展,但目前多因素耦合作用下的相关研究仍显不足㊂为了更加贴合实际工程,实现更安全㊁更高效的海洋油气的开发,多因素耦合作用下的海洋立管涡激振动研究将是未来研究的重要方向之一㊂3)在海洋立管涡激振动抑制方法的研究中,研究者们发现改变立管质量㊁破除耦合关系㊁改变立管及其附加物形状㊁引入主动抑振手段等均可有效改善立管的涡激振动现象,其抑振研究经历由被动抑振到主动抑振再到利用先进监测及预测手段采取特定抑振方式及时介入的发展㊂4)随着信息技术的发展,海洋立管监测控制系统将发展为利用信息采集及处理平台,结合主动控制技术实现其工作状态监测㊁故障发现以及主动控制的集中化㊁智能化系统㊂参考文献:[1]IEA.Oil 2021:Analysis and forecast to 2026[R].Paris:Interna-tional Energy Agency,2021.[2]IEA.Offshore energy outlook[R].Paris:International Energy A-gency,2018.[3]LIU G,LI H,QIU Z,et al.A mini review of recent progress on vor-tex-induced vibrations of marine risers [J].Ocean Engineering,2020,195:106704.[4]HONG K,SHAH U S.Vortex-induced vibrations and control of ma-rine risers:A review [J ].Ocean Engineering,2018,152:300-315.[5]MOE G.The lift force on a cylinder vibrating in a current[J].Jour-nal of Offshore Mechanicsand Arctic Engineering,1990,112(4):297-303.[6]崔阳阳.多参数联合作用下的海洋立管涡激振动研究[D].淄博:山东理工大学,2018.[7]GOPALKRISHNAN R.Vortex-induced forces on oscillating bluff cyl-inders[D].Cambridge:Massachusetts Institute of Technology,1993.[8]HARTLEN R T,CURRIE I G.Lift-oscillator model of vortex-induced vibration [J].Journal of the Engineering Mechanics Divi-sion,1970,96(5):577-591.[9]康庄,张橙,付森,等.圆柱体涡激振动的高阶非线性振子模型研究[J].振动与冲击,2018,37(18):48-58.[10]郭涛,张纹惠,王文全,等.基于IBM 法的低雷诺数下涡激振动高质量比效应的研究[J].工程力学,2022,39(3):222-232.[11]SKOP R A,GRIFFIN O M.A model for the vortex-excited resonantresponse of bluff cylinders [J].Journal of Sound and Vibration,1973(2):225-233.[12]FERGUSON N,PARKINSON G V.Surface and wake flow phe-nomena of the vortex-excited oscillation of a circular cylinder[J].Journal of Engineering for Industry,1967,89(4):831-838.[13]SKOP R A,GRIFFIN O M.On a theory for the vortex-excited os-cillations of flexible cylindrical structures[J].Journal of Sound andVibration,1975(3):263-274.[14]KIM W J,PERKINS N C.Two-dimensional vortex-inducedvibration of cable suspensions[J].Journal of Fluids and Structures,2002,16(2):229-245.[15]FACCHINETTI M L,LANGRED E,BIOLLEY F.Coupling ofstructure and wake oscillators in vortex-induced vibrations [J ].Journal of Fluids and Structures,2003,19(2):123-140.[16]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学,2005,22(4):220-224,.[17]ZHU H J,ZHAO H L,GAO Y.Experimental investigation of vi-bration response of a free-hanging flexible riser induced by internalgas-liquid slug flow[J].China Ocean Engineering,2018,32(6):6山东理工大学学报(自然科学版)2024年㊀633-645.[18]王琳,李玉星,刘昶,等.严重段塞流引起的海洋立管振动响应[J].工程力学,2017,34(6):236-245.[19]马烨璇,徐万海,吴昊恺,等.海洋立管涡激振动抑制方法对比研究[C]//‘水动力学研究与进展“编委会,中国力学学会,中国造船工程学会,集美大学.第三十一届全国水动力学研讨会论文集(下册).北京:海洋出版社,2020:819-825. [20]AMAECHI C V,CHESTERTON C,BUTLER H O,et al.Review of composite marine risers for deep-water applications:design,de-velopment and mechanics[J].Journal of Composite Science,2022, 6(3):96.[21]葛士权,王春光,孙明钰,等.基于流固耦合作用的纤维增强复合材料海洋立管涡激振动的三维计算流体动力学模拟[J].济南大学学报(自然科学版),2020,34(1):1-9. [22]WANG C G,GE S Q,SUN M Y,et parative study of vor-tex-induced vibration of FRP composite risers with large length to diameter ratio under different environmental situations[J].Applied Sciences,2019,9(3):517.[23]YANG H,XIAO F.Instability analyses of a top-tensioned riser un-der combined vortex and multi-frequency parametric excitations[J]. Ocean Engineering,2014,81:12-28.[24]李文华,周性坤,孙玉清,等.变张力传递矩阵法在海洋立管模态分析中的应用[J].中国造船,2019,60(1):185-194. [25]张永波,郭海燕,孟凡顺,等.基于小波变换的顶张力立管涡激振动规律实验研究[J].振动与冲击,2011,30(2):149-154,185.[26]柳军,郭晓强,刘清友,等.考虑顺流向和横流向耦合作用的海洋立管涡激振动响应特性[J].石油学报.2019,40(10):1270 -1280.[27]殷布泽,胡其会,李玉星,等.海洋立管涡激振动特性研究综述[J].船舶力学,2022,26(7):1097-1109.[28]李莹,杨新华,郭海燕,等.海洋立管试验支座设计及其对涡激振动影响研究[J].海洋工程,2013,31(3):31-37. [29]GAO Y,ZHANGZ Z,ZOU L,et al.Effect of boundary condition and aspect ratio on vortex-induced vibration response of a circular cylinder[J].Ocean Engineering,2019,188(C):106244. [30]巫志文,陆启贤,梅国雄.随机波浪和涡流联合作用下海洋立管多频参数激励振动响应[J].船舶力学,2020,24(5):599-610.[31]WANG C,CUI Y,GE S,et al.Experimental study on vortex-in-duced vibration of risers considering the effects of different design parameters[J].Applied Sciences,2018,8(12):2411. [32]娄敏,钱刚.海洋立管涡激振动实验设计[J].实验室研究与探索,2020,39(4):59-62.[33]崔阳阳,王春光,陈正发,等.基于灰色理论的多参数海洋立管涡激振动试验研究[J].科学技术与工程,2018,18(13):207 -213.[34]DEND J L.The control problems of grey systems[J].Systems and Control Letters,1982,1(5):288-294.[35]RODRIGUEZ O.Base drag reduction by control of the three-dimen-sional unsteady vortical structures[J].Experiments in Fluids, 1911,11:218-222.[36]OWEN JC,BEARMAN P W,SZEWCZYK A A.Passive control ofVIV with drag reduction[J].Journal of Fluids and Structures,2001, 15(3/4):597-605.[37]娄敏,郭海燕,董文乙.敲击对海洋立管涡激振动抑制作用的试验研究[J].水动力学研究与进展A辑,2007,22(4):508-511.[38]王海青,郭海燕,刘晓春,等.海洋立管涡激振动抑振方法试验研究[J].中国海洋大学学报(自然科学版),2009,39(S1):479 -482.[39]吴仕鹏,王晓飞,赵福臣,等.螺旋列板涡激振动抑制效率试验研究和分析[J].中国造船,2022,63(3):159-166. [40]娄敏,陈法博,时晨.仙人掌形截面柔性圆柱体涡激振动抑制研究[J].石油机械,2021,49(5):89-96.[41]李子丰,宋广明,陈雁玲,等.羽翼形隔水管涡激振动抑制装置实验研究[J].振动与冲击,2020,39(9):17-23. [42]翟云贺,康庄,宋儒鑫,等.海洋立管涡激振动抑制装置模型试验研究[J].船舶工程,2016(1):86-91.[43]沙勇,曹静,张恩勇,等.抑制涡激振动的螺旋列板设计参数研究[J].海洋工程,2013,31(1):43-48.[44]齐娟娟,睢娟,吴浦远,等.附属螺旋导板抑制圆柱涡激振动的风洞试验[J].水动力学研究与进展A辑,2015,30(5):533 -539.[45]睢娟,王嘉松,田启龙,等.绒毛控制圆柱涡激振动的风洞试验研究[J].实验力学,2016,31(3):393-398.[46]王伟,宋保维,毛昭勇,等.旋转翼对海洋立管涡激振动抑振的数值研究[J].船舶力学,2021,25(1):29-36.[47]周阳,黄维平,杨斌,等.带螺旋侧板立管两向涡激振动的试验研究[J].振动与冲击,2018,37(17):249-255. [48]WANG C,TANG H,DUAN F,et al.Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets [J].Journal of Fluids and Structures,2016,60(Null):160-179.[49]CHEN W L,XIN D B,XU F,et al.Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control[J]. Journal of Fluids and Structures,2013,42:25-39. [50]赵瑞,马烨璇,闫术明,等.海洋立管涡激振动的主动控制技术[J].船舶工程,2021,43(4):136-139.[51]ZHANG S,TANG L,LIU Y J.Output feedback control of a flexible marine riser with the top tension constraint[J].Systems& Control Letters,2022,163:105208.[52]WONG E W C,KIM D K.A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network[J].Advances in Engineering Software,2018,126:100 -109.[53]高喜峰,翟立宾,徐万海.应用BP神经网络的柔性圆柱涡激振动预报[J].哈尔滨工程大学学报,2020,41(8):1150-1155. [54]YU C Y,LOU X Y,MA Y F,et al.Adaptive neural network based boundary control of a flexible marine riser system with output constraints[J].Frontiers of Information Technology&Electronic Engineering,2022,23(8):1229-1238.[55]YAN Y F,ZHANG S Y,JIN X,et al.Applications of continuum fatigue risk monitoring in riser connectors system integrity manage-ment[J].Ocean Engineering,2022,245:110540.(编辑:姚佳良)7第2期㊀㊀㊀㊀㊀王春光,等:海洋立管涡激振动的基本理论㊁研究方法㊁影响因素及抑振方式的研究综述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rX iv:c ond-ma t/1123v1[c ond-m at.s upr-con]1Jan2Enhanced vortex damping by eddy currents in superconductor-semiconductor hybrids M.Danckwerts 1,A.R.Go˜n i 1,C.Thomsen 1,K.Eberl 2,and A.G.Rojo 31Institut f¨u r Festk¨o rperphysik,Technische Universit¨a t Berlin,Hardenbergstr.36,10623Berlin,Germany 2Max-Planck-Institut f¨u r Festk¨o rperforschung,Heisenbergstr.1,70569Stuttgart,Germany 3Dept.of Physics,University of Michigan,Ann Arbor,MI 48109,USA Abstract An enhancement of vortex-motion damping in thin Pb/In super-conducting films is obtained through coupling to an adjacent two-dimensional electron gas formed in a modulation-doped GaAs/AlGaAs heterostructure.This effect is observed by monitoring the power dis-sipation at the superconductor in the vortex state while increasing the density of the electron gas using a gate voltage.Quantitative agree-ment is found with calculations based on a viscous model of vortex damping which considers generation of eddy currents in the electron gas by moving flux lines.In the regime of filamentary and channel vor-tex flow,eddy-current damping leads to striking dissipation breakdowndue to stopping of entire vortex channels.71.10.Ca,73.50.-h,74.60.Ge,74.76.DbTypeset using REVT E XSuperconductor-semiconductor hybrid structures are emerging as key devices in the search for new physical phenomena resulting from interactions between two sys-tems with dissimilar electronic properties1.In particular,Josephson-type junctions with Nb electrodes coupled by a two-dimensional electron gas(2DEG)in InAs layers exhibit phase-sensitive transport due to Andreev reflections of quasi particles at the interfaces between normal metal and superconductor2–4.Other experiments concen-trate on commensurability and interference effects on electron ballistic transport in the2DEG,which occur when a perpendicular magneticfield is spacially modulated by the vortices of an adjacent superconductingfilm.In this case,a pronounced suppression of the Hall effect was observed and ascribed to electron diffraction by flux quanta5.Few investigations are concerned with the influence of a normal metal on the vortex dynamics under a transport current,although the devices were intentionally designed to have no viscous coupling6.One can think of our hybrid system as a modified Giaever’s dc transformer7,in which one of the superconductingfilms has been replaced by a2D electron gas.Under the action of a Lorentz force the vortices move at constant velocity due to viscous damping.For an isolated superconductor, this damping originates from the voltage induced across the normal core of each moving vortex.By bringing a highly mobile electron gas close enough to the super-conductingfilm,i.e.at a distance of the order of the London penetration depth,an additional dissipation mechanism is introduced through magnetic coupling resulting in an increase of viscosity.An interesting issue is to what extent this would affectfil-amentary and channel vortexflow,for which dissipation jumps are observed in the current-voltage curves8–10.The study of vortex damping in hybrids may provide further insight into vortex-vortex interactions and pinning effects.This Letter reports thefirst observation of damping enhancement for vortex motion due to the presence of a high-mobility electron gas in superconductor-semiconductor hybrids.The samples used in our experiments consist of thin Pb/Infilms evaporated on top of modulation-doped GaAs/AlGaAs heterostructures.The evidence is found in the decrease of dissipation voltage measured at the super-conductingfilm due to a higher viscosity for vortexflow in the hybrid system,as compared to the case without the2DEG beneath.We vary the normal metal con-ductivity by increasing the carrier density using a gate voltage applied between the 2DEG and a back contact.Our results are in quantitative agreement with the pre-dictions of a model which accounts for the generation of eddy currents in the electron gas byflowing vortices.For an estimated increase in electron density of up to20% the relative change observed in dissipation voltage lies in the one-percent range.For the currents and magneticfields at whichfilamentary vortexflow occurs,however, striking dissipation reductions are readily achieved.The semiconductor component of the hybrid system is either a25nm wide GaAs/AlGaAs single quantum well(SQW)or a single heterointerface(SHI)struc-ture.A two-dimensional electron gas is realized by modulation doping and is buried at a distance D=75nm and50nm from the surface for the SQW and SHI struc-ture,respectively11.The nominal mobilities and carrier densities of both samples at 4.2K and under illumination areµ≃8×105cm2/Vs and n≃5.6×1011cm−2.The electron gas is contacted from the surface by In alloying in order to apply a gate voltage U g between it and a metallic back contact.The variation of the2D density was examined previously in photoluminescence experiments12.A linear increase in the carrier density n2D between its nominal value and at most∼6.5×1011cm−2 can be achieved by applying a gate voltage between0and200V.Hence the es-timated maximum possible increase of density is less than20%.Superconducting films of Pb with nominally14at.%In were evaporated on the semiconductor surface (4×4mm2)withfilm thicknesses d ranging from60to300nm,as determined using atomic-force microscopy.The superconducting transition in zerofield occurs at7.2 K.For transport experiments,Au leads were pressed against the superconductor film.Current-voltage measurements were performed with standard four-terminal configuration using dc currents up to1.5A.Experiments were carried out at4.2Kand low perpendicular magneticfields B<0.2T.To model the coupling between vortex lattice and electron gas in our hybrid samples we consider the effect on the normal metal of the magneticfield B of a moving vortex with speed v.The experimental situation is schematically shown in the inset to Fig.1.Flowing vortices induce an electricfield in the2DEG that generates eddy currents leading to an additional dissipation which,in turn,forces thefluxoids to slow down.In the limit D≪λ2/d of small superconductor-2DEG distances as compared to the effective London penetration depth,the magneticfield of a vortex can be approximated as B∼(Φ0/2πλ2)K0(r/λ)ˆz,whereΦ0=h/2e is theflux quantum and K0the zeroth-order Bessel function of imaginary argument13. For our samples the effective penetration depth isfive to eight times D8.The vector potential in the plane of the2DEG can be written asΦ0A(ρ)=A(x−vt,y),which causes joule dissipation in the2D gas.The ∂xenergy loss per unit time is calculated according todεA(ρ/λ) 2≃Φ20∂xη2DEG1+λ 2σ2DEGexperimental results.Eddy-current damping effects are much more pronounced in the regime offila-mentary and channel vortexflow,for they can lead to a striking fall of dissipation voltage by more than one order of magnitude,as shown in Fig.2.Here,U d was mea-sured at a current close to the repinning transition of a large vortex channel.The inset to Fig.2displays the IV characteristic of the superconductingfilm measured for afield of53mT and at4.2K but without gate bias.The abrupt jumps and large hysteresis apparent in the IV curve are the signature of channel vortexflow8.As indicated by the arrow,the point where the measurement of dissipation versus gate voltage was carried out is close above the critical current at which the downward jump occurs.In this case,the vortex speed is just high enough for the channel to keepflowing.Energy loss due to eddy currents slows the vortices further down, so that the whole channel will eventually be repinned.When the vortex channel stops,dissipation suddenly drops.This process is irreversible since,as can be seen in Fig.2,dissipation does not resume to its initial value when the gate voltage is swept back to zero.This effect is highly reproducible even after heating the sample over T c and re-cooling.The study of the dependence on gate voltage of the current values at which dissipation jumps occur provides further information about the nature offilamentary vortexflow and the role played by pinning.Figure3shows one example in which the currents for the upward and downward voltage jumps are plotted as a function of gate bias(the corresponding IV curve is displayed in the inset to Fig.3).The jump-up current is independent of the2D density indicating that the pinning strength is not appreciably affected by the presence of the electron gas.In contrast,the jump-down current increases with U g.With increasing viscosity the vortices of a moving channel slow down such that its repinning occurs at larger values of the transport current. This is interpreted as additional evidence of a repinning force which depends on vortex velocity.A similar increase in jump-down current is observed for thin PbInfilms on glass by decreasing the external magneticfield8.The influence of magneticfield homogeneity on eddy-current damping is revealed by the percentage change in dissipation as a function of magneticfield at constant transport current.As a measure of the damping strength,the maximum dissipa-tion change∆U d for a gate voltage interval of∆U g=170V is normalized by the dissipation voltage U d0at zero bias.The corresponding values measured at500mA and1000mA are shown in Fig.4as a function of the external magneticfield B. At B≤30mT damping causes0.1–0.2%change in dissipation.At40mT,the data for both0.5A and1A display a sharp maximum and become very small at fields larger than50mT,where the resistance of thefilm is close to normal but the transport behavior is characterized by massive vortexflow.The weakening of the effect of eddy-current damping on dissipation with increas-ing magneticfield(solid line in Fig.4)can be explained as due to the growing homogeneity of thefield pattern of the vortices while approaching the upper critical field B c2.At low magneticfields,i.e.low vortex density,thefield distribution is very inhomogeneous,since B has a maximum at the vortex cores dropping to zero between them.Thus,˙B is large and damping is efficient.When vortices start to overlap,the lateral modulation of magneticfield in the plane of the2DEG is con-tinuously reduced.As a consequence,eddy currents as well as damping effects are weak.In contrast,the peak at40mT is associated with the enhancement of the effects due to eddy-current damping in the regime dominated byfilamentary vortex flow.Here the dissipation change is greatly enhanced byfluctuations in the number of moving vortices contributing to dissipation due to the depinning and repinning of a large number of small vortexfilaments in quick succession.In summary,we have observed significant additional damping of vortex motion in superconductor-semiconductor hybrid systems.A theoretical model is used to calcu-late the damping effect from eddy currents generated in the2D electron gas showing quantitative agreement with the experiment.Under conditions offilamentary vortexflow,the energy loss due to eddy currents leads to the stopping of entire channels, such that power dissipation in a hybrid device can be switched offby slightly in-creasing the electron density.At largefields damping is weak due to the vanishing lateralfield modulation in the plane of the2DEG.We point out that,although our observations can be explained within the framework of classical electrodynamics, novel effects due to quantization of the electron gas conductivity are anticipated to occur for the conditions of the experiments.Our results provide further insight into the issue of vortex dynamics with dissipation and open up a new class of devices for the study of correlations between adjacent non-tunneling systems with dissimilar electronic and magnetic properties.A.G.R.acknowledges useful conversations with John Clem and Cagliyan Kurdak and partial support from the National Science Foundation.REFERENCES1For recent contributions and references,see Proc.23th Int.Conf.on the Physics of Semiconductors,Berlin,Germany,July1996,ed.by M.Scheffler and R.Zim-mermann(World Scientific,Singapore,1996);Proc.11th Int.Conf.on Electronic Properties of Two-Dimensional Systems,Nottingham,UK,August1995,Surf. Sci.361-362,(1996).2C.Nguyen,H.Kroemer,and E.L.Hu,Phys.Rev.Lett.69,2847(1992).3A.Dimoulas,J.P.Heida,B.J.v.Wees,T.M.Klapwijk,W.v.d.Graaf,and G. Borghs,Phys.Rev.Lett.74,602(1995).4B.J.v.Wees,Surf.Sci.361-362,293(1996).5A.K.Geim,S.J.Bending,and I.V.Grigorieva,Phys.Rev.Lett.69,2252(1992);A.K.Geim,S.J.Bending,I.V.Grigorieva,and M.G.Blamire,Phys.Rev.B 49,R5749(1994).6G.H.Kruithof,P.C.van Son,and T.M.Klapwijk,Phys.Rev.Lett.67,2725 (1991)7I.Giaever,Phys.Rev.Lett.15,825(1965).8M.Danckwerts,A.R.Go˜n i,and C.Thomsen,Phys.Rev.B59,R6624(1999). 9R.W¨o rdenweber,P.Kes,and C.C.Tsuei,Phys.Rev.B33,3172(1986);S.Bhat-tacharya and M.J.Higgins,Phys.Rev.B52,64(1995);M.C.Hellerquist, D.Ephron,W.R.White,M.R.Beasley,and A.Kapitulnik,Phys.Rev.Lett. 76,4022(1996);W.Henderson and E.Y.Andrei,M.J.Higgins,and S.Bhat-tacharya,Phys.Rev.Lett.77,2077(1996).10N.Grønbech-Jensen,A.R.Bishop,and D.Dom´ınguez,Phys.Rev.Lett.76,2985 (1996).11S.Ernst,A.R.Go˜n i,K.Syassen,and K.Eberl,Phys.Rev.Lett.72,4029(1994)12A.R.Go˜n i,M.Danckwerts,U.Haboeck,K.Eberl and C.Thomsen, phys.stat.sol.(b)215(1999)13J.R.Clem,in Inhomogeneous Superconductors,ed.by D.U.Gubser,T.L.Fran-cavilla,S.A.Wolf,and J.R.Leibowitz(American Institute of Physics,New York, 1980),p.245.14M.Tinkham,Introduction to Superconductivity(McGraw-Hill,1996),p.169.FIGURESFig.1.Dissipation voltage as a function of gate bias of a PbIn/SHI hybrid structure in a magneticfield of53mT and at4.2K.The transport current was600 mA.The inset shows a sketch of the hybrid sample.I is the transport current.The arrow represents aflux line with magneticfield B moving at a speed v.Fig.2.Dissipation voltage as a function of gate bias of a PbIn/SHI hybrid structure in a perpendicular magneticfield of53mT for500mA current and at 4.2K.The inset shows the corresponding current-voltage characteristic.The point where the measurement of dissipation versus gate voltage was taken is marked with an arrow.Fig.3.Dependence on gate voltage of the critical current for the upward(up triangles)and the downward voltage jump(down triangles)for a PbIn/SQW hybrid at4.2K and at a magneticfield of71mT within the region of channel vortexflow. The inset shows the corresponding IV characteristic.Fig.4.Dissipation percentage change versus magneticfield for a PbIn/SQW hybrid sample at4.2K.Data were taken at500mA(solid symbols)and1000mA (open symbols).The solid line is a guide to the eye.The shaded area indicates the field range within which voltage jumps are observed for the used currents.115010015029.9129.9229.9329.94PbIn/SHI Hybrid 4.2 K, 53 mT I = 600 mAD i s s i p a t i o n V o l t a g e U d (m V )Gate Voltage U g (V)Fig. 1 Danckwerts et al.IvBd DPbIn filmeddy current 2DE G)LJ'DQFNZHUWV HW DO, P$'L V V L S D W L R Q 9R O W D J H 8/ P 9*DWH 9ROWDJH 8J 93E,Q 6+, +\EULG. P78 9, P$)LJ'DQFNZHUWV HW DO8 P 9, P$3E,Q 6+, +\EULG . P7*DWH %LDV 8J 9MXPS GRZQ MXPS XS-X P S &X U U H Q W ,P $! " # $%&'( )*+, - '. .∆/ ) / #0%。